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Quantum state tomography (QST) aims at estimating a quantum state from averaged quantum
measurements made on copies of the state. Most quantum algorithms rely on QST at some point
and it is a well explored topic in the literature, mostly for mixed states. In this paper we focus
on the QST of a pure quantum state using parallel unentangled measurements. Pure states are a
small but useful subset of all quantum states, their tomography requires fewer measurements and
is essentially a phase recovery problem. Parallel unentangled measurements are easy to implement
in practice because they allow the user to measure each qubit individually. We propose two sets
of quantum measurements that one can make on a pure state as well as the algorithms that use
the measurements outcomes in order to identify the state. We also discuss how those estimates
can be fined tuned by finding the state that maximizes the likelihood of the measurements with
different variants of the likelihood. The performances of the proposed three types of QST methods
are validated by means of detailed numerical tests.

I. PRIOR WORK AND PROBLEM

STATEMENT

Quantum state tomography (QST) aims at esti-
mating a quantum state from averaged quantum mea-
surements made on copies of the state. It often is a
necessary step in quantum computation [1], it has
been extensively studied for mixed states. The most
basic version is detailed in [1] at the beginning of
Section 8.4.2, it uses measurements defined by Pauli
operators, often called Pauli measurements ([2], [3],
[4], [5], [6] and [7]). This version is simple and very
robust but requires computing the averages of 4nqb−1
different types of 2-outcome measurements where nqb

is the number of qubits of the state. This scales re-
ally badly with the number of qubits but requiring
so many types of measurements is not surprising be-
cause an arbitrary state is represented by a d × d
Hermitian density matrix with 4nqb real parameters
(where d = 2nqb is the dimension of the Hilbert space
in which the considered state evolves). In order to
perform QST with fewer types of measurements, one
can focus on a subset of all states. The most popular
assumption is that the density matrix ρ represent-
ing the state has a low rank. [4] introduced a com-
pressed sensing approach that requires the averages
ofO(rd log(d)2) 2-outcome measurements to estimate
the state where r is the rank of ρ. [3], [2], later built
upon this idea of QST via compressed sensing. More
recently bounded rank QST was introduced [8]. It
assumes that the rank r is known and allows the ex-
plicit reconstruction of ρ using predetermined mea-
surements (contrary to the compressed sensing ap-
proach of [4] that does not specify the measurements
to be used and finds ρ by minimizing the nuclear
norm of ρ under constraints).

Other approaches do not make any assumption
on ρ. In 2014 Self-Guided Quantum Tomography
(SGQT) was introduced [9] and further studied in
[10], [11]. It makes no assumption on ρ, and the
number of measurements scales reasonably with the
number of qubits. The drawback of SGQT is that
the measurements that need to be performed on the
state are not known beforehand and are generally
entangled measurements. Entangled measurements
correspond to multiqubit operators that cannot be
expressed as a tensor product of single-qubit mea-
surement operators i.e. they cannot be performed
by measuring each qubit independently. In 2020 [12]
introduced a method to partially identify large quan-
tum systems (more than 100 qubits) with entangled
states, for which the total state cannot even be stored
on a classical computer. It relies on unentangled mea-
surements which are easier to perform than entangled
measurements in practice.

The present paper focuses on the tomography of
pure states using unentangled measurements. This
has been studied in [5] which tried to find the mini-
mal number of Pauli measurements for 2 and 3 qubits
(Pauli measurements are unentangled). Our addition
to that article is that we will address the generic case
with any nqb. Furthermore, we will use parallel mea-
surements like in [12] where it is shown that all 4nqb

averaged Pauli measurements can be computed from
the averages of 3nqb parallel unentangled measure-
ments. A parallel measurement has d outcomes and
provides more information on the system than a Pauli
measurement that only has two outcomes.

In [13] Finkelstein describes a setup able to distin-
guish almost all pure states, with only nprob = 2d
probabilities. [13] does not beat the lower bound
of [14], detailled below, because there is a negligi-
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ble (zero measure) set of pure states that the setup
of [13] cannot recover up to a global phase, it is
called the failure set. In addition to the failure set,
the main problem of [13] is that the measurements
are not practical, they are entangled and cannot be
performed in parallel (as the matrix A associated
with the measurements cannot be written as the
vertical concatenation of unitary matrices). In [15]
Goyeneche et al. introduced a set of nprob = 4d prob-
abilities that also has a negligible failure set. Tech-
nically [15] introduces 5 measurements that yield 5d
probabilities (obtained from averaging the results of 5
different kinds of d-outcome measurements), but only
the 4 measurements defined by its Equation (2) are
needed to achieve QST. The measurements of [15] are
more realistic as they are performed on 4 orthonor-
mal bases. Two of them are unentangled but the
other two are entangled. Goyeneche et al. acknowl-
edge that this is a problem and point out the fact
that the two entangled bases can be mapped into
the two unentangled ones by applying the quantum
Fourier transform twice. In practice this would in-
troduce additional errors, as there are no error-free
circuits able to perform the quantum Fourier trans-
form, and one would need to perform quantum pro-
cess tomography (which generally relies on QST) in
order to quantify the errors and improve the Fourier-
transform circuit. This is a common issue with entan-
gled measurements, the easiest way to perform them
with the current version of quantum computers is to
transform them into measurements in an unentangled
basis, by means of a corresponding quantum gate.

The applied mathematics community also dealt
with an equivent version of the QST problem for
pure states: The phase retrieval problem (see [14],
[16], [17], [18], [13]). A pure state |ϕ〉 of an nqb-
qubit system is represented by a complex unit-norm
vector v with d elements. Pure state tomography
aims at estimating v from measurements. The the-
oretical probabilities of all outcomes of the consid-
ered types of measurements are contained in the vec-
tor |Av|2 where A is an nprob × d matrix (nprob is
the total number of probabilities) determined by the
types of measurements performed and |.|2 stands for
component-wise squared modulus. Recovering v (up
to a global phase) from |Av|2 (generally it is |Av|
instead of |Av|2 but both problems are essentially
the same) is called phase retrieval. The first ques-
tion asked in phase recovery is injectivity: how can
one choose A in order to make sure that |Av|2 con-
tains enough information to recover v up to a global
phase? Proving that a given A guarantees injectivity
is a difficult question. [14] gave a minimal number of
measurements below which injectivity is impossible.

In our case this condition is nprob > 4d− 3− c(d)nqb

rows for some c(d) ∈ [1, 2]. [16] showed that for a
generic A, having 4d− 2 rows or more is a sufficient
condition for injectivity.

Beyond injectivity, finding a solution to the phase
recovery problem (whether it is unique up to a global
phase or not) is the main difficulty of pure state to-
mography. Both [13] and [15] give their own closed-
form algorithms to recover the phases which are
adapted to their versions of A. [17] focuses on this
particular problem with a generic A.

Our contributions in the present paper are as fol-
lows. Section II describes the quantum state to be
identified and the measurements made. In particular,
we formalize the definition of a parallel unentangled
measurement.

Section III describes a method to achieve QST with
nprob = 4d using an optimization algorithm of [17] on
a number of probabilities consistent with the lower
bound of [14]. The probabilities can be obtained by
averaging the results of 4 types of parallel unentan-
gled measurements.

Section IV describes an original method with
nprob = (2nqb + 1)d probabilities for which phase
recovery can be achieved with a closed-form recur-
sive algorithm. Those probabilities are obtained by
averaging the results of 2nqb + 1 different kinds of
measurements.

Section V describes a more precise fine tuning
method that works with all types of measurements,
it requires an initial estimate from one of the algo-
rithms of Sections III or IV which it uses in order to
maximize the likelihood of the measurements.

Finally, in Section VI we evaluate the performance
of the proposed algorithms with simulated data.

II. STATE AND MEASUREMENTS

A. Considered state

An nqb-qubit pure state |ϕ〉 can be decomposed in
the canonical basis |0...0〉, ..., |1...1〉. The compo-
nents of |ϕ〉 in the basis can be stored in a d-element

vector (d = 2nqb) v =
[
v1 ... vd

]T
where T stands

for transpose. The components vj are complex and∑d
j=1 |vj |2 = 1. The global phase of |ϕ〉 has no phys-

ical meaning, so we can assume that v1 is a real non-
negative number.
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B. Projective measurement

According to Section 2.2.5 in [1] a projective mea-
surement is defined by a Hermitian matrix B whose
distinct eigenvalues mk are the possible outcomes of
the measurement. The probability of getting mk

when measuring a pure state represented by v is
̺k(v): the squared norm of the projection of v on
the eigenspace associated with mk.
A projective measurement can have the following

properties:

• d-outcome: If B has d distincts eigenvalues. The
eigenstates are then 1-dimensional spaces, and
̺k(v) = |e∗kv|2 where ek is a d-element unit-norm
vector belonging to the k-th eigenspace of B (∗ is
the transconjugate). By performing the measure-
ment several times on copies of the state, we can
therefore estimate {|e∗kv|2}1≤k≤d where ek spans
an orthonormal basis.

• Unentangled: If the measurement can be per-
formed with simultaneous local measurements on
each qubit. For example if the matrix B can be
written as a tensor product of nqb matrices with
dimension 2 × 2: B = B1 ⊗ ... ⊗ Bnqb

. Then the
measurement represented by B can be performed
by measuring simultaneously each qubit with the
measurements represented byB1, ...,Bnqb

and then
computing the product of all the outcomes. De-
pending on how the 2 eigenvalues of each Bk are
chosen, computing the product of the outcomes can
result in a loss of information (i.e. the outcomes
of each Bk cannot be retrieved from their prod-
uct knowing their respective 2 possible values). If
this is the case B will have fewer than d distinct
eigenvalues (see e.g. Pauli measurements).

C. Parallel unentangled measurement

If a quantum measurement represented by B is un-
entangled and has d outcomes, we call it a parallel
unentangled measurement. It can be performed on
single qubits in parallel using the following setup:

...

M1

M2

Mnqb

q1

q2

qnqb

2 outcomes

2 outcomes
...

2 outcomes

d outcomes

Each qubit q1, ..., qnqb
composing the system is mea-

sured with a one-qubit measurement which has two
distinct outcomes.
The eigenvalues of B are not important in the

present paper. Changing them without changing the
eigenvectors would change B but (as long as the
eigenvalues remain distinct) the resulting measure-
ment would be equivalent in the sense that it would
give the same information; the possible measured val-
ues would then depend on B but the associated prob-
abilities would be the same up to a permutation, and
this is what matters in the present paper.
Since the parallel unentangled measurements we

consider have d outcomes (by definition), ̺k(v) =
|e∗kv|2 where ek is a d-element unit-norm vector be-
longing to the k-th eigenspace.
For a given parallel unentangled measurement

M let us define the eigenvector matrix: EM =[
e1 . . . ed

]
. The vector pM(v) = |E∗

Mv|2 contains
the d probabilities of the possible outcomes.
By performing several measurements on copies of

the state represented by v, we compute the frequen-
cies of occurrence of each outcome, we get p̂M, which
we use as an approximation of |E∗

Mv|2. We call p̂M
the averaged measurements or sample probabilities.
The sum of the elements of pM(v) is one (it is the
sum of the probabilities of all possible outcomes), so
no information is lost by removing one element. We
define EM the non-redundant eigenvector matrix as
composed of the first d − 1 columns of EM. Then
pM(v) = |E∗

Mv|2 is redundant but pM(v) = |E∗
Mv|2

is not.
E

∗
M, E∗

M, pM(v) and pM(v) will all be used at
different points of this article with M replaced by
the actual measurements we will perform.

D. Considered types of measurements

We perform measurements for all qubits in parallel,
with one measurement direction per qubit. For one
qubit, we choose to perform measurements that are
equivalent (up to a factor 1/2 on the outcomes) to
the 3 non-trivial Pauli measurements. The measure-
ment matrices B associated with the directions X,
Y and Z are the last three Pauli matrices defined in
Section 2.1.3 of [1] and the corresponding eigenvector
matrices may be shown to read:

EX =
1√
2

(
1 1
1 −1

)
EY =

1√
2

(
1 1
i −i

)
EZ =

(
1 0
0 1

)
.

(1)
If the qubit represents the spin of an electron, those
eigenvector matrices represent the measurement of
the spin component along 3 orthogonal directions.



4

There is a factor 1/2 between the outcome of the
spin measurements and the Pauli measurements but
it does not affect the eigenvectors.
For two or more qubits, the different qubits can be

measured along X, Y or Z. It can be shown that the
resulting eigenvector matrix is the tensor product of
the 2-dimensional matrices of (1). For example for 2
qubits, measuring the first one along Z and the second
one along X has the following eigenvector matrix

EZX = EZ ⊗EX = 1√
2



1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


.

In this example, if the qubits represent the
spins of 2 electrons, then the measurement we
perform is equivalent to measuring the first spin
component along Z and the second along X .
The spin measurement has 4 possible outcomes
(+ 1

2 ,+
1
2 ), (+

1
2 ,− 1

2 ), (− 1
2 ,+

1
2 ) and (− 1

2 ,− 1
2 ) and if

v represents the considered state, the probabilities
of each outcome are in the vector |E∗

ZXv|2. This
measurement is not equivalent to a two-qubit Pauli
measurement (even if we forget the factor 1/2), as
such a Pauli measurement only has two outcomes. In
fact, the Pauli measurement along ZX would return
+1 for spins measurement outcomes (+ 1

2 ,+
1
2 ) and

(− 1
2 ,− 1

2 ) and −1 for spins measurement outcomes

(+ 1
2 ,− 1

2 ) and (− 1
2 ,+

1
2 ). This is inefficient as half

the information is wasted.
For nqb qubits there are 3nqb different measure-

ments of this type. Both of the QST methods of Sec-
tion III and IV as well as the fine tuning algorithms
of Section V use a specific subset of all possible mea-
surements.

E. Justification

We think that performing QST using a kind of
measurement that is not parallel unentangled (i.e.
has fewer than d outcomes or is entangled) should not
be recommended in practice with the current state of
quantum computers for the following reasons:

• Performing a quantum measurement that has fewer
than d outcomes is suboptimal. Indeed, instead of
considering a j-outcome measurement Mj (j < d)
we can use a d-outcome measurement Md that has
the same eigenvectors and d distinct eigenvalues.
With this definition it is strictly better to use Md

than Mj in all situations, as the outcomes of Md

can be mapped injectively onto the outcomes of
Mj but the reverse is not true. Therefore Md

brings us strictly more information on the system

than Mj and performing either of them should be
as difficult (a copy of the state is used up).

• Performing an entangled measurement requires the
use of a quantum gate. This gate itself is never go-
ing to act exactly as expected and will introduce
errors. In order to see if the gate works as expected,
we would need to perform quantum process tomog-
raphy which generally relies on QST.

But the literature on QST is full of theoretical pa-
pers that consider measurements that fall within the
two types that we do not recommend. Here are some
examples:

• [9] uses successive 2-outcome projective measure-
ments on non-orthogonal entangled eigenstates.
And each iteration of the algorithm would require
a new type of measurement (that depends on what
has been measured before and is most likely going
to be entangled) and therefore a new quantum gate
has to be built on the fly.

• [13] considers projective 2-outcome measurements
on 1-dimentional spaces. Half of those measure-
ments can be performed using a single parallel un-
entangled measurement (with the identity matrix
as eigenvector matrix); but the other half cannot.

• [15] considers 2 parallel unentangled measure-
ments (called local measurements in [15]) and 2
d-outcome entangled measurements that can be
mapped on the other two using a gate that per-
forms the Fourier transform. This setup is way
more reasonable than the others as it requires a
single known standard gate.

• [2], [3], [4], [5], [6] and [7] all use multiqubit Pauli
measurements. Multiqubit Pauli measurements
have the advantage of being unentangled and also
simplify the calculation for the QST of mixed states
(see the beginning of Section 8.4.2 in [1], (8.149)
only works for orthogonal sets of matrices with re-
spect to the Hilbert–Schmidt inner product, like
Pauli matrices). They have the disadvantage of be-
ing 2-outcome measurements returning either +1
or -1. There are sets of Pauli measurements whose
expected values can be deduced from the outcomes
of parallel unentangled measurements without loss
of information ([12] explains how it can be done for
two qubits). But that is not the case for any set of
Pauli measurements.

In contrast to those articles we here make a point
to only use unentangled parallel measurements. We
could have chosen other matrices than (1). We chose
those matrices in order to be closer to the Pauli mea-
surements widely used in the literature.
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III. TOMOGRAPHY WITH MINIMAL

NUMBER OF MEASUREMENT TYPES

The current section describes our first QST setup,
Section III A describes the 4 types of parallel unen-
tangled measurements that are performed, Section
III B explains why it is reasonable to think that they
are injective up to a global phase and Section III C
describes a first algorithm to recover the phases.

A. Types of measurements

In the QST method described here, we per-
form 4 types of measurements on the considered d-
dimensional state: The first measurement measures
all the qubits along Z, its eigenvector matrix, EZ...Z

is the identity matrix, the second measurement mea-
sures all the qubits along Y, the third along X, and
the fourth measures every odd-numbered qubit along
X and every even-numbered qubit along Y.
After performing the measurements several times

on copies of the state, we compute the sample prob-
abilities p̂M for M spanning the 4 types of measure-
ments. We then have an ns = 4d dimensional vector
with ns = 4(d − 1) degrees of freedom. We call it
p̂s. The associated theoretical probability vector is
ps = |Asv|2, where s stands for “small” because the
corresponding matrix in Section IV has more rows.
As is the concatenation of the transconjugates of
the eigenvector matrices of the measurements we per-
form, As is defined similarly

As =




E
∗
Z...Z

E
∗
Y...Y

E
∗
X...X

E
∗
XYXY...


 and As =




E
∗
Z...Z

E
∗
Y...Y

E
∗
X...X

E
∗
XYXY...


 . (2)

Let us define ps = |Asv|2. Since the norm of v is 1,

ps and ps contain the same information (see Section

II C). In Section III B we will consider As, ns and ps

in order to see if the measurements are injective be-
cause we do not want to introduce redundancy when
counting the measurements. But, for the sake of sim-
plicity, we will considerAs, ns and ps in Section III C
in order to recover the state from the measurements.
We want to use all the measurements from p̂s whether
they are redundant or not.

B. Injectivity

As is an ns × d matrix and v has unit norm. We
want to know whether the measurements we chose

are sufficient to recover any v from |Asv|2 up to a
global phase. In the rest of the paper this property
will be called injectivity. It is a bit of an exagger-
ation because v → |Asv|2 is never truly injective
as changing the global phase of v will not change
|Asv|2. This issue of injectivity was studied before
in [14], [16], [18] in a slightly different setup: the con-
sidered measurements are |Asv| instead of |Asv|2 ,
this does not change anything for the injectivity, also
v is not assumed to have unit norm, and this is im-
portant. In order to reconcile the two setups we can
relax the unit-norm hypothesis for v and insert the
row [0, ..., 0, 1] between the (d − 1)-th row and the
d-th row of As. This ensures that the norm of v is
constrained: its square is the sum of the first d con-
strained measurements, because the first d rows of
As are the identity matrix. With this change As has
4d− 3 rows.
According to [14] the minimal number of rows for

As below which injectivity is impossible is 4d − 3 −
c(d)nqb rows for some c(d) ∈ [1, 2]. Since we have
4d−3 rows, this necessary condition is satisfied. How-
ever there is no simple sufficient condition on As that
ensures injectivity, and proving it for a given As is
a known hard problem. The closest result we found
to a sufficient condition is in [16] where it is shown
that for a generic As, having 4d − 2 or more rows
ensures injectivity. As must be generic in the sense
that it is part of a specific open dense set with full
measure. We cannot identify this set and check that
As would be in it (although it probably would be-
cause the set is of full measure), but this is moot
because we are one row short of satisfying the 4d− 2
condition anyway. However [18] explained why it is
natural to think that 4d−4 is the actual lower bound.
It remains a conjecture though.
We can be sure that 3 measurement types would

not be enough to achieve injectivity with nqb > 2 as
the bound of [14] would not be fulfilled: we would
have 3d − 2 independent rows (3d − 3 plus the unit-
norm constraint). This is always strictly smaller than
4d− 3 − 2nqb for nqb > 2. 4 is the lowest number of
measurement types for which we can hope to always
achieve injectivity.

C. A first quantum pure state tomography

method

In the current section, we show how the method
proposed in [17] can be used in our framework to re-
cover v from the sample probabilities p̂s, an estimate
of ps = |Asv|2 (we only consider As from now on,
As was only useful to discuss the injectivity). The
optimization problem considered in [17] is the follow-
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ing:

min
v

∥∥∥|Asv| −
√
p̂s

∥∥∥ (3)

where
√

p̂s is the element-wise square root of p̂s and
||.|| is the L2 norm. [17] does not include the unit-
norm constraint on v but, since we use As, this con-
straint is implicit in the criterion to be minimized.
In fact, the sum of the first d elements of |Asv|2 is
the squared norm of v and the sum of the first d ele-
ments of p̂s is one, therefore if |Asv| is close to

√
p̂s,

their squared norms will also be close, and therefore
the squared norm of v will be close to 1. In [17], it
is shown that (3) is equivalent to the following opti-
mization problem (originally it came from [19]):

min
U s.t. C

tr(UM) (4)

where M = diag(p̂s)(I − AsA
†
s)diag(p̂s),

† is the
pseudo-inverse, diag(p̂s) is the diagonal matrix whose
diagonal is p̂s and C represents the following condi-
tion on the ns × ns matrix U:

∃u ∈ C
nssuch that |u| = [1, ..., 1]T and U = uu∗.

(5)
[17] shows that if U is a solution of (4), then the

associated u of (5) is an approximation of the phase
of Asv, and the resulting estimate of v defined as:

v̂0 = A
†
s(u ∗

√
p̂s) (6)

(∗ is the element-wise product) is the solution of (3)
proposed in [17].
(4) is almost a convex optimization problem. In

fact if C is reformulated in an equivalent way: Ui,i =
1 ∀i ∈ [1, ns],U � 0, Rank(U) = 1 (U � 0 means
that U is both Hermitian and non-negative definite),
according to [17] the criterion tr(UM) is convex and
the only constraint that makes the problem non-
convex in C is Rank(U) = 1. By relaxing it we have a
convex problem that can be solved without the need
for a good initialization:

min
U s.t. Ui,i=1∀i,U�0

tr(UM). (7)

Once (7) is solved using the PhaseCut algorithm of
[17], the eigenvectors and eigenvalues of the solution
U are computed. In order to get an estimate of u,
[17] then computes û, the eigenvector associated with
the largest eigenvalue. From û, we get the estimate
of v defined in (6):

v̂pc = A
†
s(û ∗

√
p̂s). (8)

In [17] this method is tested with A matrices which
represent usual use-cases in the signal/image process-
ing community (oversampled Fourier transform, mul-
tiple random illumination filters, wavelet transform)
for which PhaseCut works well. However forA = As,
PhaseCut is a good initial point but needs the fine
tuning that we will detail in Section V.

D. Comparison with the literature

Let us sum up the main features of our first QST
algorithm:

• It uses 4d probabilities that can be obtained by
averaging the results of 4 parallel unentangled
measurements.

• It is reasonable to think that the chosen mea-
surements are injective (the failure set is most
likely empty).

• The algorithm that reconstructs the state is not
explicit (optimization).

Goyeneche el al. [15] uses the same number of mea-
surement types, has a known failure space of zero
measure and provides an explicit reconstruction algo-
rithm. The main advantage our approach based on
PhaseCut has compared to [15] is that we do not use
unentangled measurements. The more general com-
pressed sensing approach of [4] requires O(rd log(d)2)
probabilities to estimate the state where r, the rank
of the density matrix, is 1 in the case of a pure state.
Those probabilities could be obtained by averaging
the results of O(log(d)2) different unentangled mea-
surements. Our method is more efficient since we use
4 = O(1) different unentangled measurements. Both
methods have no theoretical guarantee of injectivity
or closed-form solution. The validity of the solution
can only be shown in simulations.

IV. CLOSED-FORM STATE TOMOGRAPHY

ALGORITHM

A. Alternative types of measurements

In the alternative QST method described here, we
perform the following measurements{

Z...Z︸ ︷︷ ︸
nqb times

,
{

Z...Z︸ ︷︷ ︸
nqb − i times

S X...X︸ ︷︷ ︸
i − 1 times

,
1 ≤ i ≤ nqb

S ∈ {X,Y }
}}

The number of types of measurements is 2nqb + 1.
The resultingAt (t stands for “tall”) matrix has nr =



7

d(2nqb + 1) rows:

At =




E
∗
Z...Z

E
∗
Z...ZX

E
∗
Z...ZY
...

E
∗
X...X

E
∗
YX...X



. (9)

Each measurement is performed several times and
we compute the sample probabilities p̂t which are
estimates of the theoretical probabilities pt = |Atv|2.
2nqb + 1 sounds like a lot compared to the 4 mea-

surement types of Section III but it is a small fraction
of the 3nqb possible types of measurements defined in
Section IID. This setup also has the advantage of
coming with an attractive way to recover the state
from the measurements, as will be explained in Sec-
tion IVB.

B. A recursive pure quantum state tomography

method

Let us show how a vector v can be recovered up
to a global phase from |Atv|2 by induction on the
number of qubits.
At depends on nqb, in the rest of the current section

this dependence will not be omitted and At will be
called At(nqb). We first show how to solve the prob-
lem (recover v from |Atv|2) with nqb = 1. We then
explain how solving the problem for nqb − 1 qubits
yields the solution for nqb qubits. From there a re-
cursive algorithm can be implemented.

nqb = 1: At(1) =



E

∗
Z

E
∗
X

E
∗
Y


, with the EZ ,EX ,EY

of (1). The state vector is v =

(
|v1|

|v2|eiθ
)
. Basic

calculations show:

|At(1)v|2 =




|v1|2
|v2|2

1
2

(
|v1|2 + |v2|2 + 2|v1||v2| cos(θ)

)
1
2

(
|v1|2 + |v2|2 − 2|v1||v2| cos(θ)

)
1
2

(
|v1|2 + |v2|2 + 2|v1||v2| sin(θ)

)
1
2

(
|v1|2 + |v2|2 − 2|v1||v2| sin(θ)

)




.

(10)
Therefore, |At(1)v|2 gives |v1|2, |v2|2, |v1||v2| cos(θ)
and |v1||v2| sin(θ). From there, we have two cases:

• If |v1| = 0 or |v2| = 0, then knowing |v1| and |v2|
is enough because

(
|v1|
|v2|

)
is the same as v up to a

global phase. Thus, there is no need to compute θ.

• If |v1||v2| > 0 then we can derive cos(θ) and sin(θ)
from the above-defined quantities and get θ. Thus
we know all parameters of v.

Let us now assume that the state recovery is pos-
sible for nqb − 1 qubits, i.e. there is a function
fnqb−1 such that for a vector w with 2nqb−1 elements

fnqb−1

(
|At(nqb − 1)w|2

)
is equal to w up to a global

phase. Let v be a d = 2nqb element vector (it does
not have to be unit-norm). We split v into two 2nqb−1

element vectors w1 and w2: v =

[
w1

w2

]
. Let us show

how v can be recovered up to a global phase from
|At(nqb)v|2 using the fact that w1 and w2 can be re-
covered form |At(nqb − 1)w1|2 and |At(nqb − 1)w2|2
up to global phases using fnqb−1. We start by com-
paring At(nqb − 1) to At(nqb):

At(nqb − 1) =




E
∗
s1
...

E
∗
s2nqb−1




with (9) giving the values of the strings s1, ..., s2nqb−1.
We can also notice that:

At(nqb) =




E
∗
Zs1
...

E
∗
Zs2nqb−1

E
∗
X...X

E
∗
YX...X




(11)

where Zsk is the string made up of Z followed by s1.
Using the definition of E in Section IID, we have:

E
∗
Zsk = E

∗
Z ⊗E

∗
sk =

[
E

∗
sk

0

0 E
∗
sk

]
∀k. (12)

Let k be an integer ranging from 1 to 2nqb − 1, from
(11) and (12), we have:

|At(nqb)v|2ik =

∣∣∣∣
[
E

∗
sk

0

0 E
∗
sk

] [
w1

w2

] ∣∣∣∣
2

=

[
|E∗

sk
w1|2

|E∗
sk
w2|2

]

(13)
where |At(nqb)v|2ik is the vector that contains the ele-

ments of |At(nqb)v|2 indexed between (k−1)d+1 and
kd. And using the same notation for |At(nqb−1)wl|2
with l being either 1 or 2, we have

|At(nqb − 1)wl|2ik = |E∗
skwl|2. (14)

From (14) and (13), we see that all the ele-
ments of |At(nqb − 1)wl|2ik are in |At(nqb)v|2ik ∀k ∈
{1, ..., 2nqb − 1}. Since |At(nqb − 1)wl|2ik ∀k ∈
{1, ..., 2nqb − 1} spans all the vector |At(nqb − 1)wl|2
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we have shown that |At(nqb − 1)wl|2 is known from
part of the measurements (|At(nqb)v|2) for l = 1 and
l = 2.
Using the induction hypothesis we can apply

fnqb−1 to the known quantities |At(nqb − 1)w1|2 and

|At(nqb − 1)w2|2 in order to get w1 and w2 up to
global phases. Let us call our estimates ŵ1 and ŵ2,
w1 = eiθ1ŵ1 and w2 = eiθ2ŵ2. We now only need
to know θ2 − θ1 in order to know v up to a global
phase. Let us get θ2 − θ1 from the last 2d elements
of |At(nqb)v|2. We define Lm as the column vector
containing those last 2d elements

Lm =

∣∣∣∣
[
E

∗
XX...X

E
∗
YX...X

] [
w1

w2

] ∣∣∣∣
2

=

∣∣∣∣
[
E

∗
X ⊗E

∗
X...X

E
∗
Y ⊗E

∗
X...X

] [
w1

w2

] ∣∣∣∣
2

where on the left-hand side the strings XX...X ,
Y X...X have nqb characters and on the right-hand
side X...X have nqb − 1 characters. By replacing EX

and EY by their values of Section IID and calculating
the tensor products, we get

Lm =

∣∣∣∣∣
1√
2



E

∗
X...Xw1 +E

∗
X...Xw2

E
∗
X...Xw1 −E

∗
X...Xw2

E
∗
X...Xw1 − iE∗

X...Xw2

E
∗
X...Xw1 + iE∗

X...Xw2



∣∣∣∣∣

2

= 1
2

∣∣∣∣∣




E
∗
X...Xŵ1e

iθ1 + E
∗
X...Xŵ2e

iθ2

E
∗
X...Xŵ1e

iθ1 − E
∗
X...Xŵ2e

iθ2

E
∗
X...Xŵ1e

iθ1 − iE∗
X...Xŵ2e

iθ2

E
∗
X...Xŵ1e

iθ1 + iE∗
X...Xŵ2e

iθ2




∣∣∣∣∣

2

.

Let us introduce the following notations

m =
1

2
|E∗

X...Xŵ1|2 +
1

2
|E∗

X...Xŵ2|2

dc = E∗
X...Xŵ1 ∗E∗

X...Xŵ2

d(θ) = cos(θ)Re(dc)− sin(θ)Im(dc)

(15)

where ∗ again represents the element-wise product
between two vectors and .̄ is the conjugate. ŵ1 and
ŵ2 are known quantities (from |At(nqb)v|2) som and
dc are known and d(θ) can be computed for any θ ∈
[0, 2π]. Let us rewrite Lm as a function of (θ2 − θ1)
using those quantities

Lm(θ2 − θ1) =




m+ d(θ2 − θ1)
m− d(θ2 − θ1)

m+ d(θ2 − θ1 − π/2)
m− d(θ2 − θ1 − π/2)


 . (16)

We aim at deriving θ2 − θ1 from Lm (which is
known from the measurements). We first notice from
the definition of d(θ) in (15) that if dc is 0 on every
component then d(θ2 − θ1) is also 0 on every compo-
nent (which means it does not depend on θ2−θ1) and
Lm is simply m repeated 4 times (see (16)). There-
fore recovering θ2−θ1 (and v) from Lm is impossible.
However, we hereafter show that this is the only case

when θ2 − θ1 cannot be recovered from Lm. And
the ensemble of v which make this occur has zero
measure.
Let us assume that at least a single element of dc is

not zero, let us call k its index, dk the corresponding
non-zero element (we take the element which has the
highest modulus), and call dk(θ2 − θ1) and mk the
k-th elements of d(θ2−θ1) and m respectively. Then
all we need is the k-th and (k + d)-th elements of
Lm whose expressions are mk+cos(θ2−θ1)Re(dk)−
sin(θ2 − θ1)Im(dk) and mk + sin(θ2 − θ1)Re(dk) +
cos(θ2 − θ1)Im(dk). Those known elements can be
put in a column vector and re-written as:

(
Re(dk) −Im(dk)
Im(dk) Re(dk)

)(
cos(θ2 − θ1)
sin(θ2 − θ1)

)
. (17)

The 2 × 2 matrix on the left-hand side is known
(since dk is known) and invertible (since its determi-
nant is |dk|2 > 0). Therefore θ2−θ1 can be recovered
(because we have its sine and cosine) from 2 elements
of Lm (so two probabilities).
We could stop there and get an estimate θd of

θ2 − θ1 that is computed using two elements of Lm.
But, in practice the sample probabilities give an im-

perfect estimate of Lm which we call L̂m. In or-
der to be robust to the errors, we aim to find the

angle θ̂2 − θ1 that minimizes ||Lm(θ2 − θ1) − L̂m||,
this way we use all sample probabilities and not just
two. We use a quasi-Newton BFGS algorithm [20]
(implemented with fminunc in the Matlab numeri-
cal software) initialized at θd, the optimization stops
when the step is smaller than 10−30. Technically with
this optimization, the algorithm is no longer closed-
form but, since it involves a single parameter, it is
really fast, and improves the performances quite sig-
nificantly so we choose to perform it anyway. If the
readers want a real closed-form algorithm, they can

use θd instead of computing θ̂2 − θ1, or use a closed-
form optimization algorithm with a fixed number of

steps to compute θ̂2 − θ1.
Let us now take a step back and summarize what

we have proved in this section:

• Recovering the state (up to a global phase) from
the measurements is possible for nqb = 1.

• Assuming it is possible for nqb − 1 we showed it
is also possible for nqb unless the state is in an
ensemble of zero measure.

Using those previous two results, we can construct
a recursive algorithm that recovers v from the mea-
surements. It will work except on the union of a finite
number of failure sets of zero measure which would
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also be of zero measure. The estimate given by this
recursive algorithm will be called v̂rec.

C. Discussion about the number of

probabilities used

The recursive algorithm of the previous section
calls itself twice for each reduction of the number of
qubits by 1. This means that for nqb, it is called once
with nqb qubits, twice with nqb − 1 qubits, ..., 2nqb−1

times with 1 qubit.
For 1 qubit, the state is recovered using (10) which

involve 6 probabilities, among which only 4 are re-
quired (we could obtain the same result without using
the fourth and sixth elements of |At(1)v|2).
For q > 1 qubit before calling the recursive function

with one fewer qubit, we compute θ2 − θ1 using (16).
This involves 2 × 2q probabilities among which only
2 are strictly required for the first estimate θd.
The minimum number of needed probabilities is 4×

2nqb−1+2
∑nqb

q=2 2
nqb−q = 2d+2(2nqb−1−1) = 3d−2.

Furthermore, if we take into account the fact that v
has unit norm, then one of the probabilities along the
Z axis (which are all used) becomes redundant, and
this number becomes 3(d− 1).
In practice all probabilities are used in order to

minimize the impact of the statistical error on the
probabilities. But if we wanted to remove rows from
At in (9) and only keep 3(d−1) of them, we could still
achieve QST. However, this is a bad idea because we
would no longer have a concatenation of d-outcome
parallel measurements. And in practice the final es-
timate of the state would be less robust to the errors
on the sample probabilities and the quantum setup
would not be any easier to put in place, as the estima-
tion of the 3(d − 1) probabilities to be kept requires
all 2nqb + 1 measurements to be performed anyway.

D. Comparison with the literature

Let us sum up the main features of our second QST
algorithm:

• It uses (2nqb+1)d probabilities that can be ob-
tained by averaging the results of 2nqb +1 par-
allel unentangled measurements.

• The measurements are injective outside a
known failure set with zero measure.

• The algorithm that reconstructs the state is ex-
plicit.

Those features are very similar to those of Goyeneche
et al. [15]. The advantage of our method it that the
measurements it uses are unentangled. Its drawback
is that it requires 2nqb + 1 measurements which is
more than 4 (except for the trivial case nqb = 1).
That is the price to pay for using only unentangled
measurements, we could not find a simple closed-form
algorithm that works with fewer types of unentangled
measurements. The more general compressed sensing
approach of [4] requires O(rd log(d)2) probabilities to
estimate the state where r, the rank of the density
matrix, is 1 in the case of a pure state. Those proba-
bilities could be obtained by averaging the results of
O(log(d)2) different unentangled measurements. We
do better here since we only use 2nqb+1 = O(log(d))
measurements. We also have the advantage of provid-
ing a closed-form algorithm contrary to the method of
[4] which is very general (works for mixed states and
any kind of measurement), but uses an optimization
algorithm and provides no proof of injectivity.

V. LIKELIHOOD MAXIMIZATION

A. Main idea

Sections III and IV give us estimates of the state
v, denoted as v̂pc and v̂rec respectively. v̂pc is the
solution of the QST problem with one constraint
(rank(U) = 1) relaxed, so it can be inaccurate even
in the absence of errors in the sample probabilities.
The algorithm of Section IVB that computes v̂rec is
also imperfect. It relies heavily on the measurements
along Z...Z, Z..ZX and Z..ZY (used 2nqb−1 times for
one qubit at the end of the recursive tree to compute
all the moduli and half the phases differences) and it
almost does not use the measurements along X...X
and Y X...X (used only once to compute one phase
difference (θ2 − θ1) with (16)). Each of those last
two measurements contains as much information on
v as the measurements along Z...Z, but the former
are barely used.
Therefore the estimation methods of Section III

and IV are hereafter supplemented by a final tun-
ing to make them more precise. To this end, we take
a maximum likelihood (ML) approach:

(x̂, ŷ) = argmin
x,y s.t. ||x||2+||y||2<1

L(x,y)(p̂) (18)

where p̂ is the vector that contains sample probabili-
ties and L(x,y)(p̂) is to be understood as the negative
log-likelihood of measuring the sample probabilities
p̂ if the true state is v(x,y), with x and y defined
hereafter. In the whole paper, whenever we write
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“negative log-likelihood” (or L ) we mean “opposite
of the log-likelihood up to additive and positive mul-
tiplicative constants”. These constants will not mat-
ter as the negative log-likelihood will be minimized.
The vector v(x,y) with respect to which L will be
minimized is defined as:
v(x,y) = [

√
1− ||x||22 − ||y||22, x1 + iy1, ..., xd−1 + iyd−1]

T .

x and y are d − 1 element vectors representing
the real and imaginary parts of the last elements
of v. The constraint in (18) is r2 < 1 (with r =√
||x||22 + ||y||22) and not r2 ≤ 1 because optimiza-

tion is easier on an open set). We mitigate the effect
of this imperfect constraint by permuting the first
component of v and the component of v with the
highest modulus at the initial point of the optimiza-
tion. Thus, we ensure that r2 is not going to be close
to 1 unless the initial point was way off. The sam-
ple probabilities and the columns of A are permuted
in the same way. Those change are limited to the
optimization algorithm.
Since the optimization set is open we can change

the variables in order to remove the constraint alto-
gether:

x′ =
tan(π

2
r)

r x and x =
2

π
atan(r′)

r′ x′

y′ =
tan(π

2
r)

r y and y =
2

π
atan(r′)

r′ y′

(with r′ =
√
||x′||22 + ||y′||22). The new optimization

problem on x′and y′ does not have any constraint,
as when r′ spans the whole space r remains strictly
smaller than 1. Eq. (18) is therefore replaced by

(x̂′, ŷ′) = argmin
x′,y′

L(x′,y′)(p̂). (19)

In order to solve (19) we again use the BFGS al-
gorithm where the analytical expressions of the gra-
dients are provided. The algorithm stops when the
norm of the optimization step is smaller than 10−30.
Like in most non-convex optimization methods, we
need a good initialization point, we use either v̂pc or

v̂rec. The most likely v is v̂ml = v(x̂′, ŷ′), with x̂′, ŷ′

defined in (19).
All that remains now is to define the expression

of the negative log-likelihood L with respect to v.
In the following 2 subsections we will give 2 expres-
sions for the normalized log-likelihood: L exact

(x′,y′)(p̂)

and L
gauss
(x′,y′)(p̂).

B. Exact likelihood

In [21] the formula for the likelihood of a multi-
output quantum measurement is given (albeit for a

mixed state represented by ρ which we would have to
replace by vv∗). It boils down to:

L
exact
(x′,y′)(p̂) = −

nprob∑

k=1

nklog
(
(|Av(x′,y′)|2)k

)
. (20)

(
|Av(x′,y′)|2

)
k
is the k-th element of |Av(x′,y′)|2,

A is the measurement matrix, either As or At, nk is
the number of times the k-th outcome occurred i.e.
the k-th element of p̂ (either p̂s or p̂t) multiplied by
the number of times the measurement is repeated,
and nprob is the number of rows of A.
In order to get to this result we must consider the

measurement counts as the realizations of a multino-
mial random variable. This is not an approximation,
this is why we call this likelihood “exact”.

C. Gaussian approximation

In this subsection, we use the central limit theorem
to approximate the scaled sample probabilities as the
realization of a multivariate normal distribution. It is
appropriate as the vector p̂ whose likelihood we want
to compute is the average of independent realizations
of the same random variable. Its expected value is
the vector of theoretical probabilities p(x′,y′) that
depends on the state. Let us define ε(p̂,x′,y′) =
p̂ − p(x′,y′) and ε(p̂,x′,y′) is ε(p̂,x′,y′) with the
last element removed (no information is lost as the
sum of the elements of ε(p̂,x′,y′) is 0). In Appendix
A, we show that if N is the number of times the mea-
surements have been averaged, then

√
Nε(p̂,x′,y′)

asymptotically (N → +∞) follows a zero-mean mul-
tivariate normal distribution. Its covariance matrix
Σ is computed in Appendix A. Σ depends on the
theoretical probabilities, we need to remove this de-
pendency. With that in mind, we get to the following
approximation for the negative log-likelihood:

L
gauss
(x′,y′)(p̂) = Nε(p̂,x′,y′)T Σ̃−1ε(p̂,x′,y′) (21)

where Σ̃−1 is an approximation of the covariance ma-

trix that uses p̃ =
p̂+ 5

N

1+ 5d
N

as a regularized approxima-

tion of p, this is justified in Appendix A. Appendix
A also shows that this equation boils down to

L
gauss
(x′,y′)(p̂) = N

d∑

k=1

εk(p̂,x
′,y′)2

p̃k
. (22)

This log-likelihood is the result of two approxima-
tions that are true only when N → +∞: we ap-
proximated ε(p̂,x′,y′) as the realization of a Gaus-
sian random vector and we used an approximation
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for Σ. In practice, the resulting approximation is
smoother and easier to minimize than L

exact
(x′,y′)(p̂) if

the initialization point is not good enough (as will be
shown in Section VIC). However, with a good initial-
ization, the state that minimizes L exact

(x′,y′)(p̂) should

be closer to the true state than the one that min-
imizes L

gauss
(x′,y′)(p̂). The smaller N , the starker the

difference. This will be shown in Section VI B.

D. Mixed minimization

As stated above L
gauss
(x′,y′) is supposed to be easier

to minimize but the minimum of L exact
(x′,y′) is supposed

to be a better estimate. A good way to combine
the two advantages is to start the optimization pro-
cess by minimizing L

gauss
(x′,y′) and finish it by mini-

mizing L exact
(x′,y′). In practice, we here again run the

BFGS algorithm on L
gauss
(x′,y′) for 100 iterations start-

ing from the initialization point of Sections III or IV,
this yields v̂inter . And then we run the BFGS al-
gorithm on L exact

(x′,y′) starting from v̂inter and stop-

ping only once a local (hopefully global) minimum
has been found.

VI. NUMERICAL RESULTS

A. Performances of the two initialization

algorithms

Sections III and IV detail two methods to per-
form QST which are used for initialization of ML
algorithms. The current section aims at estimating
the precision of those methods and comparing them
whenever possible. The recursive algorithm of Sec-
tion IV only works for a specific set of measurement
types but is explicit and does not require an unde-
fined number of iterations to converge contrary to
PhaseCut defined in Section III. We only explained
PhaseCut for the setup with 4 different measurement
types described in Section IIIA, but it can be ap-
plied to any types of measurements. In particular we
could apply it to the setup with 2nqb + 1 measure-
ment types of Section IVA. In the current section,
we test both PhaseCut and the recursive algorithm
on 50 randomly generated 7-qubit pure states. The
two sets of measurement types of Sections III A and
IVA are considered. They contain respectively 4 and
2× 7 + 1 = 15 measurement types. We test those al-
gorithms with 2 different fixed numbers of total mea-
surements NC : 5 000 and 500 000. Thus each one of
the 4 measurement types of the setup of Section III A

is performed either NC = 1250 or NC = 125000 times
and each one of the 15 measurement types of the
setup of Section III A is performed either NC = 333
or NC = 33333 times.
The metric used in order to quantify the proximity

of v̂ to the actual vector v up to a phase factor is
µ = ||v − v̂.e−iξ||2 with ξ the angle that minimizes

our metric: eiξ = v
∗
v̂

|v∗v̂| . We call µ this error in the

rest of the paper. µ is maximal for orthogonal states
(it is then

√
2), and minimal for states that differ by a

global phase (is is then 0). A more widely used metric
in the literature is the fidelity (see Section 9.2.2 in

[1]) f = |v∗v̂|. It can be shown that f = (1 − µ2

2 ).
We do not use the fidelity because it can push some
interesting values too close to 1.
Fig. 1 shows the error of v̂pc obtained by using

PhaseCut with 100 to 100 000 iterations for the two
setups (4 and 15 measurement types). With 15 (and
not with 4) measurement types, the recursive algo-
rithm can be implemented. We display biggest and
smallest errors of v̂rec obtained with the recursive
algorithm with horizontal bold green and red lines
respectively. The recursive algorithm is performed in
a fixed number of steps, this is why we plot the error
on horizontal lines and not on a curve with respect
to a number of iterations.
The aim of this simulation is to see how many itera-

tions of PhaseCut are required to get a good estimate
of the state and to compare the performances of the
recursive algorithm with those of the more versatile
PhaseCut.
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FIG. 1. Initialization algorithms. The bold red and green
horizontal lines are the worst and best errors for the re-
cursive algorithm on the 50 random states (only available
with 15 measurement types). The other curves represent
the evolution of the error on the PhaseCut estimates with
the 50 states.
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With enough iterations (∼ 104 for Nc = 5000 and
∼ 105 for Nc = 500000) PhaseCut is more precise
than the recursive algorithm on the setups on which
they can both be implemented, but it takes way more
time. Each iteration of PhaseCut is costly, because
we are working on an nprob×nprob matrix. With Mat-
lab, on a 2.11 GHz 4-core processor with 32 Go RAM,
each iteration of PhaseCut takes around 4 ms for the
setup with 4 types of measurements and around 45 ms
for the setup with 15 types of measurements. In that
same 15 measurement type setup, the recursive algo-
rithm takes 200 ms. This is way faster than Phase-
Cut which runs in minutes, as it requires thousands
of iterations.

B. Likelihood estimator comparison

In Section V we defined two likelihood estimators,
based on the likelihood maximization. The first one
minimizes the true negative log-likelihood L exact

(x′,y′)

and the other minimizes a version of the negative log-
likelihood that is supposed to be smoother, namely
L

gauss
(x′,y′). We know that L

gauss
(x′,y′) is an approximation

of the likelihood that is accurate only if the number of
measurements per measurement type is high enough.
Therefore we expect the global minimum of L

gauss
(x′,y′)

to be a worse estimator than the global minimum of
L exact

(x′,y′) for a limited number of measurements. In

order to check whether this is true and quantify the
difference, we compute the errors on both estimators
when they are initialized at the true state v. Doing
this ignores the error on the initialization point (to
which the regularized Gaussian estimate is supposed
to be robust). We also compute the error for the
mixed algorithm which starts by minimizing L

gauss
(x′,y′)

and then minimizes L exact
(x′,y′). These 3 types of errors

are computed with 1000 random initial states on the
four setups described in Section VIA with 4 or 15
measurement types and 5000 or 500 000 total mea-
surements. For each of the four setups, the empirical
cumulative density function (empirical cdf) is com-
puted on the 1000 errors associated with the initial
states, those cdf are shown in Fig. 2.

As predicted the error is larger with the Gaus-
sian estimate of the likelihood, and the difference de-
creases when the number of measurements per mea-
surement type increases.

The performance of the mixed minimization algo-
rithm is very close to that of the estimator that min-
imizes L exact

(x′,y′). There can be small differences how-

ever. Its turns out that they sometimes converge to-
ward close but different minima. This is due to the
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FIG. 2. empirical cdf of the errors of the 3 maximum
likelihood estimators

fact that the small error made by the first 100 itera-
tions of the mixed algorithm (during which L

gauss
(x′,y′)

is minimized) can be enough to affect the final result.
The differences between the 3 estimators are only

noticeable for Nc = 5000 with 15 and 4 different mea-
surements (so 333 or 1250 measurements per mea-
surement type).

C. Convergence of the likelihood estimators

In the current section, we intend to see what pre-
cision on the initial state is required to make sure
that the likelihood optimization algorithm converges
towards a reasonable solution, and compare the ro-
bustness of the three ML estimates. We compare
the rates of divergence (denoted as δ and defined be-
low) of the algorithms that minimize L exact

(x′,y′) and

L
gauss
(x′,y′) as well as the mixed algorithm. 1000 ran-

dom states v to be estimated are considered with
1000 associated initial states of ML algorithms that
have an initialization error µ linearly varied from
0 to

√
2 (as stated above

√
2 is the highest possi-

ble value for µ, it is reached if the two states are
orthogonal). Let us denote as {µi}i∈{1,...,1000} the
1000 values of this initial error on states v and de-

fine
{
balgoi , i ≤ 1000, algo ∈ {exact,Gauss,mixed}

}

where balgoi is −1 if the algo algorithm converges to-
wards the same minimum with the µi initialization
error and with no error and +1 if it converges toward
a different minimum. We say that those two minima
are the same if the error µ between the two is smaller
than one percent of the error between the first one
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(initialized without error) and the true state vector.
For each of the 3 algorithms, we then define the

rate of divergence δalgo(µ) associated with a given

error µ. It takes all the balgoi into account but gives
more weight to those for which the associated µi is
close to µ:

δalgo(µ) =
1
2

(
1 +

∑
1000

i=1
balgo
i

e
−( µ−µi

α )
2

∑
1000

i=1
e
−( µ−µi

α )
2

)
.

Simply put, if the majority of µi in the vicinity of

µ are associated with balgoi equal to −1 (i.e. the al-
gorithm converges towards the proper minimum with
initialization errors around µ) then, δalgo(µ) will be

close to 0. If the associated balgoi are 1 (i.e. the al-
gorithm does not converge towards the proper mini-
mum) then, δalgo(µ) will be close to 1. The parameter
α quantifies how far away from µ we look for results,
we picked α = 0.1. Fig. 3 shows the rates of diver-
gence of the 3 algorithms in the four setups described
in Section VIA with 4 or 15 measurement types and
5000 or 500 000 total measurements.
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FIG. 3. Convergence of the different likelihood algorithms
in the presence of initialization errors.

The two plots on the right are of limited interest
to us as the rate of divergence is always very low
(≤ 10−4) for errors lower than 0.75. We are mostly
interested in the rates of divergence for initialization
errors µ smaller than 0.75 because according to Fig.
1, the recursive algorithm always yields an estimate
that corresponds to an error lower than 0.75 and
PhaseCut also does so quite quickly (for more than
5000 iterations) for every setup. For those errors (on
the two plots on the left), the best algorithm seems
to be the minimization of L

gauss
(x′,y′), indeed increased

robustness to the initialization error is the whole rea-
son why we introduced L

gauss
(x′,y′). The mixed algo-

rithm does not quite reach the same robustness but
it is certainly an improvement over the algorithm that
minimizes L exact

(x′,y′) which has the worst performances

for the relevant initialization errors. We should note
that the name given to δ: “rate of divergence” is a
bit severe as the likelihood algorithms never diverge
in practice, they simply converge toward a false local
minimum that is sometimes close to the real global
minimum. δ is not useless however, and Fig. 3 shows
us that, generally, with either the mixed algorithm
or the algorithm that minimizes L

gauss
(x′,y′), an initial-

ization error lower 0.75 leads to proper convergence
towards the real minimum. According to Fig. 1,
5000 iterations of PhaseCut as well as the recursive
algorithm generally yield an error smaller than 0.75.
Therefore we choose to use the recursive algorithm
when it is possible i.e. with the setup of Section IV
with 15 types of measurements for 7 qubits (because
it is faster than PhaseCut) and when PhaseCut has
to be used (so with 4 measurement types) we only
perform 5 000 iterations. We could let PhaseCut run
longer but our implementation of the ML algorithm
is faster.

D. Global performances

This section aims to test the algorithms of Sections
III and IV, fine tuned with the 3 algorithms of Section
V on nqb = 7 qubits, with the four setups described
in Section VIA. For each setup, and for each version
of the ML algorithm, 4 estimates of v are computed:

• The initial estimate, so v̂pc for the setup with 4
measurement types or v̂rec for the setup with 15
measurement types. It does not depend on the
choice of the ML algorithm.

• v̂ml which is the result of the likelihood optimiza-
tion (minimizing either L

exact
(x′,y′) or L

gauss
(x′,y′) or both

successively) initialized at the initial estimate.

• v̂ref which is the result of the likelihood optimiza-
tion initialized at the true v (not available in prac-
tice, it should be the global maximum likelihood;
if v̂ml = v̂ref then the initial estimate was good
enough). We call v̂ref the reference, it has already
been defined (but not named) in Section VIB and
represented in Fig. 2.

• And v̂rnd which is the result of the likelihood op-
timization initialized at a random normalized vec-
tor (if v̂rnd is not worse than v̂ml, then the ini-
tial estimate was unnecessary and one can only use
the maximum likelihood algorithm initialized ran-
domly).
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For each setup, 1000 tests are performed with 1000
randomly generated v. We compute the estimates
of each v with the different algorithms and display
the empirical cumulative density function (cdf) of the
errors in Fig. 4 to Fig. 6.

The performances of the three ML algorithms are
quite similar (when excluding the random initializa-
tion), but some differences can be noted:

• The algorithm that minimizes L exact
(x′,y′) is supposed

to be less robust to the initialization error than
the others. It is only apparent for the setup with
4 measurements and Nc = 5000. v̂ml is not quite
as precise as v̂ref .

• The algorithm that minimizes L
gauss
(x′,y′) does not

have that problem, v̂ml and v̂ref are always in-
distinguishable. However the version of v̂ref com-
puted by minimizing L

gauss
(x′,y′) is not as precise as

the version that minimizes L exact
(x′,y′). This can be

seen by comparing Fig. 4 and Fig. 5 but it is more
visible on Fig. 2 that represents the performances
of the 3 references on a single graph.

• The mixed algorithm seems to combine the ad-
vantages of those based on L

gauss
(x′,y′) and L exact

(x′,y′).

v̂ml is almost equal to v̂ref , and v̂ref is almost as
good with this mixed algorithm as with L exact

(x′,y′)

(see Fig. 2 for a clearer comparison of the two
values of v̂ref ).
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FIG. 4. Empirical cdf of QST error, L
exact
(x′,y′) minimiza-

tion.
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FIG. 5. Empirical cdf of QST error, L
gauss

(x′,y′)
minimiza-

tion.
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FIG. 6. Empirical cdf of QST error, mixed algorithm.

The performances of v̂rnd, the maximum likelihood
estimators initialized at a random point, are interest-
ing. With the 4 measurement type setup, it is always
a much worse estimate than v̂ml. But with 15 mea-
surement types it is (almost) as good as the maximum
likelihood estimators initialized at v̂rec (unless we use
the L

gauss
(x′,y′) minimization). This could make us ques-

tion the relevance of the recursive algorithm defined
in Section IV. It would seem that the structure of
the measurement matrix At is such that the gra-
dient descent algorithm naturally converges towards
the global minimum from any initial point. However
the recursive algorithm is still useful because it is very
fast and speeds up the likelihood maximization (see
Table 2).
We can also compare the performances of the two
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initialization algorithms v̂pc or v̂rec (blue curve) with
v̂ml (dashed red curve). The error on v̂ml is at least
3 times smaller (or way less for v̂pc and Nc = 500000)
than that of the initialization algorithms. This shows
that the fine tuning with ML is very useful to reduce
the error. Comparing the precision of the initializa-
tion algorithm with v̂rnd is unwise because v̂pc and
v̂rec can be improved with the ML algorithm whereas
v̂rnd cannot as it is a local minimum of the likelihood.
Furthermore, with Nc = 5000, v̂pc and v̂rec have a
similar accuracy (respectively on 4 and 15 measure-
ment types). And with Nc = 500000, v̂rec is a way
better estimate than v̂pc because the PhaseCut algo-
rithm is limited to 5000 iterations (allowing it enough
iterations to converge properly would be way slower
and not as accurate as the likelihood maximization).

After likelihood optimization the performances of
v̂ml with 15 and 4 measurement types are compa-
rable (with the mixed algorithm, the 15 measure-
ment setup is slightly better). Also the final error
is roughly 10 times smaller when the number of mea-
surements is multiplied by 100. This means that for
more than 5000 measurements one can extrapolate
the error (and therefore its cdf), as the error is pro-

portional to N
−1/2
c .

The fact that the recursive algorithm used to com-
pute v̂rec has a zero measure failure set on which
phase recovery is impossible (see Section IV) turns
out to be a non-issue. We could have expected to see
some outliers on the error of v̂rec, and the v̂ml com-
puted from it, if the randomly generated v was close
enough to the failure set. It is not the case, each one
of the 1000 initial states has been successfully recov-
ered with a reasonable error. The same is true when
using PhaseCut with the 4 measurement type setup.
Even though we were not able to prove the injectiv-
ity, the QST goes well in practice and there are no
outliers in the error if the proper algorithms are used.

Table 1 and Table 2 give the median execution time
of all the algorithms on an Intel Xeon Gold 6226R 2.9
GHz core, all the scripts ran on 1 thread on Matlab.
There are no significant differences between the 3 ML
algorithms when they are not initialized at random.
The random initialization is never relevant, as for the
4 measurement type setup it is relatively fast (as it
spares us the initialization step with PhaseCut) but
inaccurate; and for the 15 measurement type setup
it is always slower (sometimes way slower) that the
likelihood maximization with proper initialization.

Nc = 5000 Nc = 500000

PhaseCut 16.9 s 17.4 s

L
exact
(x′,y′) min. from v̂pc 11.4 s 8.3 s

L
exact
(x′,y′) min., random init. 22 s 24.7 s

L
gauss

(x′,y′) min. from v̂pc 8.1 s 5.2 s

L
gauss

(x′,y′) min., random init. 16.6 s 21.3 s

mixed algo. from v̂pc 6.8 s 4.7 s

mixed algo., random init. 10.6 s 12.8 s

TABLE I. execution time for the setups with 4 measure-
ment types.

Nc = 5000 Nc = 500000

recursive algorithm 0.17 s 0.17 s

L
exact
(x′,y′) min. from v̂rec 44.4 s 10.9 s

L
exact
(x′,y′) min., random init. 272 s 94.4 s

L
gauss

(x′,y′) min. from v̂rec 38.8 s 16.7 s

L
gauss

(x′,y′)
min., random init. 84.9 s 126.7 s

mixed algo. from v̂rec 47.8 s 26.1 s

mixed algo., random init. 62 s 38.4 s

TABLE II. execution time for the setups with 15 mea-
surement types.

In conclusion, we recommend using the mixed al-
gorithm for the likelihood, it is a good compromise
between the L

gauss
(x′,y′) minimization and the L exact

(x′,y′)

minimization. The choice between the setup with 4
types of measurements and the setup with 2nqb + 1
types of measurements is less obvious. The first one
is obviously simpler for the operator and the likeli-
hood optimization is faster (see Table 1 and Table 2)
but:

• It yields a slightly less precise result. The median
error with the mixed algorithm and Nc = 5000 is
0.22 against 0.19 with 15 measurement types.

• We have no closed-form algorithm that retrieves
the state from the measurements. We must rely
on PhaseCut which is unprecise. PhaseCut is also
slow but the time gained during the mixed ML al-
gorithm more than makes up for it (see Table 1 and
Table 2).

• We explained (in Section III B) why we think the
measurements are injective, and in practice all 1000
tested states were recovered, but we were unable to
prove the injectivity so far.
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VII. CONCLUSION AND FUTURE WORK

In this paper we first showed how some of the work
made in the applied mathematics community in the
field of phase recovery can be used to define a set of
four types of d-outcome measurements that should
be enough to achieve QST for any pure state using
the PhaseCut optimization algorithm. We also pro-
posed a set of (2nqb+1) types of d-outcome measure-
ments as well as a recursive algorithm which allows
explicit reconstruction of the state (nqb is the num-
ber of qubits, d = 2nqb). Experimentally, they both
give similar performances when the total number of
measurements is the same (slight advantage for the
second set of measurements); the first set is easier to
set up and the second set is more theoretically sound.
The initial estimates of the considered state are

then fined tuned with the maximum likelihood ap-
proach that is widely used in the quantum informa-
tion processing literature. We introduced some re-
finements which make it more robust by considering
a smooth an easy way to maximize an approximation
of the likelihood.
We intend to use those QST methods to perform

quantum process tomography (QPT) like in [22]. In
[22] we introduced a QPT method that relies on mea-
suring the state of the system after different time de-
lays. At each time delay, we have to perform QST.

Appendix A: Covariance matrix and likelihood of

the error on the sample probabilities

1. Covariance matrix

Appendix A aims at computing the asymptotic law
of

√
Nε =

√
N(p̂ − p) defined in Section VC and

at simplifying the expression of the likelihood of ε.
We consider that p contains the probabilities of a
single type of d-outcome measurement. The gener-
alization is straightforward as the errors on differ-
ent measurements are independent (see Section A3).
The only random vector in ε is p̂ defined as the vec-
tor that contains the sample probabilities of each of
the d outcomes. So p̂ = 1

Nn where each component
ni of n contains the number of times the i-th out-
come occurred. By definition n follows a multinomial
distribution characterized by the number of trials
N and the theoretical probabilities of each outcome
contained in p. The expected value and covariance
matrix of the multinomial distribution are known:
E(n) = Np and Cov(n) = N(diag(p)− ppT ).
We want to use the central limit theorem so let us

write n as a sum: n =
∑N

k=1 δk where the {δk}k

are independent and have the same distribution for
different k. δk contains d − 1 zeros and one 1 at
a random index ik ∈ {1, ..., N} whose density func-
tion is j −→ pj (i.e. the probability that ik takes
the value j ∈ {1, ..., N} is pj, the j-th element of
p). δk follows a multinomial distribution with N = 1
trial. Its expected value is therefore p and its co-
variance matrix is diag(p) − ppT . Therefore ε is
the difference between the empirical average of δk
with N realizations and its expected value. Accord-
ing to the central limit theorem, when N → +∞, the
distribution of

√
Nε tends to a centered multivari-

ate normal distribution, and its covariance matrix is

Σfull = diag(p)− ppT . Σ̂full is an estimate of Σfull,
it uses p̂ as we do not want to depend on the unknown

vector p: Σ̂full = diag(p̂)− p̂p̂
T .

2. Likelihood

The easiest way to compute the likelihood of a vec-
tor that follows a multivariate normal distribution
requires us to invert the covariance matrix [23]. If
the covariance matrix is not invertible, then it is not
of full rank, this means that at least one component
of the random vector is linearly dependent on the
others and therefore it is not needed to compute the
likelihood. Those components can be removed and
the likelihood of the smaller vector is the same as the
likelihood of the original vector. In our case, the com-
ponents of

√
Nε sum to zero, therefore its covariance

matrix is not invertible and any component can be
removed without loosing any information that could
be used to compute the likelihood. Let us consider√
Nε, it is the same vector as

√
Nε with the last

component removed, and thus, its covariance matrix
is the same with the last row and column removed:
Σ = diag(p) − ppT (p is p with the last element
removed). It can be estimated with the sample prob-

abilities p̂ =




p̂1
...

p̂d−1


 instead of p. The resulting

matrix is Σ̂ = diag(p̂)− p̂p̂
T . Straightforward calcu-

lations show that if no element of p̂ =



p̂1
...

p̂d


 (with

p̂d = 1−∑d−1
k=1 p̂k) is zero, then, Σ̂ is invertible and

Σ̂
−1 =

1

p̂d
1+ diag(1/p̂). (A1)

is its inverse. 1/p̂ is the element-wise inverse of p̂
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and 1 is the d− 1× d− 1 matrix with only ones. In
practice, elements of p̂ can be zeros, it would make
the matrix singular. In order to overcome this diffi-
culty and avoid giving too much importance to the
errors on the scarcely observed outcomes, we modify
the sample probability and create a new vector p̃:

p̃ =
p̂+ 5

N

1 + 5d
N

. (A2)

This means that we consider that each outcome has
been observed 5 more times than it actually was, and
the total number of observations changes from N to
N + 5d (the choice of 5 is arbitrary). This is a stan-
dard method to make a criterion smoother (see [24]).
The resulting estimate of the inverse of the covariance
matrix is

Σ̃
−1 =

1

p̃d
1+ diag(1/p̃) (A3)

With the inverse of Σ̃ and knowing that the distri-
bution is normal and centered, we can compute the
negative log-likelihood of the vector (see [23]):

L
gauss
(x′,y′)(p̂) = Nε(p̂,x′,y′)T Σ̃−1ε(p̂,x′,y′). (A4)

We use p̂ and not p̃ to compute ε otherwise estima-
tor that minimizes the criterion would become biased
(as the minimum of L

gauss
(x′,y′) would fit p̃ which does

not contains the actual sample probabilities) and the
criterion would not be smoother.
Let us simplify this expression using (A3) and the

fact that
∑

k εk = 0 ⇒ εd = −∑d−1
k=1 εk:

NεT Σ̃−1ε = NεT




1
p̃d

∑d−1
k=1 εk +

ε1
p̃1

...
1
p̃d

∑d−1
k=1 εk +

εd−1

p̃d−1




= NεT




ε1
p̃1

− εd
p̃d

...
εd−1

p̃d−1

− εd
p̃d




= N
(∑d−1

k=1
ε2k
p̃k

− εd
p̃d

∑d−1
k=1 εk

)

= N
∑d

k=1
ε2k
p̃k
.

Therefore, the expression of the negative log-

likelihood is:

L
gauss
(x′,y′)(p̂) = N

d∑

k=1

εk(p̂,x
′,y′)2

p̃k
. (A5)

3. Extension to several d-outcome

measurements

Since the beginning of the appendix we assumed
that only one type of measurement with d outcomes
was performed. In practice the methods we describe
require either 4 (in Section III) or 2nqb + 1 (in Sec-
tion IV) types of measurements. The errors be-
tween the empirical and theoretical probabilities of
different measurements are independent. Therefore
if ε(p̂,x′,y′) contains nt > 1 types of measurements
and dnt real components, then, its covariance matrix
is a block diagonal matrix with the covariance ma-
trix of each measurement type on the diagonal (be-
cause the measurement errors on two different mea-
surement types are independent.). And the same goes
for the inverse of its regularized covariance matrix:

Σ̃
−1 =



Σ̃

−1
1

. . .

Σ̃
−1
nt


 . (A6)

Each Σ̃
−1
k is the regularized inverse of the covariance

matrix for one measurement type defined in (A3).

The negative log-likelihood of ε(p̂,x′,y′) contain-
ing nprob = ntd measurements errors on nt types
of measurements is the sum of the nt negative log-
likelihoods of the error vectors of each measurement
type

L
gauss
(x′,y′)(p̂) = N

nprob∑

k=1

εk(p̂,x
′,y′)2

p̃k
. (A7)
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