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ABSTRACT

This paper concerns the underdetermined case of the blind
source separation problem, i.e. the situation when the num-
ber of observed mixed signals is lower than the number of
sources. The general concept that we propose in this case
consists of a differential source separation approach, which
uses optimization criteria based on differential parameters,
so as to make some sources invisible in these criteria and to
perform an exact separation of the other sources only. We
illustrate this partial source separation concept on a new cri-
terion based on the ”differential normahized kurtosis” that
we introduce to this end. We then validate the performance
of this criterion by means of experimental tests.

1 INTRODUCTION

In the blind source separation problem, one aims at estimat-
ing a set of n, independent source signals Xi(t) from a set of
n, observed signals Yi(t), which are mixtures of these source
signals [1]. The mixed signals Y;(¢) are typically provided
by sensors, and in the so-called linear instantaneous mixture
model, each source-to-sensor propagation path is represented
by a scalar coefficient a;; applied to the considered source
signal. The overall relationship between the column vectors
X(t) and Y(t) of sources and observations then reads:

Y(t) = AX(b), )

where the mixing matrix A consists of the coefficients a;;.
Most investigations have been performed in the case when:
i) no = ns, so that the matrix A is square, and ii) this matrix
is invertible. The source separation problem then basically
consists in determining an estimate of the inverse of A: con-
sider a vector S(¢) of outputs signals of a source separation
system, obtained by multiplying the available mixed signals
by a separating matrix C, i.e:

S(t) = CY (1), (2)

Combining (1) and (2) shows that, when C is made equal
to A7, all the output signals Si(t) resp. become exactly
equal to all the source signals X,‘(t) to be restored. Various
methods have been proposed to estimate A™', based on the
assumed statistical independence of the source signals (see
e.g. the survey in [1]). Most of them consist of maximiz-
ing or cancelling parameters of the outputs signals such as
their moments, cumulants or normalized kurtosis, which are
classical parameters in the higher-order statistics field [2].
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As stated above, most of these investigations were per-
formed under the assumption n, = n.. In many prac-
tical situations however, only a limited number of sensors
is acceptable, due e.g. to cost constraints or physical con-
figuration, whereas these sensors receive a larger number
of sources. A few authors have considered this case when
n, < ns (see e.g. [3] and references therein, [4]). This pa-
per also concern this case but, unlike in previously reported
investigations, we here introduce a practical approach which
combines the following features:

o [t applies to continuous sources with unknown distribu-
tions.

e It is not restricted to specific mixing conditions.

¢ It only performs linear (instantaneous) combinations of
the available mixed signals, thus providing linear com-
binations of the sources. We initially set this condi-
tion because of the eventual applications that we have
in mind (although the proposed approach is not yet
developed up to that point in this paper): in various
applications, such as speech enhancement, it has been
observed that the artefacts created by non-linear pro-
cessing are (e.g. physiologically) even more disturbing
than the "noise” present in the initial mixed signals, so
that linear processing should be preferred. The price
to pay for this linear operation is that some "noise” is
still present in the outputs of the separating system in-
troduced hereafter. More precisely, this approach only
performs a ”partial source separation”, as defined in
Section 2.

2 SOURCE SEPARATION LIMITATION AND
PROPOSED CONCEPT

For the sake of simplicity, we focus on the case of linear in-
stantaneous mixtures in this paper. We showed above that
if n, = n, an exact separation of all sources is theoretically
possible (and is achieved when C is made exactly equal to
A™"). Tt is clearly also possible when n, > n,, but not when
no < ns as will now be shown. In the latter case, A is not
square. Each output signal S;(t) defined by (2) is a linear
instantaneous combination of the n, mixed signals. For an
arbitrary matrix A, the highest number of source contribu-
tions that may be cancelled in such a (non-zero) combination
is n, — 1. This optimum case, where each output is still a
mixture of the remaining (nS —n,+ 1) sources, is called par-
tial source separation hereafter.



This only shows that partial source separation is theoret-
ically possible, in the sense that it is achieved for adequate
combination coefficients ¢;; in the matrix C. To actually
achieve it in practice, algorithms which are able to estimate
these adequate values of the coefficients c;; are then needed.
It may be shown that the classical methods, that have been
developed for the case when n, = n., do not meet this
requirement: whereas their principles (such as the above-
mentioned cumulant maximization) coincide with the separ-
ation of the source signals when n, = n,, they yield outputs
signals which are still mixtures of all sources when applied
to arbitrary observed signals such that n, < n,.

This paper therefore aims at introducing a concept which
achieves the above-defined partial source separation when
n, < ns. By "concept”, we mean that we do not propose
a single criterion (and/or algorithm) but a general way to
derive new partial source separation methods from various
existing approaches developed for the case when n, = n,.
We therefore start from one of the latter methods, based on
a given parameter, such as those defined in Section 1. We set
the following additional constraints on the source signals: i)
two occurences of the considered parameter should be avail-
able and ii) the considered sources should consist of two types
with respect to corresponding source parameters, i.e:

1. first type of sources: for (at most) n, sources, the cor-
responding source parameter should take different val-
ues in the two occurences,

2. second type of sources: for the other ns — n, sources (at
least), this parameter should take the same value in the
two occurences.

The above-mentioned two ”occurences” may be obtained in
various ways, allowing one to derive various methods from
the proposed concept. For example, they may correspond to
the two values of a parameter, such as a cumulant, resp. ob-
tained for two time domains D; and D2. These domains may
be defined as follows. When considering these theoretical
(zero-lag) cumulants themselves, which consist of mathem-
atical expectations of signals [2], each of these time domains
D; is restricted to the time position ¢; when the correspond-
ing mathematical expectations are considered. On the con-
trary, the corresponding cumulant estimates are resp. ob-
tained by time averaging over two domains D; and D, which
then consist of non-overlapping bounded time intervals, as-
suming that each source exhibits stationarity over each such
domain (this is referred to as ”short-term stationarity” be-
low). When the two parameter occurences are defined in such
a way, the second type of sources consists of sources whose
cumulant values do not vary from one of the considered time
domains to the other, i.e. sources which in addition exhibit
”long-term stationarity”. On the contrary, first-type sources
then consist of long-term non-stationary sources.

Whatever the origin of these occurences, the proposed
concept consists in deriving new signal parameters from the
initial ones in such a way that the effect of the second type of
sources disappears in them, using a method that is detailed
further in this section. The initial problem is thus trans-
formed in a problem where (at most) n, sources are visible
(i.e. the first-type sources) from the point of view of the
new parameter, and n, mixtures of these sources are avail-
able. In other words, thanks to this approach we get back
in the classical configuration involving as many observed sig-

nals as source signals. Adapting the initial source separation
method to the optimization of the new parameter then yields
separating coefficients ¢;; such that each output signal S;(t)
contains a contribution from only one of the sources seen by
the approach, i.e. of the first-type sources. Of course, each
such signal Si(t) also contains contributions from all second-
type sources, corresponding to the combination of the mixed
signals Yi(t) by means of the above-mentioned coefficients
cij, as shown in (2). This approach therefore achieves the
above-defined partial source separation, and more specific-
ally the sources that are thus completely separated are the
first-type one. These sources are the signals of interest in this
partial source separation problem, as opposed to the "noise
signals”, 1.e. the second-type sources, which are still present
in all outputs.

We now explain how to derive new parameters in which the
second-type sources are invisible. For the sake of simplicity,
we assume that the initial parameter is a linear function of
the corresponding source parameters (for example, an output
cumulant is indeed a linear function of the cumulants of the
independent sources). The new parameter that we then define
exploits the difference of behavior between the two types of
sources concerning the variations of their initial parameter
from one occurence to the other. More precisely, we here
focus on the case when the new parameter that we define is
the difference between the two values of the initial parameter
resp. associated with the two available occurences (e.g. the
difference between the two output cumulants corresponding
to the two time domains). As each second-type source yields
the same contribution in the two initial parameters, its effect
is cancelled in the corresponding parameter difference (see
the example in the next section), i.e. the above-defined goal
is thus reached.

To summarize, the proposed concept consists of a differ-
ential source separation approach, which uses optimization
criteria based on differential parameters, so as to make some
sources invisible in these criteria and to perform an exact
separation of the other sources only.

3 A CRITERION BASED ON DIFFERENTIAL
NORMALIZED KURTOSIS

We now apply the above concept to the source separation
criterion that we defined in [5] for the case n, = 2 mixtures
of n, = 2 sources. As this criterion is based on the notions
of cumulants and normalized kurtosis, we first have to define
the new parameters used in the differential source separation
method derived below, i.e. the differential versions of the
above parameters. Given an arbitrary zero-mean signal u
and two time domains D; and Ds introduced in Section 2,
we define the corresponding (zero-lag) mt-order differential
cumulant as:

DCUM,(u,D1,D;) = CUM,,(u,D5)
—CUMm(u,D1),  (3)

where CUMm(u,D;) are the corresponding classical (i.e.
non-differential) cumulants, which may be found e.g. in [2].
Then, based on the expression of the classical (i.e. non-
differential) normalized kurtosis on a domain D;, i.e [2]

CU M, (u, D;)

KP4 = 0t (0, D) “)



we define the corresponding differential normalized kurtosis
as:

) DCUM,(u, D, D>) '
<(u, D1, D2) [DCU Mz (u, D, D2)]? v

The source separation configuration that we then consider

corresponds to n, = 2 observed signals Y;(¢) which are lin-
ear instantaneous mixtures of an arbitrary number ns of
sources signals. Two of these source signals, denoted X (t)
and X»(t), have long-term non-stationarity: these are the
signals of interest to be separated. The other source signals,
denoted Vi(t) to V,,,(t), have long-term stationarity: these
are the noise signals. In the remainder of this section, we
consider the centered versions of all signals, denoted with
lower-case letters. The (centered) mixed signals then read:

yi(t) = anwr(t) + aea(t) + Y _aivy(t), i€1,2. (6)
J=3

Now consider a linear instantaneous combination of the
source signals:

2(t) = arzi (b) + asma(t) + 3 agv,(t). (7)

J=3

This signal may e.g. be an output of the considered source
separation system, created as a linear instantaneous combin-
ation of the available two mixed signals and here expressed
as:

2(t) =y (t) — eya(t). (8)
The « coefficients in (7) then combine the mixing and separ-
ating coefficients a;; and c. The m*-order cumulant of z(t)
at each time position ¢; is then derived from (7) by using
the properties of cumulants [2] and the assumed statistical
independence of the source signals. This yields:

CUM,,(2,t;) = ail CUM,,(31,t)
+a5' CUMm(z2,t:)

+ aPCUMu(v; ). (9)

j=3

The corresponding differential cumulant DCUM,,(z, t1, t2)
then follows from the difference defined in (3). The contribu-
tion of each noise signal v;(t) disappears in this difference, as
its cumulants CU]Wm(UJ, t,‘) corresponding to the two time
positions £; and t; have the same value. All noise signals
therefore also disappear in the differential normalized kur-
tosis (5), which may also be expressed as:
D[((.’L‘], t1 s tg) + QQDI((.’[JQ, t1 s tz)

D[((z,thb) = [_l +q]2 (]0)

where we introduce the variable g defined as:

a2DCUMz (w2, b1, t2) (11)
a2DCUMs(w1, b1, b2)

q:

Comparing (10)-(11) with the expressions what we derived in
[5] for our initial (i.e. non-differential) source separation cri-
terion shows that they are identical, except that: i) the initial
cumulants and normalized kurtosis are replaced by their dif-
ferential counterparts, and therefore ii) the variable p that we
introduced in our initial criterion is replaced by the variable

q. Note that, whereas p always covers the range [0, +00] when
the a coeflicients are varied for given sources, g covers either
the same range or [—o0,0], depending on the signs of the
differential 2"%-order cumulants of the considered sources.
Due to space limitations, we here restrict ourselves to the
case when it covers the range [0, +oc]. The solution that we
propose for the partial source separation problem considered
here is then the differential counterpart of the initial one, i.e:
the separation of the signals of interest is guaranteed to be
achieved by adjusting each coefficient ¢ of the separation sys-
tem so as to reach one of the extrema of DK (z,t1,t2), where
the types of extrema to be considered depend on the signs
of the here-differential normalized kurtosis of the sources [5].
More precisely:

1. If DK (xi,t1,t2) < 0 for both sources of interest, then
the two values of ¢ for which partial source separation
is achieved coincide with the two values of ¢ which min-
imize DK (z,t1,12).

2. Symmetrically, if DK (z;, t1,t2) > 0 for both sources,
partial source separation coincides with the two maxima

Of DI((Z,tl, tz)

3. Eventually, if DK(z1,t1,t2) and DK (wz2,t1,t2) have
oposite signs, partial source separation coincides with
the two extrema (i.e. its only minimum and maximum)

of DK(z, t1, tz).
4 EXPERIMENTAL RESULTS

We have validated the above approach by means of mixed
signals obtained by combining three sources, i.e. two binary-
valued (-1/+1) signals of interest X(¢) and X»(¢) and a sta-
tionary noise signal Vz(¢) uniformly distributed in the range
[-1,+1]. Each signal X;(¢) is stationary over each considered
time interval, but its statistics are modified from one interval
to the other by changing the probability p; that X;(t) = +1.
These probabilities were selected so that the centered ver-
sions z1(t) and z(t) of both useful signals are sub-Gaussian
in the first interval Di and super-Gaussian in the second in-

terval D,. More precisely, p1 and p, were both set to

in D1, which results in the following theoretical® parametei
values for each centered source ;(t): CUMa(z;, D1) = 1,
CUM, (mi, Dl) = —2 and therefore [((mi, Dl) = —2 as shown
by (4). Similarly, we used py = p» = % in Dy, so that
CUM;(zi,D2) = 0.36, CUM,(zi,D2) = 0.6624 and there-
fore K(z;,D2) ~ 5.11. The differential normalized kurtosis
of both centered sources are then DK (z;, D1, D2) = 6.5, i.e.
these sources are ”differentially super-Gaussian”. These sig-

nals were mixed and centered according to:

yi(t)
y2(t)

In all experiments, we used a17 = 1, a12 = 0.9, a2 = 0.8, and

an@1(t) + arzza(t) + arzva(t) (12)
azy .’L‘l(t) -I- GQQZ‘Q(t) -I- (123U3(t). (13)

azz = 1, so that the two values of ¢ corresponding to partial
source separation are daiz2/azz = 0.9 and ai1/az1 = 1.25 [3].
On the contrary, the mixture coeficients a;z and azs were
varied in the experiments, so as to investigate the influence
of the contributions of the noise signals on the performance
of the proposed approach.

I Noticable deviations from the theoretical distributions defined
in this paragraph were observed in the empirical signals and ap-
pear in the figures provided hereafter.
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Figure 1: Variations vs ¢ of non-differential output kurtosis
in each domain D; and of differential kurtosis between these
domains. Dashed line: K(z,D1), dotted line: K(z,Ds), solid

line: DK (z,D1,D2). Mixture coefficients: a1z = azs = 0.

The very first experiment was performed with no noise
contributions, i.e. a3 = azs = 0. The theoretical discussion
provided above shows that, in this preliminary noiseless case,
the two sources of interest may then be separated by three
approaches, i.e. either by using our non-differential approach
in any of the considered two time domains, or by applying
our new differential method between these domains. This was
confirmed experimentally by considering the centered source
separation system output and by determining the variations
vs ¢ of its experimental normalized kurtosis (differential or
not) associated with the considered three approaches. When
varying ¢ with a step of 1072, K(z,D1) has two minima situ-
ated at ¢ = 0.900 and ¢ = 1.250 (see Fig. 1), whereas
K(z,D5) and DK(z,D1,D,) have two maxima situated at
¢ = 0.900 and ¢ = 1.250, which is in full agreement with the
discussion presented at the end of Section 3 (including its
coutnerpart for the non-differential approach).

The second experiment was then carried out with moder-
ate noise contributions, 1.e. a1z = 0.2 and a23s = 0.3. The
non-differential approaches are affected by this noise: the two
minima of K(z,D1) now occur for ¢ = 0.889 and ¢ = 1.268
and the maxima of K(z,D;) correspond to ¢ = 0.872 and
¢ = 1.311. On the contrary, the differential approach pro-
posed in this paper is completely insensitive to this noise, as
the maxima of DK (z,D,,D:) remain exactly at ¢ = 0.900
and ¢ = 1.250.

The last experiment was performed with large noise con-
tributions, i.e. a13 = 2 and a3 = 3. The non-differential ap-
proaches then do not apply at all: the two minima of K(z, D)
here occur for ¢ = 0.697 and ¢ = 1.129, which is quite differ-
ent from the suitable values. Moreover, K(z,D2) then only
has a single maximum, situated at ¢ = 0.679 (see Fig. 2).
On the contrary, the differential approach is almost insens-
itive to this noise, as the maxima of DK (z, D, D;) are then
only shifted to ¢ = 0.902 and ¢ = 1.201.

Figure 2: Same legend as in Fig. 1, except: a1z = 2, azs = 3.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a concept which allows to
perform partial source separation with a reduced number of
observed signals. We applied this differential approach to a
criterion based on the ”differential normalized kurtosis” that
we introduced to this end, and we validated its performance
by means of experimental tests. Optimization algorithms as-
sociated to this criterion are presented in another paper [6].
Our future investigations will esp. concern the application of
the proposed concept to convolutive source separation meth-

ods.
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