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ABSTRACT

The aim of this paper is to present several algorithms which
solve the blind source separation (BSS) problem when sta-
tionary noises are added to the source signals in the linear
instantaneous mixture context. We use a new criterion based
on the differential normalized kurtosis that we developed in
a previous paper. The different algorithms are then applied
to mixtures of two sources signals and an additive noise.

1 INTRODUCTION

Blind source separation is now a classical subject in signal
processing. It consists in estimating a set of n, independent
source signals X;(t) from a set of n, observed signals Y;(t),
which are mixtures of these source signals. We focus here
on the case of linear instantaneous mixtures. The overall
relationship between the source and the observation vectors
then reads:

Y(t) = AX(t) (1)

where A represents the mixing matrix.

Among the different proposed methods, higher-order
statistics are the most frequently used. A presentation of
the principal methods can be found in [1]. It appears that
most investigations have been performed considering that
the number of source and observed signals are equal (i.e.
Ns = No).

We recently introduced a new criterion based on the opti-
mization of the signed normalized kurtosis of each separation
system output [2]-[3]. Like classical approaches, this method
works properly only when the number ns of source signals
and the number n, of observed signals are equal. This re-
striction implies that the observed signals must be free from
noise.

To go further, we modified this criterion to adapt it to
the case when stationary noise is added to the source sig-
nals. This new problem can be expressed as: ns > n, with
(ns — mo) stationary noise signals. The theoretical concepts
of the modified criterion are developed in [4]. This new cri-
terion is based on a parameter that we called the differential
normalized kurtosis.

The aim of this paper is to present different algorithms
associated to the above modified criterion, which solve the
differential blind source separation problem in noisy config-
urations. We will present two different ways:

e iterative algorithms based on gradient and Newton
methods,
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e an analytical resolution.

To illustrate these methods, we will apply them to noisy
mixtures of binary samples. It should be clear however that
the proposed approach also applies to continuous sources.

2 A CRITERION BASED ON THE DIFFEREN-
TIAL NORMALIZED KURTOSIS

2.1 Problem Statement

In most practical situations, the number of sensors is limited
and each one receives signals from a large set of sources.
More comfortable configurations are when we exactly know
the number of sources and we then put the same number of
sensors. But we all know that we will always have additive
noise which can be considered as another source signal.

For the sake of simplicity, we focus here on the case of 3
independent sources and 2 sensors, more especially 2 desired
source signals X; and X» added with a stationary noise X3:

Yi(t) = a1 X1(t) + a12X2(t) + a13X3(t) @)
Ya(t) = a21X1(t) + a22X2(t) + a2 X3(t)

where a;; are the coefficients of the mixture.
In the remainder of this paper, we consider the centered ver-
sions of all signals, denoted with lower-case letters.
The observed signals y;(t) are connected to the same sepa-
ration system as in [2]-[3] which is showed in Fig. 1.

We can express its output s(t) with respect to the three
source signals:

5(t) = anx1(t) + aaxa(t) + aszs(t) 3)

with
a1 = a1 — Ca21
Q2 = Q12 — CA22 (4)
Q3 = a13 — Caz23

If 3(t) = 0, the criterion that we introduced in [2]-[3] tells
us that two extrema, (maxima and/or minima depending on
the types of sources) of the signed normalized kurtosis ks (c)
appear for the two values of ¢ which realize the extraction of
each source: /

c=cs1 = ai/a

¢ =cCs2 = a12/az2 ®)
If we apply this kurtosis criterion when z3(¢) # 0 then the
corresponding output signals are still mixtures of all the dif-
ferent source signals. Because we thus do not solve the prob-
lem in this configuration, we defined a new criterion based
on the differential normalized kurtosis [4].



Figure 1: Separation system.

2.2 Differential Normalized Kurtosis

We consider the case when both z; and z2 have long term
non-stationarity but z3(t), the noise signal, has long term
stationarity. We take two successive time domain D; and
Ds such that 1 and x2 are stationary onto D; and then
onto Dy. In this case the 2™ and 4'"-order cumulants are
constant for each time domain and then only considered at
time t1 € D1 and t2 € Ds.

‘We pointed out in [4] that it is possible to cancel the noise in-
fluence during the search of the separation system coefficient
¢ by simple differences between 2"¢ and 4**-order cumulants
at time ¢; and ¢, .

The differential normalized kurtosis Aks is expressed as:

_ Acumg(s) _ cuma(s®) — cuma(s')
Aks = [Acuma(s)]2 ~ [cumz(s2) — cumz(s!)]2 ©)

where A means the differential value between two instants
t1 and t2. s! and s? represent the output of the separation
system for the two successive instants ¢; and ts.

It appears that because x3(t) has long term stationarity, its
n** order cumulant is a constant value for every time domain.
Then the influence of this source, i.e. the noise, disappears
in Aks.

We may then express Ak, as:

Ak + Akm2p2

Aks = L (7)
where n (22)
_a3Acums(z2

b= a2 Acum;(z1) ®)

This expression is similar to the one for the case when n, =
ng obtained in our previous papers [2], [3]. But there are
two main differences:

e First we consider here the cumulant differences between
two samples taken at two successives instants ¢1 and ts.

e Then the ratio p can now be negative or positive, de-
pending on the source signals properties. The conce-
quence is that if p = —1 then the ratio (8) is infinite
which is a problem. A future paper will show how this
problem may be avoided.

We focus here on the case when p > 0. The expression
and variations of Ak, are then directly derived from those
of ks presented in [2]-[3] by replacing all cumulants by their
differential versions. This entails that all extrema of given
types of Ak, vs ¢ appear for the two values of ¢ which solve
the BSS problem between x: and xz2. Due to the limited
number of sensors (n, < ns), the output s(¢) still includes
noise. But it is important to notice that we extract only
the desired source added with noise and not a mixture of
the three source signals. We thus achieve a partial source

separation limited to 1 and x».
We now introduce different algorithms for searching these
extrema.

3 DIFFERENTIAL
RITHMS

3.1 Iterative Methods

Iterative approaches can be used to solve our problem. Typi-
cally, with an initial value zo, such algorithms compute other
values 1, x2, ..., z; until required convergence is reached.
The main features of these algorithms are convergence speed,
stability and accuracy.

We used two types of iterative algorithms: Gradient and
Newton. We modified them in order to improve their perfor-
mances, as we will see below.

SEPARATION ALGO-

8.1.1 Gradient Method

This method is used in the case of extremum search. We
consider a function of only one variable called f.

Usual Version: The above-defined series zi,...,x; is
built with the following expression:

Tntl = Tn — l‘f’ (z5) 9)

with g > 0 (resp. p < 0) when searching a minimum (resp.
maximum) of the function f. Stability, convergence speed
and accuracy depend on the choice of the initial value o
and adaptation gain u. Typically, convergence towards the
jt* extremum is garanteed only if the adaptation gain y is
bounded [5], i.e:

0 < |pl <py (10)
where u; depends on the shape of f around the considered
extremum.

Modified Version: We consider for example the case of a
maximum search. If the function f contains several maxima,
we can find all of them only if the adaptation gain p satisfies
(10) for each one. We must therefore choose p so that:

Hchosen < min{/‘h/‘% e } (11)

But using the same value of p for finding all extrema penal-
izes overall convergence speed as will now be shown. The
standard equation (9) implies that the parameter p should
be set to a low value to avoid divergence in the areas where
the first derivative f’ is high. But this leads to slow conver-
gence in low-derivative areas. These conflicting conditions
lead one to use a trade-off value.

In order to avoid this kind of problem, we modified the
standard algorithm. Two choices were possible:

e make p as an adaptive gain,
e reduce the dynamics of the function f.

The first solution requires us to start from a low value of p
and may cause some stability problems if the range of the
values of f varies with time before convergence is reached.
Typically a value of p which is adequate for some values
of f might become too high when f varies and then might
make the algorithm diverge. This explain the need to start
from a low value of p and the need to converge before the
value of f changes. So, we choose the 2"¢ solution. But
this one has a main drawback: because p is fixed, after a



convergence period, the algorithm will alternately go from
a value zr situated on the left of the considered extremum
to another value zr situated on the right of the extremum.
These two values define what we will call a “convergence
tube”. Its range, and therefore the convergence accuracy,
depend on the value of the parameter p. It can be shown
that with better convergence speed (higher p) we will have
a lower accuracy.

The problem is now to find a way to reduce the high varia-
tions of f' without changing the monotony and the extrema
positions of f. We propose two modified versions of the ini-
tial algorithm:

Tpy1 = &n — ptanh(nf (z,)) withp>1 (12)
Tog1 =z — psign(f(za)) V/If ()] (13)

The hyperbolic tangent is a regular function, defined onto
R and bounded between -1 and +1. That means that for
every kind of function f’, tanh(f’) will have its variations
between -1 and +1.

The k" root gives also a high reduction of the dynamics of
f but does not have any higher bound.

38.1.2 Newton Method

Classically, the Newton algorithm can be used for zero search
or extremum search. Depending on which version is consid-
ered, by using the fact that an extremum of the function f
coincide with a zero of its first derivative f’, its expression
is slightly different. We here apply it to the search of the
extrema of the kurtosis Aks.

Considering a function f, the resulting algorithm can be ex-
pressed as:

e I T ()
n

To avoid the same problems as with the gradient algorithm

when the ratio ;,’,((wm’;)) takes high and low values, we modified
it as: )
f(@n)
ZTnt1 = Tn — ptanh (17 Fr(am) (15)

3.2 Analytical Resolution

The values of ¢ which realize partial source separation coin-
cide with some extrema of the differential normalized kur-
tosis and therefore with zeros of its first derivative. In our
configuration (two sources of interest for two sensors), the
differential normalized kurtosis Ak, (c) may be expressed as
a 4'*-order rational function in ¢, depending on observed
signals’ differential cumulants:

Acuma(y2)c* — 4Acumiz(yi, y2)c

Aks(c) = (Acums(y2)c? — 2Acumui (y1,y2)c + Acuma(y1))?

6Acumas (y1,y2)c® — 4Acums; (y1, y2)c + Acumy(y1)
(Acums(yz)c? — 2Acumiq (y1,y2)c + Acums(y1))?
(16)

Its first derivative, can be expressed as:

dAks  (2a1b2 — a2b1)04 + (4a1bs + aszby — 2(131)1)03
dc (b1c? + bac+ b3)?

(302b3 — 3(141)1)02 + (2(13[)3 — aaby — 4a5b1)c
(b1c? + bac + b3)?

+

(a4b3 — 2a5b2)
A S A e A 1
(b1c? + bac + b3)? (17)
with

a1 = Acumy(y2) as = Acumy(y1)
a2 = Acumis(y1,y2) b1 = Acums(ys2)
asz = Acumzz(yl, yz) bz = —2Acum11(y1,y2)
a4 = Acumsi(y1,y2) b3 = Acumaz(y1)

The zeros of the numerator can be found with Ferarri’s
method [6]. This method returns the exact roots of the equa-
tion, i.e. the values of ¢ corresponding to the extrema of the
function. It is important to notice that these exact solu-
tions are found without any iterative loop as opposed to the
algorithms that we defined above. But exact analytical so-
lutions exist only if the order of the polynomial is equal to
or lower than 4. This is true in our configuration with only
two sources and two observations but in the other cases we
must use iterative solutions.

4 EXPERIMENTAL RESULTS

In order to apply these algorithms, we use three signals. The
desired source signals z; and z2 are binary and their statis-
tics change between each time domain with 22%%3 pos-
itive. The other one, x3, considered as noise is stationary

and uniform. The mixture used is:

U1 (t) = .'I?l(t) + 09!L‘2(t) + 0.21}3(15) (18)
ya(t) = 0.8z1(t) + z2(t) + 0.3z3(t)
We use the above separation system, giving us a signal s(t).
With the considered signals, the two values of ¢ which re-
alize the separation between x; and z2 correspond to the two
maxima of Ak,(c). By combining (5) and (18), we see that
the theoretical values of ¢ achieving partial source separation
are ¢1 = 1.25 and c2 = 0.9, as can be shown in Fig. 2. In
our simulations, we search the value ¢; = 1.25 starting from
c=23.

Output differential kurtosis
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Figure 2: Variations of the differential normalized kurtosis
of the separation system vs c.

4.1 Gradient Method

We here apply the gradient algorithms to search the max-
ima of Aks(c). In order to compare the speed, stability and
accuracy of the different algorithms, we considered a set of
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Figure 3: Number of iterations before convergence and ob-
tained accuracy.

values for p. Fig. 3 shows the resulting number of itera-
tions before ¢ remains in the “convergence tube” and the
error percentage obtained. The latter parameter is defined
as: 100 X |cr —cL|/Creal Where creal is the theoretical searched
value.

We can see on Fig. 3 that in every case the accuracy
decreases exponentially vs the required number of iterations
when we modify p in order to improve the convergence speed.
With the two modified versions we always need less iterations
for the same precision than with the original one, with an
advantage for the hyperbolic tangent.

In our tests, we started from a far initial value ¢ = 5 situated
in a low-derivating area as can be shown in Fig. 2. With
the standard version of the algorithm we were then forced
to take a low p to avoid divergence. Convergence is then
first very slow and becomes faster when d(fcs increases. The

compression introduced by the hyperbolic tangent or the 4t"-
order root avoids this problem. This means that for a fixed
value of p we have fast convergence in both low and high-
derivative areas.

Moreover, when we are simultaneously searching for the
two values of ¢ with the same p, starting from two different
initial values, we verify that the standard version of the al-
gorithm easily diverges for one of the two extrema if we want
to increase convergence speed. In this case, the parameter p
must be unreasonably low to hope any real-time convergence
computation. The modified versions avoid this problem by
being stable for a whole range of pu.

4.2 The Newton Algorithm

This algorithm has better convergence properties than gra-
dient ones. The main difference, is that we do not have
any “convergence tube”. Due to the variations of the 27¢
derivative of Ak(c) vs ¢, the adaptation may reach a higher
speed than with gradient algorithms. For example, with the
standard version we can reach a 0.001% accuracy in 100 iter-
ations, which is much better than with gradient algorithms.
With the modified version, the same accuracy can be reached
in only 70 iterations. If we want “only” a 0.5% accuracy, the
two algorithms give the result in 79 iterations for the stan-
dard version and 33 iterations for the modified one. Other
experiments show that we approximately have a 1/2 ratio be-

tween the convergence speed of the modified and standard
Newton algorithms.

But the most important feature is that convergence towards
the two extrema with the same p is very difficult in the stan-
dard version whereas the modified one is very much stable.
This is the same result as we found with gradient algorithms,
demonstrating once more time the robustness of the hyper-
bolic tangent version.

4.3 Analytical Approach

We obtained the two solutions ¢; = 1.2521 and c¢p = 0.8987.
These solutions are very close to the theoretical values.
These slight deviations result from the difference between
the experimental and theoretical statistics of the considered
source signals.

5 CONCLUSION AND FUTURE WORK

In this paper we have introduced and compared different
methods for solving the source separation problem in a lin-
ear instantaneous mixture context with additive noise. We
use the criterion introduced in [4], based on the differential
normalized kurtosts. This criterion permits to achieve partial
source separation of the desired source from noisy mixture.
The obtained result consists of the desired source with noise,
which can then be processed with classical noise cancellers.
Two numerical algorithms have been first studied: Global
Gradient and Newton. In the two cases we modified their
expression in order to improve their robustness and conver-
gence speed. We showed that the Newton approach has bet-
ter properties for solving our problem. We also presented an
analytical solution, which can be used when we have a two
useful sources for two sensors configuration. We investigate
now the case of noisy convolutive mixtures.
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