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ABSTRACT

Classical source separation methods only apply to
the case when the number n, of observed signals is
(at least) equal to the number n; of source signals.
In this paper, we first introduce a concept which
starts from such methods and which allows to derive
corresponding differential (partial) source separation
methods applicable to the case when n, < ng, thus
allowing to reduce the number of sensors. We then
illustrate this concept on a new separation criterion
based on differential normalized kurtosis and we ex-
perimentally validate it on a preliminary speech en-
hancement configuration.

1. INTRODUCTION

Blind source separation is a signal processing prob-
lem which consists in estimating a set of ny inde-
pendent source signals X;(¢) from a set of n, ob-
served signals Y;(¢), which are mixtures of these
source signals [1]-[3]. The mixed signals Y;(t) are
typically provided by sensors, and the mixing phe-
nomenon then results from the propagation of all
signals from their emission locations to all sensors.
In the so-called linear instantaneous mixture model,
each source-to-observation propagation is represen-
ted by a scalar coefficient a;; applied to the con-
sidered source signal. This coefficient is related to
attenuation during propagation. The overall rela-
tionship between the column vectors X (¢) and Y (¢)
of sources and observations then reads:

Y(t) = AX(1), (1)

where the mixing matrix A consists of the coeffi-
cients a;;. Most investigations have been performed
in the case when: i) n, = n,, so that the matrix
A is square, and ii) this matrix is invertible. The
source separation problem then basically consists in
determining an estimate of the inverse of A: consider
a vector S(t) of outputs signals of a source separa-
tion system, obtained by multiplying the available
mixed signals by a separating matrix C, i.e:

S(t) =CY(t). (2)
Combining (1) and (2) shows that, when C' is made
equal to A1 all the output signals S;(t) resp. be-
come exactly equal to all the source signals X;(t) to
be restored. Various methods have been proposed
to estimate A~', based on the assumed statistical
independence of the source signals (see surveys in
[1]-[2]). Most of them consist of maximizing or can-
celling parameters of the outputs signals such as their
moments, cumulants or normalized kurtosis, which
are classical quantities in the higher-order statistics
field [4]-[5].

Other methods have been developed for so-called
convolutive mixtures, where each source-to-observat-
ion overall propagation path is represented by a fil-
ter. For a survey of these methods, which esp. apply
to acoustic signals, see e.g. [3]. Most of these invest-
igations were also performed under the assumption
n, = ny. In many practical situations however, only
a limited number of sensors is acceptable, due e.g. to
cost constraints or physical configuration, whereas
these sensors receive a larger number of sources.
This paper concerns this case when n, < ny: the
inadequacy of classical methods is shown, and a new
approach is proposed and validated.

2. SOURCE SEPARATION LIMITATION
AND PROPOSED CONCEPT

For the sake of simplicity, we focus on the case of
linear instantaneous mixtures in this paper. We
showed above that if n, = ns an exact separation of
all sources is theoretically possible (and is achieved
when C' is made exactly equal to A=1). It is clearly
also possible when n, > ng, but not when n, < ny
as will now be shown. In the latter case, A is not
square. Each output signal S;(t) defined by (2) is
a linear instantaneous combination of the n, mixed
signals. The highest number of source contributions
that may be cancelled in such a (non-zero) combin-
ation is n, — 1. This optimum case, where each out-
put is still a mixture of the remaining (n, — n, 4+ 1)
sources, 1is called partial source separation hereafter.



This discussion only shows that partial source
separation is theoretically possible, in the sense that
it is achieved for adequate combination coefficients
¢;; in the matrix C'. To actually achieve it in prac-
tice, algorithms which are able to estimate these ad-
equate values of the coefficients ¢;; are then needed.
It may be shown that the classical methods, that
have been developed for the case when n, = n;, do
not meet this requirement: whereas their principles
(such as the above-mentioned cumulant maximiza-
tion) coincide with the separation of the source sig-
nals when n, = ng, they yield outputs signals which
are still mixtures of all sources when applied to ar-
bitrary observed signals such that n, < n;.

This paper therefore aims at introducing a concept
which achieves the above-defined partial source sep-
aration when n, < ng;. By ”concept”, we mean
that we do not propose a single criterion (and/or
algorithm) but a general way to derive new partial
source separation methods from various existing ap-
proaches developed for the case when n, = n,. We
therefore start from one of the latter methods, based
on a given parameter, such as those defined in Sec-
tion 1. We set the following additional constraints
on the source signals: i) two occurences of the con-
sidered parameter should be available and ii) the
considered sources should consist of two types with
respect to corresponding source parameters, i.e:

1. first type of sources: for (at most) n, sources,
the corresponding source parameter should take
different values in the two occurences,

2. second type of sources: for the other n; — n,
sources (at least), this parameter should take
the same value in the two occurences.

The above-mentioned two ”occurences” may be ob-
tained in various ways, allowing one to derive vari-
ous methods from the concept that we propose. For
example, they may correspond to the two values of
a parameter, such as a cumulant, resp. obtained for
two time domains D; and D5. These domains may
be defined as follows. When considering these theor-
etical cumulants themselves, which consist of math-
ematical expectations of signals [4]-[5], each of these
time domains D; is restricted to the time position ¢;
when the corresponding mathematical expectations
are considered. On the contrary, the correspond-
ing cumulant estimates are resp. obtained by time
averaging over two domains D; and Dy which then
consist of non-overlapping bounded time intervals,
assuming that each source exhibits stationarity over
each such domain (this is referred to as ”short-term
stationarity” below). When the two parameter oc-
curences are defined in such a way, the second type
of sources consists of sources whose cumulant val-
ues do not vary from one of the considered time

domains to the other, 1.e. sources which in addi-
tion exhibit ”long-term stationarity”. On the con-
trary, first-type sources then consist of long-term
non-stationary sources.

Whatever the origin of these occurences, the pro-
posed concept consists in deriving new signal para-
meters from the initial ones in such a way that the
effect of the second type of sources desappears in
them, using a method that is detailed further in this
section. The initial problem is thus transformed in
a problem where (at most) n, sources are visible
(i.e. the first-type sources) from the point of the
view of the new parameter, and n, mixtures of these
sources are available. In other words, thanks to this
approach we get back in the classical configuration
involving as many observed signals as source sig-
nals. Adapting the initial source separation method
to the optimization of the new parameter then yields
separating coefficients c;; such that each output sig-
nal S;(¢) contains a contribution from only one of
the sources seen by the approach, 1.e. of the first-
type sources. Of course, each such signal S;(¢) also
contains contributions from all second-type sources,
corresponding to the combination of the mixed sig-
nals Y;(¢) by means of the above-mentioned coeffi-
cients ¢;;, as shown in (2). This approach there-
fore achieves the above-defined partial source separ-
ation, and more specifically the sources that are thus
completely separated are the first-type one. These
sources are the signals of interest in this partial source
separation problem, as opposed to the "noise sig-
nals”, i.e. the second-type sources, which are still
present in all outputs.

We now explain how to derive new parameters in
which the second-type sources are invisible. For the
sake of simplicity, we assume that the initial para-
meter is a linear function of the corresponding source
parameters (for example, an output cumulant is in-
deed a linear function of the cumulants of the inde-
pendent sources). The new parameter that we then
define exploits the difference of behavior between
the two types of sources concerning the variations
of their initial parameter from one occurence to the
other. More precisely, we here focus on the case
when the new parameter that we define is the differ-
ence between the two values of the initial parameter
resp. assoclated with the two available occurences
(e.g. the difference between the two output cumu-
lants corresponding to the two time domains). As
each second-type source yields the same contribution
in the two initial parameters, its effect is cancelled
in the corresponding parameter difference (see the
example in the next section), i.e. the above-defined
goal is thus reached.

To summarize, the proposed concept is a differ-
ential source separation approach, which uses dif-
ferential parameters as optimization criteria, so as



to make some sources invisible in these criteria and
to perform an exact separation of the other sources
only. In this section, we expressed this concept in
the most general terms to show that it may be ap-
plied to various existing initial (i.e. non-differential)
parameters and source separation methods in order
to derive their differential counterparts. In the next
section, we explicitly apply these ideas to a specific
parameter and an associated method.

3. A CRITERION BASED ON
DIFFERENTIAL NORMALIZED
KURTOSIS

We now apply the above concept to the source separ-
ation criterion that we defined in [6]-[7] for the case
n, = 2 mixtures of ny = 2 sources. Briefly, this
criterion consists of adapting each coefficient of the
source separation system so that the normalized kur-
tosis of the corresponding system output reaches a
specific type of extremum. So, we now have to define
the new parameter used in the differential source sep-
aration method derived below, i.e. the differential
version of the normalized kurtosis of a signal. Given
an arbitrary signal u and two time domains Dy and
D5 defined in Section 2, we define the corresponding
(zero-lag) m'"-order differential cumulant as:

DCUMpm(u,D1,D3) = CUDMyp(u,Ds)
—CU My (u,D1), (3)

where CU M, (u, D;) are the corresponding classical
(i.e. non-differential) cumulants, which may be found
e.g. in [4]-[5]. Based on the expression of the clas-
sical (i.e. non-differential) normalized kurtosis [4]-
[5], we then define the corresponding differential nor-
malized kurtosis as:

DCUM4(U,D1,D2) (4)
[DCU M5 (u, Dy, Ds)]?"
The source separation configuration that we then

consider corresponds to n, = 2 observed signals
Y;(t) which are linear instantaneous mixtures of an

DI{(U,'Dl,DQ) =

arbitrary number n; of sources signals. Two of these
source signals, denoted X1 (¢) and X3 (), have long-
term non-stationarity: these are the signals of in-
terest to be separated. The other source signals,
denoted V() to Vj,, (), have long-term stationarity:
these are the noise signals. In the remainder of this
section, we consider the centered versions of all sig-
nals, denoted with lower-case letters. The (centered)
mixed signals then read:

yi(t) = ajnz1(t) + azoza(t) +

Now conslder a linear instantaneous combination of
the source signals:

z(t) = arz1(t) + aswa(t) + ZE: a;ui(t).  (6)

This signal may e.g. be an output of the considered
source separation system, created as a linear instant-
aneous combination of the available two mixed sig-
nals and here expressed as:

2(t) = yi(t) — eya (). (7)

The « coefficients in (6) then combine the mixing
and separating coefficients a;; and ¢. The corres-
ponding m!"-order cumulant at each time position
t; is then derived by using the properties of cumu-
lants [4]-[5] and the assumed statistical independence
of the source signals. This yields:

CUMm(Z,‘ti) = aTCUMm (.’l’l,ti)
-I-CYSRCUMm(IQ, ti)

+> ' CU My (v, t:). (8)
j=3

The  corresponding  differential ~ cumulant
DCU M, (z,t1,t2) then follows from the difference
defined in (3). The contribution of each noise sig-
nal desappears in this difference, as its cumulants
CU My, (vj,t;) corresponding to the two time posi-
tions ¢1 and ¢5 have the same value. All noise signals
therefore also desappear in the differential normal-
ized kurtosis, which reads:

DK (z,t1,t5) (9)

_ oa‘llDCUM4(:c1,tl,t2)+a3DCUM4(x2,t1,t2)
- [O(fDCUMz(JJhLH,tz)-}—(ngCUMg(.’L‘z,thtg)]z

or equivalently:

D[X’(Il s tl, tQ) -|- q2D[{(l‘2, tl, tg)

DI{(Z,tl,tz): []+q]2

(10)

where we introduce the variable ¢ defined as:

a3 DCU My (29,11, 12) (11)
1= 3DCUM(x1, 11, t2) |

Comparing (9)-(11) with the expressions what we
derived in [6]-[7] for our initial (i.e. non-differential)
source separation criterion shows that they are ident-
ical, except that: i) the initial (i.e. non-differential)
cumulants and normalized kurtosis are replaced by
their differential counterparts, and therefore ii) the

variable p that we introduced in our initial criterion



is replaced by the variable ¢q. Note that, whereas p
always covers the range [0, 4+00], ¢ covers the same
range or [—oo, 0] depending on the signs of the differ-
ential 2"%-order cumulants of the considered sources.
Due to space limitations, we here restrict ourselves
to the case when it covers the range [0, 4o00]. The
solution that we then propose for the partial source
separation problem considered here is therefore the
differential counterpart of the initial one, i.e: the
separation of the signals of interest is guaranteed
to be achieved by adjusting each coefficient ¢ of
the separation system so as to reach the extrema of
DK (z,t1,t2), where the types of extrema to be con-
sidered depend on the signs of the here-differential
cumulants of the sources, as explained in [6]-[7].

4. EXPERIMENTAL RESULTS

We now validate the above approach on a prelimin-
ary speech enhancement configuration. The mixed
signals to be processed contain three sources, i.e.
two real speech signals X; () and X3(¢) and an ar-
tificial stationary uniform noise signal V3(¢). All
signal values ranges from -1 to 4+ 1. The speech
signals are sampled at 8 kHz and considered over
two 50-ms time intervals, over which they exhibit
short-term stationarity, whereas they have a long-
term non-stationarity from one interval to the other.
We then aim at creating output signals in which one
of these speech signals is suppressed (and station-
ary noise is still present but may then be reduced
by traditional techniques which are not considered
here). The tests reported here are preliminary in the
sense that, for the specific method of Section 3 to be
applicable, we created artificial linear instantaneous
mixtures of these sources (as opposed to actual con-
volutive speech mixtures), i.e specifically:

Y1 (t) X1 () 4+ 0.9X5(t) +0.2V5(t)  (12)

Adapting the theoretical results of [6]-[7] to the dif-
ferential version of the approach considered here
shows that, for the considered positive-differential-
cumulant speech signals, the differential normalized
kurtosis of the centered source separation system
output, i.e. DK (z,D1,Ds), should have two max-
ima, and that these maxima should correspond to
the two values of ¢ for which one of the speech signals
is suppressed in the system output, i.e. ¢ = ay9/ass
=0.9 and ¢ = ay1/as1 = 1.25. Fig. 1 shows that the
considered signals actually lead to this behavior and
are therefore indeed separated when using the cri-
terion which consists in maximizing DK (z, D1, D3).

10

c

Figure 1: Variations of differential normalized kur-
tosis of output of source separation system vs. its
tunable coefficient c.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a concept which
allows to perform partial source separation with a
reduced number of sensors. We developed this dif-
ferential approach up to experimental validation, but
two types of extensions are still to be made for prac-
tical application, i.e: i) optimization algorithms, e.g.
gradient-based methods, will be derived from the
proposed separation criterion and ii) for speech en-
hancement applications, the proposed concept will
be applied to convolutive source separation methods.
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