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Two types of states are widely used in quantum mechanics, namely (deterministic-coefficient)
pure states and statistical mixtures. A density operator can be associated with each of them. In
this paper, we address a third type of states, that we previously introduced in a more restricted
framework. These states generalize pure ones by replacing each of their deterministic ket coefficients
by a random variable. We therefore call them Random-Coefficient Pure States, or RCPS. We here
analyze their properties and their relationships with both types of usual states. We show that RCPS
contain much richer information than the density operator and mean of observables that we associate
with them. This occurs because the latter operator only exploits the second-order statistics of the
random state coefficients, whereas their higher-order statistics contain additional information. That
information can be accessed in practice with the multiple-preparation procedure that we propose
for RCPS, by using second-order and higher-order statistics of associated random probabilities
of measurement outcomes (we also discuss our single-preparation procedure). Exploiting these
higher-order statistics opens the way to a very general approach for performing advanced quantum
information processing tasks. We illustrate the relevance of this approach with a generic example,
dealing with the estimation of parameters of a quantum process and thus related to quantum process
tomography. This parameter estimation is performed in the non-blind (i.e. supervised) or blind (i.e.
unsupervised) mode. For the considered type of measurements, we show that this problem cannot

be solved by using only the density operator ρ of an RCPS and the associated mean value Tr(ρÂ)

of the operator Â that corresponds to the considered physical quantity. In contrast, we succeed
in solving this problem by exploiting a fourth-order statistical parameter of state coefficients, in
addition to second-order statistics. Numerical tests validate this result and show that the proposed
method yields accurate parameter estimation for the considered number of state preparations.

I. INTRODUCTION

Two types of states are widely used in quantum me-
chanics, namely pure states (with deterministic coeffi-
cients: see below) and mixed states, i.e. statistical mix-
tures, the latter being a superset of the former. Due to
our needs for new classes of quantum information pro-
cessing (QIP) methods, in [1] we introduced a third ap-
proach, based on the concept that we then called “ran-
dom pure states”, and that is hereafter more precisely
referred to as Random-Coefficient Pure States and ab-
breviated as RCPS.
We previously used these RCPS to perform various

QIP tasks based on blind adaptation/estimation, i.e. un-
supervised quantum machine learning [2]. These tasks
are Blind Quantum Source Separation (BQSS, intro-
duced in [1]; see also e.g. [2–4]), Blind Quantum Pro-
cess Tomography (BQPT, introduced in [5]; see also e.g.
[6]), Blind Hamiltonian Parameter Estimation (BHPE,
introduced in [2]) and other QIP tasks [2]. Beyond the
above practical QIP methods, we started to investigate
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more fundamental aspects of RCPS in [7]: we showed
how these states can be physically implemented and we
briefly commented about their relationship with the con-
cept of density operator. We addressed the latter topic
in a much more detailed way very recently in [8]. This
especially showed that, starting from an RCPS, one can
associate a density operator with it.

In this paper, we proceed much further in the investi-
gation of RCPS. In Section II, we first provide a general
definition of these states, beyond their specific versions
considered in our above-mentioned application-driven pa-
pers. We then analyze various features of these states
and show their potential for QIP, as compared with more
standard approaches. We especially explain how one may
try to handle RCPS by adapting the standard practice
in quantum mechanics, which is based on defining other
states (namely mixed ones) by a density operator ρ and

using the mean value Tr(ρÂ) of a physical quantity (i.e.

observable) A represented by an operator Â. We prove
that this standard approach does not allow one to access
all the information that is present in an RCPS. That in-
formation can indeed be accessed, by using measurements
and the associated statistics of the moduli of the random
ket coefficients of that state. A major result of this pa-
per is thus that certain QIP tasks cannot be carried out
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by only resorting to the standard approach to quantum
mechanics, whereas they can be performed by exploiting
the higher-order statistics of the random coefficients of
an RCPS. In Section III, we illustrate this phenomenon
with a generic example, dealing with non-blind or blind
quantum parameter estimation and related to (B)QPT
and (B)HPE. In Section IV, we focus on the discrete ver-
sion of RCPS and analyze their connections with usual
mixed states, as defined by von Neumann. Relationships
with other works from the literature, that are more or
less connected with RCPS and their higher-order statis-
tics, are then discussed in Section V. Finally, we draw
conclusions from this investigation in Section VI.

II. DEFINITION AND FEATURES OF
RANDOM-COEFFICIENT PURE STATES (RCPS)

A. Definition of an RCPS

First considering the classical framework, the following
concepts should be kept in mind. Beyond a scalar deter-
ministic (i.e. fixed) value X , a random variable (RV)
may be defined as a function X whose scalar value X(α)
depends on an outcome α of the considered probability
space Ω. That outcome α is randomly drawn and, once
selected, it completely defines the corresponding (com-
plex or real) value X(α) of X. One may thus e.g. model
an experiment where a die is cast, each of its faces cor-
responds to an outcome α, and the user’s numerical gain
X(α) associated with each given face α in a game is fixed.
More generally, a random vector is a vector whose com-
ponents are RV, i.e. all their values are fixed by the
considered single outcome α.
Now moving to the quantum framework, the simplest

states considered in the literature, called pure states, are
deterministic: such a state may be defined as a ket

|ψ〉 =
d−1
∑

k=0

ck|k〉 (1)

where the kets |k〉 form an orthonormal basis of the con-
sidered d-dimensional space (with d = 2Q for Q qubits)
and the corresponding complex-valued coefficients ck are
fixed for a given state |ψ〉. In our above-mentioned pa-
pers, we extended that concept to random-coefficient
pure states, or RCPS. Such a state may be defined as
a ket

|ψ〉 =
d−1
∑

k=0

ck|k〉 (2)

where the complex-valued coefficients ck are RV, i.e. they
depend on a randomly drawn outcome α. Once a sin-
gle α has been selected, all corresponding coefficient val-
ues ck(α) are fixed, as in a classical random vector. A
given outcome α thus yields a fixed, i.e. deterministic-

coefficient, pure state

|ψ(α)〉 =
d−1
∑

k=0

ck(α)|k〉. (3)

Such RCPS |ψ〉 and their realizations |ψ(α)〉 can actu-
ally be faced in practice. For instance, in [7], we showed
how to create an RCPS for a single electron spin 1/2,
placed in a Stern-Gerlach device with a randomly drawn
direction for the magnetic field. A second example is in-
troduced here for quantum communications. In this sce-
nario, the receiver gets a pure state with coefficient values
that he does not know in advance, because he does not
know which data were used by the emitter to prepare the
pure state that he sent. The receiver may then describe
the coefficients of the received pure state with RV ck.
Whatever the considered RCPS, the coefficients ck(α)

of each state realization (3) have the same constraints as
those of usual, i.e. deterministic-coefficient, pure states
(1): the state |ψ(α)〉 is normalized, so that

d−1
∑

k=0

|ck(α)|2 = 1 (4)

and |ψ(α)〉 is defined up to a global phase factor, so that
c0(α) may be restricted to a real non-negative value r(α).
In particular, setting d = 2 in the above equations, an
RCPS of a single qubit reads

|ψ〉 = r|0〉+
√

1− r2eiφ|1〉 (5)

where r and φ are real-valued RV and r is non-negative.

B. RCPS preparation and measurements

Information about deterministic-coefficient or random-
coefficient pure states can be extracted by means of mea-
surements. For a given deterministic-coefficient pure
state (1) or (3), one may first use measurements in the
computational basis {|k〉}, which e.g. consists of mea-
suring the sz spin component for an electron spin 1/2
whose state is expressed in the standard basis. The re-
sults of these measurements have a random nature, but
their possible values and the probabilities of these values
are fixed for a given deterministic-coefficient pure state:
for state (3), the probability of the result associated with
the basis vector |k〉 is

pk(α) = |ck(α)|2. (6)

Estimates of these probabilities may be obtained, espe-
cially by preparing K copies of |ψ(α)〉, performing one
(possibly multiqubit) measurement per copy and com-
puting the sample frequencies of all possible measure-
ment results over all these state copies [9, 10].
Now consider a random-coefficient pure state |ψ〉 de-

fined by (2). For any given basis vector |k〉, the proba-
bility pk(α) depends on the randomly drawn outcome α,
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so that this type of probability itself becomes random-
valued! It defines an RV, that is denoted as pk and that
may be expressed as

pk = |ck|2. (7)

For instance, for the single-qubit RCPS (5), this yields

p0 = r2 (8)

p1 = 1− r2 = 1− p0. (9)

Measurements may be used in a two-level procedure
to extract information about an RCPS defined by (2).
At the higher level, N values of the set of coefficients
{c0(α), . . . , cd−1(α)} associated with an outcome α are
randomly drawn. This yields N deterministic-coefficient
states |ψ(α)〉 defined by (3). Then, at the lower level, for
each such state |ψ(α)〉, one uses K copies of |ψ(α)〉 to
estimate all pk(α) as described above for deterministic-
coefficient pure states. For any index k, the overall set of
N estimates of pk(α) thus obtained yields an estimate of
the statistical distribution (i.e. law) of the RV pk. One
may then e.g. derive the corresponding histogram, which
is an estimate of the probability density function (pdf)
of pk.
The above procedure involves randomness at two lev-

els, instead of one level for usual (i.e. deterministic-
coefficient) pure states: a) in the selection of the set of
coefficients {c0(α), . . . , cd−1(α)}, i.e. in the selection of
an outcome α, and b) in the result provided by a sin-
gle (possibly multiqubit) measurement performed for a
given, i.e. deterministic-coefficient, state. In our previ-
ous papers, we first called that approach the “Repeated
Write/Read” or RWR approach, with “write” referring
to state preparation and “read” referring to measure-
ments (see e.g. [1, 3]). We then called it the “‘multiple-
preparation” (per state |ψ(α)〉) approach [2], as opposed
to the “single-preparation approach” that we later pro-
posed in [2, 6, 11] and that is considered in Section IV.
We stress that the multiple-preparation approach re-

quires what we call “segmented data”, in the following
sense: to use an RCPS with the above procedure, in
the overall set of NK prepared states defined above, one
should know which subset composed ofK prepared states
corresponds to a given state value |ψ(α)〉, in order to es-
timate each corresponding value pk(α) as a sample fre-
quency over only that subset. That segmentation is typ-
ically performed by successively preparing the K copies
corresponding to the first drawn state |ψ(α)〉, then the
K copies corresponding to the second drawn state, and
so on, with a known value K. The case of “unsegmented
data” is discussed in Section IV.
As stated above, from the point of view of someone

aiming at using an RCPS (i.e. at reading it in our RWR
procedure), the outcomes α are considered to be ran-
domly drawn. How they are drawn, and therefore which
statistical distributions are obtained for these outcomes
and for the set of coefficients {c0(α), . . . , cd−1(α)}, de-
pends on the considered application. For instance, in the

above-mentioned communication scenario, the receiver is
the “reader” of our RWR procedure, whereas the emit-
ter is the “writer”, who prepares the states to be sent to
the receiver. The emitter may know the statistical distri-
bution of the states he prepares, especially because the
coefficients of the emitted ket may be defined by classical
RV that may have known statistical distributions. Then,
when the emitted ket is transferred through the consid-
ered quantum channel to define the received ket, the sta-
tistical distribution of the ket coefficients is altered by
that channel. Similar considerations apply to the quan-
tum parameter estimation problem discussed in Section
III, where the method used for drawing the considered
RV is described.
The ket coefficients ck in (2) may be expressed in polar

form as

ck = rke
iφk (10)

as also illustrated by the simplified single-qubit form in
(5). The measurements in the computational basis con-
sidered so far only allow one to access (i.e. estimate) the
modulus parameters rk, since (7) yields

pk = (rk)
2. (11)

This also appears in the simplified single-qubit form in
(8)-(9). Besides, measurements in bases other than the
computational basis (see p. 22 of [12], and [13]) pro-
vide information about the phase parameters φk, since
one thus estimates the squared modulus of linear com-
binations of the coefficients ck. This e.g. corresponds
to measuring sx spin components for electron spins 1/2
whose overall state is expressed in the standard basis, as
detailed in [13]. In the present paper we only consider
measurements in the computational basis, whereas other
types of measurements for RCPS will be addressed in
future papers.
The very general and major result obtained so far in

this paper is that the RCPS framework with measure-
ments in the computational basis makes it possible to
access (estimates of) the above-defined probabilities pk,
that are RV, and this then makes it possible to exploit all
their statistics, e.g. to perform QIP tasks. The remain-
der of this paper shows the wealth provided by these
statistics. This will be especially appreciated by con-
trasting the capabilities thus reached with those of the
restricted approach to RCPS that is obtained by using
only the standard tools of quantum mechanics. There-
fore, we first define that restricted approach hereafter.

C. The density operator associated with an RCPS

In Chapter IV of his famous book [14], von Neumann
first considers (deterministic-coefficient) pure states and
claims (p. 295): “we succeeded in reducing all asser-
tions of quantum mechanics to the statistical formula ...”,
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where that formula defines the expectation (i.e. mean
value) of a physical quantity A and reads

E{A}|ψ〉 = 〈ψ|Â|ψ〉 (12)

with our notations, including those defined in Section I,
and where E{.} stands for expectation, here calculated
for the considered state |ψ〉. Then considering mixed
states (p. 296), von Neumann further claims that the
density operator “characterizes the mixture of states just
described completely, with respect to its statistical prop-
erties” and von Neumann then provides a formula that
defines the expectation of A for a mixed state and that
here reads

E{A}ρ = Tr(ρÂ) (13)

with the above-defined notations.
Whereas the latter claim refers to the usual mixed

states ρ considered by von Neumann, one may wonder
whether, for our RCPS too, one only has to consider the
mean of a physical quantity A and whether it can still
be expressed as Tr(ρÂ). This leads to the preliminary
question: starting from and RCPS, can one associate a
density operator ρ with it? To this end, one should keep
in mind that, for a deterministic-coefficient pure state
(1), we have

ρ = |ψ〉〈ψ| (14)

so that the elements of the corresponding density matrix
read

ρkℓ = ckc
∗
ℓ (15)

where ∗ stands for complex conjugate, and k and ℓ range
from 0 to (d − 1) as in (1). Therefore, as explained in
[7, 8]. with an RCPS defined by (2), one can associate a
density matrix whose elements read

ρkℓ = E{ckcℓ∗}. (16)

In particular, its diagonal elements read

ρkk = E{|ck|2} = E{pk}. (17)

If Â is diagonal, Tr(ρÂ) only depends on these diagonal
elements ρkk of ρ.
Eq. (17) shows that the diagonal of the density matrix

only allows one to access very limited information about
the RV ck and pk. The quantity in (17) may first be seen
as a second-order statistical parameter of ck, whose clas-
sical counterpart is often called the “mean power” when
considering its extension to a random signal instead of
an RV [15–20]. For a real-valued RV ck, this parameter
E{ck2} is also the second-order (non-centered) moment
of this RV (for a complex-valued ck, Eq. (17) therefore
corresponds to the second-order moment of the RV |ck|).
Eq. (17) may also be seen as the first-order moment (i.e.
expectation) of pk. The off-diagonal elements (16) of

the density matrix may yield additional information, but
anyway (i) this information is also limited to the second-
order statistics of the RV ck, i.e. to a second-order joint
moment which is their cross-correlation and (ii) as men-
tioned above, this information cannot be accessed when
one only considers Tr(ρÂ) and Â is diagonal.

In contrast, our approach, based on RCPS themselves,
yields much richer information because it allows one to
access all the statistics of pk, as detailed further in this
paper. Besides, performing measurements in the compu-
tational basis for a d-dimensional RCPS (2) yields esti-
mates for d RV pk defined by (7), with 0 ≤ k ≤ d − 1.
Among these RV, up to (d − 1) may be statistically in-
dependent because they sum to one, as shown by (4).
For d > 2, one may therefore wonder whether this set of
(d−1) > 1 quantities provides richer information than the

single scalar value Tr(ρÂ) only considered in the usual
approach. This topic will be investigated in future pa-
pers but, in Section III, we show that, even for d = 2,
our approach to RCPS based on the probabilities pk is
more powerful than the approach based on the associated
density operator.

D. Exploiting higher-order statistics of RCPS

As outlined above, the statistics respectively accessi-
ble with the RV pk associated with an RCPS and with
the approach based on its density operator ρ and Tr(ρÂ)
yield a fundamental difference, which will be better ap-
preciated by first considering the classical counterpart
of this phenomenon. Statistical methods for processing
classical random signals, images or other types of data
are often limited to the use of two types of parameters.
The first one is their first-order statistics, especially the
first-order moment, or expectation, E{X} of an RV X.
The second one is their second-order statistics, which es-
pecially include (i) the second-order moment E{XY∗}
of RV X and Y, and (ii) the associated centered second-

order moment, i.e. covariance, E{X̃Ỹ
∗} of X and Y,

with the centered version of X defined as X̃ = X−E{X}
and the same for Ỹ. Second-order statistics also include
the restriction of the above parameters to a single RV,
i.e. when X = Y, which is connected with mean power
and variance, as partly discussed above.

The above parameters were sufficient for developing
powerful methods, such as Principal Component Analy-
sis (PCA) [21, 22] or Adaptive Noise Cancellation (ANC)
[23, 24]. ANC typically makes it possible to restore an
unknown signal of interest from a measured signal that
is a so-called “mixture”, i.e. combination, of that use-
ful signal and of noise, but ANC requires that another
measurement provide the noise signal alone.

In contrast, more difficult classical signal processing
problems need more advanced tools, closely related to
so-called higher-order statistics or HOS (see e.g. the sur-
veys in [19, 20] and more details in [16–18, 25]). “Higher”
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here means “higher than 2” and refers to the fact that
these methods (also) exploit other parts of the informa-
tion contained in the data than the above-defined first-
order and second-order parameters. In a basic form, this
means exploiting mth-order moments with m ≥ 3, these
moments being defined as E{Xm} for one real RV X and
E{Xm1Ym2} with m1 + m2 = m for joint moments of
two real RV X and Y (and so on for more than two RV).
Here again, the corresponding centered moments are ob-
tained by replacing X and Y by their centered versions
X̃ and Ỹ. HOS methods also use (i) higher-order cu-
mulants, that may be expressed as specific combinations
of moments having attractive properties, (ii) generalized
moments E{g(X)} and E{g(X)h(Y)} where g and h are
arbitrary nonlinear functions and (iii) other quantities,
that exploit all the pdf fX or joint pdf fX,Y of RV, such
as differential entropy or mutual information [16–20, 25].
Besides, all these parameters extend to more than two
RV, as illustrated below for their quantum version (see
(19)).
In particular, the above tools have been used for classi-

cal Independent Component Analysis (ICA) for so-called
i.i.d. signals. ICA is a major class of methods for solv-
ing the Blind Source Separation (BSS) well-known signal
processing problem, which consists of extracting a set of
source signals from measured signals that all are “mix-
tures”, i.e. combinations, of these source signals. ICA
is a required extension of PCA and ANC because, for
i.i.d. signals, the above-defined BSS problem cannot be
solved with only second-order statistical methods, includ-
ing PCA and ANC, but it can be solved by exploiting
the additional information that is provided by HOS for
non-Gaussian signals and that is used in ICA (see details
e.g. in Chapter 7 of [16] or in Chapter 12 of [18]). This
problem is also closely related to blind system or mixture
identification [26–28], because BSS and hence ICA essen-
tially require one to estimate the inverse of the function,
i.e. “system”, that mixes the source signals.
Having the above classical data processing background

in mind, we now move to the quantum framework. Our
approach based on the RV pk associated with an RCPS
may then be expected to be able to solve QIP problems
that cannot be handled by restricting oneself to (i) the
density operator ρ associated with an RCPS and (ii) the

corresponding mean of observable Tr(ρÂ). More pre-
cisely, to extend QIP capabilities, one may exploit the
HOS of the RV ck through the statistics of the RV pk

at orders higher than one whereas, as explained above, ρ
and Tr(ρÂ) essentially access the first-order statistics of
pk and anyway only the second-order statistics of ck.
In a basic form, this means exploiting fourth-order pa-

rameters of any ck with 0 ≤ k ≤ d − 1, through the
second-order moment, i.e. mean power, E{(pk)

2} of pk,
or through is centered second-order moment, i.e. vari-
ance,

E{(pk − E{pk})2} = E{(pk)
2} − (E{pk})2. (18)

Other statistical parameters of the RV pk may also be

considered by extending, to the quantum framework, the
parameters that we summarized above for the classical
framework. This first includes parameters for a single
RV pk, such as various higher-order moments E{(pk)

m}
or generalized moments E{g(pk)}. Importantly, this also
includes parameters associated with several of these RV,
such as their joint moments

E{
∏

k∈I

(pk)
mk} (19)

where I is an arbitrary subset of the set of indices k with
0 ≤ k ≤ d−1 and mk are integers, that define the overall
order of the considered moment [29].
How the above statistical parameters are used depends

on the considered QIP task. A large set of potential ap-
plications deal with the estimation of parameters of a
quantum system (or of a quantum state), therefore with a
close relationship with quantum process (or state) tomog-
raphy and with Hamiltonian estimation. The resulting
classes of QIP methods especially include the quantum
extension of so-called moment matching methods used
for classical data processing (see e.g. Section 4.3 of [16]).
This consists of expressing the RV pk, and then some of
their moments, with respect to quantities including the
unknown parameters (e.g. of the considered system) to
be estimated. Each such moment thus yields an equa-
tion with respect to the unknown parameters. Estimates
of these moments may be derived from measurements as
explained above. One then uses these estimates instead
of the actual moments in the above equations. Con-
sidering enough moments thus yields enough equations,
from which the values of the unknown parameters are
derived. These values are therefore those that match the
estimated moments, hence the name of this approach.
Although we did not explicitly mention that quantum

moment matching concept in our application-driven QIP
papers, we already used it in several of them: see e.g. [1–
3], [4] (Section 1.7.2), [6]. These applications concerned
the quantum version of BSS, i.e. BQSS, and of blind sys-
tem and parameter identification, i.e. BQPT and BHPE.
They were focused on a specific type of quantum pro-
cess/system (which corresponds to the mixing function of
classical BSS): we considered two qubits coupled accord-
ing to the Heisenberg model. In addition, a new applica-
tion of the above quantum moment matching procedure
is detailed below in Section III. This new investigation
has complementary features with respect to our above-
mentioned previous works. First, whereas we previously
only considered the statistics of the probabilities pk as-
sociated with an RCPS, we here moreover compare the
capabilities thus achieved with those of the appproach to
RCPS based on ρ and Tr(ρÂ) that we defined in Sec-
tion II C. We thus explicitly prove that the approach
based on the statistics of pk is more powerful. Besides,
we only used first-order moments of pk in the previous
works [1–3], [4] (Section 1.7.2), [6] (we also used other
statistical parameters, but for quantities that are only
indirectly related to pk: see [30]). In constrast, we here
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also take advantage of the second-order moment of pk.
Moreover, we here investigate the estimation of parame-
ters of a quantum process, which is a task closely related
to BQPT and BHPE, but we here consider a different
class of processes. That class is much more general than
the above-mentioned Heisenberg process in the sense that
it addresses any energy-preserving process, represented
by an arbitrary unitary matrix, although it is only con-
sidered for a single qubit for the sake of clarity. Finally,
we not only propose blind estimation methods, but also
non-blind ones.
Before we focus on that QIP task in Section III, the re-

mainder of the present section is dedicated to the presen-
tation of other general features of RCPS. We first stress
that a very large number of moments (19), and there-
fore e.g. of moment-based equations in the above quan-
tum moment matching procedure, may be defined from
the same set of measurements. This is very attractive
because it may drastically reduce the number of types
of measurements required to estimate the parameters of
interest, whereas this is currently a bottleneck as soon
as the dimensionality of the considered system or state
increases. The experimental complexity of performing
various types of quantum measurements (e.g. spin com-
ponents along various directions) will thus be, at least
partly, replaced by additional processing of a reduced set
of measurement results on a classical computer, which
is much simpler. More precisely, various previously re-
ported QIP methods use only a single quantity, namely
the first-order moment (i.e. the mean), for each type of
measurement, and they therefore require various types
of measurements to obtain enough information about the
considered phenomenon. In contrast, our approach based
on RCPS can get enough information with a lower num-
ber of types of measurement, by exploiting various pa-
rameters of the quantities pk, including their mean power
and higher-order statistical parameters, derived on a clas-
sical computer from all measurement results obtained for
each given type of measurement. We plan to investigate
this topic in future papers for general configurations, but
we already illustrate it with an example in Section III of
the present paper.

E. Limitations of usual statistics of observables

We stress that, for a given physical quantity A and
a given RCPS |ψ〉, the approach proposed in this pa-
per exploits statistical parameters of (one or several)
RV pk, not those of the (single) RV defined by the
measured values of A (note also that the RV pk may
be continuous-valued or discrete-valued as discussed in
Section IV, whereas the RV defined by A is generally
discrete-valued). Our motivation is that this approach
based on the statistical parameters of interest of pk yields
much more information than the usual approach based on
A, as will now be shown. To this end, we hereafter first
revisit the concept of the mean of a physical quantity,

that we only partly addressed is Section II C, but now
without resorting to the density operator of an RCPS.
This then allows us to naturally proceed further, by com-
bining the approach used here with some HOS concepts
introduced in Section IID.
Let us first consider the mean, hence the first-order

statistics, of A. Using an arbitrary orthonormal basis
{|k〉}, the RCPS |ψ〉 is defined by (2), whereas A is rep-
resented by a possibly non-diagonal matrix whose ele-
ments are denoted as akℓ. The usual expression (12) of
the mean of A for a deterministic-coefficient pure state
is here first used for the state |ψ(α)〉 associated with a
single outcome α. This yields

E{A}|ψ(α)〉 =
∑

k

∑

ℓ

ck(α)
∗cℓ(α)akℓ. (20)

Then using the expectation of the latter quantity over
all outcomes α yields the mean of A for the RCPS |ψ〉,
which reads

E{A}|ψ〉 =
∑

k

∑

ℓ

E{ck∗cℓ}akℓ. (21)

That mean of A therefore has two limitations. First,
it is only related to (part of) the second-order statistics
of the RV ck, that include two aspects:

1. Moments that each involve a single RV. They cor-
respond to the terms with k = ℓ in (21), namely to
the probabilities pk defined by (7).

2. Joint moments of two RV, that correspond to the
terms with k 6= ℓ in (21). When A is represented
by a diagonal matrix, these terms disappear from
(21).

When the dimension d of the state space is higher than
2, using only the mean of A yields an additional limita-
tion: estimating that mean yields only a single equation
with respect to estimates of (some: see above) statistics
of all RV ck

∗cℓ, including all pk, as shown by (21). In
contrast, our approach based on the probabilities pk of
an RCPS themselves allows one to separately estimate
(all) the statistics of each of these probabilities. In the
specific case when d = 2, i.e. for a single qubit, this dif-
ference between the considered two approaches reduces,
because only one independent probability pk exists, as
shown by (9), but several statistical parameters of that
pk can still be exploited, as explained above [31].
One may then try to access richer information by con-

sidering the mean E{g(A)}|ψ〉 of a function g of A, as
the quantum counterpart of the generalized moments
E{g(X)} of classical RV, and similarly to the quantum
generalized moments E{g(pk)}, both defined in Section
IID. Here, g is an arbitrary function, and this e.g. in-
cludes the specific case when

g(x) =
(

x− E{A}|ψ〉

)2
(22)

for which E{g(A)}|ψ〉 is the variance of A for the RCPS
|ψ〉 (this is coherent with the corresponding expression
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of the variance for a usual, i.e. deterministic-coefficient,
pure state: see e.g. p. 295 of [14]). However, even for ar-
bitrary functions g, that approach based on E{g(A)}|ψ〉

has limited capabilities, as will now be shown. Using an
arbitrary orthonormal basis {|k〉}, the expression of the
matrix that represents g(A) may be derived from the con-
sidered physical quantity A and function g: see e.g. [32].
Its elements are hereafter denoted as gkℓ and their ex-
pressions are not needed here: using the same approach
as in (20)-(21) yields

E{g(A)}|ψ〉 =
∑

k

∑

ℓ

E{ck∗cℓ}gkℓ (23)

again with the connection (7) with the probabilities pk

for the terms of (23) with k = ℓ. The main conclusion
and limitation that may be derived from (23) is that this
quantity too only depends on the second-order statistics
of the coefficients ck: introducing the function g yields
a nonlinearity in the expressions of the matrix elements
gkℓ [32], not in the statistics of the coefficients ck [33],
[34].

F. Other connection of RCPS with density
operators

Another connection between RCPS and the usual
framework of deterministic-coefficient pure states is now
introduced as follows. Starting from an RCPS |ψ〉,
we consider each associated deterministic-coefficient pure
state |ψ(α)〉. We use its density operator in the usual
sense of quantum mechanics: it is defined by adapting
(14) and (15) to |ψ(α)〉 instead of |ψ〉. This yields

ρ̃kℓ(α) = ck(α)cℓ(α)
∗ (24)

where we denote as ρ̃(α) the density matrix and density
operator of |ψ(α)〉. We moreover introduce the origi-
nal random operator and the associated random matrix,
both denoted as ρ̃, as follows: it is the operator/matrix
which depends on the outcome α and whose realization
associated with any outcome α is ρ̃(α). The elements of
the matrix ρ̃ then read

ρ̃kℓ = ckcℓ
∗. (25)

This random operator ρ̃ thus consists of an ensemble of
usual density operators ρ̃(α). It should be distinguished
from the single, deterministic, density operator ρ defined
by (16), that we previously associated with an RCPS.
Yet, they are closely connected, since ρ is the expec-
tation of ρ̃, as shown by (16) and (25). Besides, (25)
shows that the diagonal elements of ρ̃ are nothing but
the quantities pk that we previously introduced in (7).
This operator ρ̃ therefore also contains the wealth of all
the statistics of the random probabilities pk upon which
we focus in this paper, plus its off-diagonal elements to
be further investigated. The random operator ρ̃ associ-
ated with the above-mentioned ensemble of ρ̃(α) is thus

much richer than its plain expectation consisting of the
density operator ρ of (16).
Besides, it is thus not surprising that we succeeded in

associating several RCPS (in the sense of (16)) with a
given density operator in our very recent investigation
[8]: knowing the mean operator ρ is not sufficient for im-
posing all the statistics of the coefficients ck of an RCPS
nor those of its random operator ρ̃ (similarly, knowing
the mean of a classical RV is not sufficient for imposing
all the statistics of that RV).
If one would like to use all ρ̃, one would then have

to define how to access related properties in practice,
typically by means of measurements, as we did above for
pk, i.e. for the diagonal of ρ̃. The non-diagonal elements
of ρ̃ will be analyzed in our future papers, whereas we
keep on focusing on pk hereafter.

III. AN APPLICATION TO QUANTUM
PARAMETER ESTIMATION

A. Considered quantum system and task

A well-known QIP task is Quantum Process Tomog-
raphy (QPT), especially [35] introduced in 1997 in [9].
QPT is the quantum version of classical non-blind sys-
tem identification (see e.g. [12, 36–44]) and is also closely
connected with non-blind quantum channel estimation
and phase estimation [2]. It e.g. applies to a quantum
system that here does not interact with its environment,
whose input is here an RCPS |ψin〉 equal to the initial
state of the system, and whose output is then an RCPS
|ψout〉 equal to the final state of the system. The pro-
cess/transform applied by the system to its input is un-
known and is to be identified, i.e. estimated. It is repre-
sented by a unitary matrix M : multiplying the vector of
coefficients of the input ket |ψin〉 by that matrix yields
the vector of coefficients of the output ket |ψout〉 (see
(27) below for an example).
For a given initial-to-final time interval, the expression

of the above matrix M is defined by the Hamiltonian
of the quantum system, which may be known to belong
to a given class, whereas the values of the parameters
of that model are unknown and are to be estimated. A
related task is therefore (non-blind) Hamiltonian Param-
eter Estimation (HPE) [45–47]. Such parameter estima-
tion problems are also addressed, but often referred to as
Hamiltonian identification, e.g. in [43, 48, 49] and partly
[50].
Standard QPT and HPE methods are non-blind in

the sense that they estimate the considered quantities
by knowing the input values of the process, in addition
to measurement results associated with its output. We
extended these approaches to their blind version, which
is more powerful because it does not require one to know
each value of the applied input but only some of their sta-
tistical properties: see e.g. our previous works in [5, 6, 51]
for blind QPT (BQPT) and [2] for blind HPE (BHPE).
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As stated above, these previous investigations of blind
methods were focused on a specific class of two-qubit pro-
cesses and associated Hamiltonian, based on cylindrical-
symmetry Heisenberg coupling. In contrast, we here con-
sider a very generic class of processes: we address any
unitary process, yet focusing on single-qubit processes.
Single-qubit processes are considered both for the sake
of clarity and to show that our approach to RCPS based
on probability statistics yields better performance than
the approach to RCPS based on the density operator and
Tr(ρÂ) even for a single qubit, i.e. when the wealth of our
approach does not result from the availability of several
independent probabilities pk (see Section II C).
A model representing all single-qubit unitary processes

is obtained by expressing the above matrix M as follows
(see [12] p. 176):

M = eiv1
[

ei(−v2/2−v4/2) cos
(

v3
2

)

−ei(−v2/2+v4/2) sin
(

v3
2

)

ei(v2/2−v4/2) sin
(

v3
2

)

ei(v2/2+v4/2) cos
(

v3
2

)

]

.

(26)
The problem addressed below is the estimation of all or

at least part of the parameters v1 to v4. To this end, we
propose both non-blind and blind estimation methods.
Since the output state of the considered process and

hence the matrixM are defined only up to a phase factor,
one may anticipate that v1 cannot be estimated (and that
this is not an issue). This is confirmed by the operation
of the methods proposed below.

B. Considered states and measurements

The random-coefficient state |ψin〉 applied to the input
of the considered process is defined by the right-hand
term of (5). The resulting output state |ψout〉 of that
process is defined by the right-hand term of (2) with d =
2. Its coefficients ck here form the vector

[

c0
c1

]

=M

[

r√
1− r2eiφ

]

. (27)

Measurements are then performed for copies of each
realization of the state |ψout〉 that corresponds to an
outcome α. In a practical QIP setup, only some types
of measurements are allowed. To perform a fair compar-
ison of the two processing methods respectively based
on the probabilities pk and on the density operator ρ,
both methods should be considered for the same type(s)
of measurements. We hereafter analyze the case when
only measurements in the computational basis are al-
lowed [52]. From a physical point of view, this e.g.
corresponds to implementing the considered qubit as a
spin 1/2 and measuring its sz spin component (the ba-
sis vectors |0〉 and |1〉 in (5) might then be denoted as
|+〉 and |−〉). These measurements have two possible re-
sults, whose probabilities are defined by (7). Using (26)
and (27), this may be shown to yield

p0 = cos(v3)r
2 +

1− cos(v3)

2

− cos(v4 + φ) sin(v3)r
√

1− r2 (28)

p1 = 1− p0. (29)

C. Approach based on the mean value Tr(ρÂ)

We first investigate an approach based on the prin-
ciples presented in Section II C. In the considered ba-
sis, the measured physical quantity, as defined in Section
III B, is represented by the matrix

Â =

[

1
2 0
0 − 1

2

]

. (30)

Therefore

Tr(ρÂ) =
1

2
(ρ00 − ρ11). (31)

Using (17) and (29), this yields

Tr(ρÂ) = E{p0} −
1

2
. (32)

As an example, for all quantum parameter estimation
methods investigated in this paper, we moreover set the
same following constraints on the statistics of the input
state |ψin〉 (but not on its individual values). r and φ are
statistically independent RV. r has a uniform distribution
over the interval [r1, r2] and φ has a uniform distribution
over the interval [−Bφ, Bφ], where r1, r2 and Bφ are free
parameters. In these conditions, (28) yields

E{p0} = cos(v3)E{r2}+ 1− cos(v3)

2
(33)

− cos(v4) sin(v3)E{cos(φ)}E{r
√

1− r2}.
Eq. (32) and (33) lead to the following conclusions. First,

Tr(ρÂ) dos not depend on v1, as expected from Section

IIIA. Besides, Tr(ρÂ) turns out not to depend on v2,
due to the considered type of measurements (and this
is also true for p0 itself, not only for its expectation,
as shown by (28)). Therefore, the approach considered
here cannot estimate v1 and v2. Finally, by deriving an
estimate of the mean value Tr(ρÂ) from measurements,
(32) and (33) only provide a single equation with two
unknowns, namely v3 and v4 (the required statistics of
r and φ are known, as explained in Section III D). This
single equation is therefore not sufficient for deriving the
values of these two unknowns, so that this approach fails
to solve the considered problem. In contrast, we will now
show that our approach to RCPS based on probability
statistics succeeds in estimating v3 and v4 from the same
type of measurement results as in the method considered
here, by further exploiting these classical-form data.

D. Approach based on the statistics of the random
probability p0

We here propose an approach that is based on the prin-
ciples introduced in Section IID and that therefore ex-



9

ploits statistical parameters of the RV p0. As shown by
(28), this RV and hence its statistical parameters only
depend on v3 and v4, not on v1 and v2. Therefore, we
here only aim at estimating v3 and v4 (see the above
comment about the possible use of other types of mea-
surements to estimate v2). To this end, we consider two
statistical parameters of p0, in order to define two (inde-
pendent) equations with unknowns v3 and v4. Focusing
on the simplest parameters, we first again consider the
first-order moment (33) of p0. In addition, we here use
its second-order moment, that is, E{(p0)

2} [53]. Due to
(7), with respect to the random coefficient c0 of the con-
sidered quantum state, the statistical parameters used
here are thus E{|c0|2} and E{|c0|4}, i.e. second-order
and fourth-order statistics of the RV c0.
Considering the same conditions as in Section III C,

the expression of E{(p0)
2} with respect to v3 and v4 is

derived from (28). Then substituting v4 thanks to (33)
yields

E{(p0)
2} = a2 cos

2(v3) + a1 cos(v3) + a0 (34)

with

a2 =
1

4
+

1

2

(

E{r2} − E{r4}
)

(E{cos(2φ)} − 3)

+2b1

(

E{r2} − 1

2

)

+ b2

(

E{r2} − 1

2

)2

(35)

a1 = (1− 2E{p0})
(

b1 + b2

(

E{r2} − 1

2

))

(36)

a0 = E{p0} −
1

4
+ b2

(

E{p0} −
1

2

)2

+
1

2
(1− E{cos(2φ)})

(

E{r2} − E{r4}
)

(37)

where

b1 =
1

2
− E{r3

√
1− r2}

E{r
√
1− r2}

(38)

b2 =
E{cos(2φ)}

(

E{r2} − E{r4}
)

[

E{cos(φ)}E{r
√
1− r2}

]2 . (39)

To estimate v3 from (34), the required statistical pa-
rameters of r and φ should be known. This yields two
estimation methods. In the most conventional, i.e. non-
blind, method, one performs measurements for (copies
of) realizations of the input state |ψin〉 of the considered
process and then derives sample statistics for the required
statistical parameters. Instead, we hereafter focus on a
blind, hence more challenging, method, i.e. without per-
forming any measurements at the input of the consid-
ered process but only using some statistical properties
imposed on that input [54]. More precisely, since we here
again use the statistical distributions of r and φ defined
in Section III C, the statistical parameters of r and φ
used in (35)-(39) may be shown to read

E{r2} =
1

3
(r21 + r1r2 + r22) (40)

E{r4} =
1

5
(r41 + r31r2 + r21r

2
2 + r1r

3
2 + r42) (41)

E{r
√

1− r2} =
−1

3(r2 − r1)

(

(

1− r22
)3/2 −

(

1− r21
)3/2

)

(42)

E{r3
√

1− r2} =
1

r2 − r1

[

−1

3

(

(

1− r22
)3/2 −

(

1− r21
)3/2

)

+
1

5

(

(

1− r22
)5/2 −

(

1− r21
)5/2

)

]

(43)

E{cos(φ)} =
sin(Bφ)

Bφ
(44)

E{cos(2φ)} =
sin(2Bφ)

2Bφ
. (45)

Therefore, when r1, r2 and Bφ are fixed to known val-
ues and estimates of E{p0} and E{(p0)

2} are derived
from measurements, (34) yields a second-order polyno-
mial equation with respect to cos(v3).
The corresponding solutions for v3 ∈ [−π, π] read

v3 = ǫ2 arccos

(

−a1 + ǫ1
√

a21 − 4a2 (a0 − E{(p0)2})
2a2

)

(46)

with ǫ1 = ±1 and ǫ2 = ±1. The value of v4 ∈ [−π, π] is
then derived from (33), which yields

v4 = ǫ3arccos

(

−E{p0}+ cos(v3)E{r2}+ 1−cos(v3)
2

sin(v3)E{cos(φ)}E{r
√
1− r2}

)

(47)

with ǫ3 = ±1.
First disregarding the choice of ǫ1, ǫ2 and ǫ3, the main

result thus obtained is that (46) and (47) show that our
approach succeeds in estimating v3 and v4. We again
stress that this is achieved by using E{(p0)

2}, i.e. the
statistics of p0 beyond the first order and hence the
statistics of c0 beyond the second order. In constrast,
by only using second-order statistics of c0, the approach
based on the density operator and the associated mean
of measurements Tr(ρÂ) fails to estimate v3 and v4, as
shown in Section III C.
In the basic version of the method proposed here, esti-

mates of v3 and v4 are obtained up to some so-called inde-
terminacies, corresponding to the fact that this method
does not define whether each of the parameters ǫ1, ǫ2 and
ǫ3 should be set to 1 or −1. Various types of indetermina-
cies also exist in classical BSS and blind system/mixture
identification, due to the limited information available in
blind methods. Part of these indeterminacies can e.g. be
avoided by requesting some additional prior knowledge,
that would here e.g. correspond to knowing to which
intervals the unknown values of v3 and v4 belong. In-
determinacies also appeared in the basic version of our
previous BQPT [6] and BHPE methods [2]. We suc-
ceeded in removing them in refined versions of our meth-
ods, where we used additional occurrences of the same
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type of measurements, but with different statistics for
the input quantum states. One might also investigate
the use of such measurements in order to remove the in-
determinacies on v3 and v4 here, if one would like to solve
this problem completely, i.e. beyond the above illustra-
tion of the general capabilities of higher-order statistics
of c0.

E. Test results

To validate the blind method of Section IIID and to
evaluate its accuracy, we performed numerical tests with
data derived from a software simulation of the consid-
ered configuration. Each elementary test consists of the
following stages. We first create a set of N realizations
of the random-coefficient pure input state |ψin〉 defined
by the right-hand term of (5). Each of these N realiza-
tions is obtained by randomly drawing the parameters r
and φ and then using (5). We then transfer each such
realization of |ψin〉 through the quantum process to be
identified. This corresponds to using (27) with a given
value of the matrix M defined by (26) and hence with
given values of the parameters v1 to v4. This yields N
realizations of the set of coefficients ck of the state |ψout〉.
Besides, we eventually use simulated measurements asso-
ciated with these states, as defined in Section III B. For
each of the N realizations of the set of coefficients ck, Eq.
(7) yields the corresponding realization of the probability
p0, which is used as follows. We use K prepared copies of
the considered realization of the state |ψin〉 to simulate
K random-valued measurements, drawn with the above
value of the probability p0. We then derive the sample
frequency, over these K measurements, of the measure-
ment result associated with the ket |0〉. This sample fre-
quency is an estimate of the considered realization of p0.
Then computing the average of these K-preparation es-
timates, over all N realizations of the states |ψin〉 and
hence |ψout〉, yields an (NK)-preparation estimate of
the probability expectation E{p0}. Similarly, the mean
of the squares of the estimates of all N realizations of p0

yields an estimate of E{(p0)
2}. Both expectation esti-

mates are then used by our quantum parameter estima-
tion method defined in Section IIID, to derive estimates
of v3 and v4.
As an example, the parameters of the matrixM of (26)

to be identified were set to the same values in all tests,
namely v1 = π/10, v2 = 2v1, v3 = 3v1 and v4 = 4v1.
Besides, the RV r and φ that define the input state of
the considered process (see (27)) were uniformly drawn,
respectively over the intervals [0, 1] and [−π/4, π/4]. The
above parameters N and K were varied as described fur-
ther in this section. For each considered set of condi-
tions defined by the values of N and K, we performed
100 above-defined elementary tests, with different sets of
realizations of the state |ψin〉, in order to assess the sta-
tistical performance of the considered estimation method
over 100 estimations of the same set {v3, v4} of parameter

values.
The considered performance criteria are defined as fol-

lows. Separately for each of the parameters v3 and v4,
we computed the Normalized Root Mean Square Error
(NRMSE) of that parameter over all 100 obtained es-
timates, defined as the ratio of its RMSE to its actual
(positive) value. The values of these two performance
criteria are shown in Fig. 1, where each plot corresponds
to one of the parameters v3 and v4 and to a fixed value
of N . Each plot shows the variations of the considered
performance criterion vs. K. We here use the values of
ǫ1, ǫ2, and ǫ3 that yield the lowest NRMSE, based on the
considerations provided in Section IIID.
Fig. 1 first shows that the estimation error decreases

when K or N increase, as expected. More precisely, each
plot for a fixed N shows that the NRMSE tends to an
asymptotic value when is K sufficiently increased. This
occurs because the (fixed number N of) realizations of
p0 are thus accurately estimated. To further decrease
that asymptotic value of NRSME, one should then in-
crease the number of (estimated) values of p0 over which
averaging is performed, i.e. the value of N , as confirmed
by Fig. 1. This figure moreover shows that the pro-
posed method can achieve quite low NRMSE values, e.g.
around 2 × 10−3 in the considered range of values of N
and K.

IV. COMPARING DISCRETE RCPS WITH
MIXED STATES

The RV ck, and hence the RV pk derived from (7), may
be continuous-valued or discrete-valued. For instance,
in the QIP problem analyzed in Section III, the consid-
ered ck and pk are those of the output state |ψout〉 of
the process, and the nature (continuous/discrete) of their
statistics results from the nature of the statistics used for
preparing the random input state |ψin〉, i.e. for drawing
its parameters r and φ, as shown by (28).
Considering probabilistic phenomena in general, so-

called discrete (i.e. discrete-valued) RV are especially
obtained if the considered probability space Ω contains a
finite number L of outcomes α. This then allows us to
obtain a discrete RCPS especially by considering a situ-
ation with L “possible cases”, i.e. L outcomes α, each
with a probability of occurrence P (α). Selecting such an
outcome α completely defines the corresponding values of
the coefficients ck(α) of the asssociated pure state |ψ(α)〉,
i.e. the value of α defines that deterministic-coefficient
state |ψ(α)〉, that thus has a probability P (α). The RV
ck, and hence the RV pk derived from (7), are thus dis-
crete.
At first sight, the above discrete set of deterministic-

coefficient pure states |ψ(α)〉 and associated probabilities
P (α) are reminiscent of how von Neumann introduces
mixed states in Chapter IV of [14], before he moves to
their description in terms of a density operator (pp. 295-
296). However, the complete definition of how RCPS
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FIG. 1. Estimation of parameters no. 3 and 4 of the matrix in (26), that is, v3 and v4: Normalized Root Mean Square Error
(NRMSE) of estimation vs. number K of measurements for (copies of) each of the N used states.

and mixed states are handled moreover contains the fol-
lowing major difference, which is the reason why they
yield different properties for QIP tasks. When addressing
mixed states, von Neumann considers all deterministic-
coefficient pure states |ψ(α)〉 as a whole and he only com-
putes averages of physical quantities over all these states
|ψ(α)〉 (therefore involving the probabilities P (α)), which
corresponds to only considering the quantity Tr(ρÂ).
The corresponding practical procedure is based on ob-
servable measurements, using what we here call “unseg-
mented data”, i.e. computing a single observable average
over all available data. In contrast, as explained in Sec-
tion II B, our multiple-preparation practical approach is
based on segmented data. This means that we require
the data to be created so that, separately for each out-
come α, one accesses all measurement results for the sin-
gle state |ψ(α)〉. For a given α, this then makes possible
to estimate all probabilities pk(α) with 0 ≤ k ≤ d − 1.
Then considering the complete set of data differently, sep-
arately for any index k with 0 ≤ k ≤ d − 1, we thus get
the set of (estimated) values pk(α) for all outcomes α.
For any k, this defines the whole statistical distribution
of the RV pk. This distribution may then be exploited,
thus providing QIP capabilities that cannot be achieved
when only considering Tr(ρÂ) for a mixed state.
To summarize, richer information and hence bet-

ter QIP capabilities are obtained with our random-
probability-based RCPS framework than with mixed

states and Tr(ρÂ), but at the expense of adding a con-
straint, that is, using the above-defined segmented data
of our multiple-preparation approach: this remains com-
patible with the results that von Neumann obtained in
a different configuration than ours (unsegmented data)
and with the idea that “there is no such thing as a free
lunch”, which is reasonable.

In other words, von Neumann defines mixed states by
explicitly assuming: “if we do not even know what state
is actually present – for example, when several states
[...] with the respective probabilities [...] constitute the
description”, where the “several states” and “respective
probabilities” he mentions are |ψ(α)〉 and P (α) with our
notations. In practice, these mixed states are handled by
repeatedly drawing a pure state at random, measuring
a given quantity, and finally averaging all measurement
results, as explained above. In our multiple-preparation
approach to RCPS, each pure state |ψ(α)〉 is also ran-
domly drawn but, once it has been selected, many copies
of it are created (as discussed in Section II B) and con-
sidered apart from all the data associated with any other
deterministic-coefficient pure state that is subsequently
also randomly drawn. This allows us to perform aver-
aging for measurements corresponding to only the copies
of that single state |ψ(α)〉. This multiple-preparation
approach thus requires many copies of each pure state
|ψ(α)〉 to accurately estimate the statistical distributions
of all RV pk, with 0 ≤ k ≤ d− 1.
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In contrast, we also recently developed single-
preparation QIP methods, intended for BQPT, BHPE,
BQSS and related tasks, as well as intrusion detec-
tion in quantum channels: see details in [2, 6, 11, 55].
This single-preparation approach is different from the
multiple-preparation one but does not contradict it, as
will now be shown. As suggested by its name, our single-
preparation approach can operate with few or even with
only one preparation of each drawn pure state |ψ(α)〉.
This is acceptable because, for any index k, we did not
use this approach to estimate the individual probabili-
ties pk(α) for all outcomes α, but only the expectation
E{pk}, i.e. the first-order moment of the RV pk, us-
ing our procedure that we described in [2, 6, 11, 55].
When we developed that single-preparation approach, we
did not comment about whether it could be extended to
second-order and higher-order statistics of pk, but we
expected that it would be difficult, and possibly infea-
sible for some of those statistical parameters, because
some linearity properties that we used for E{pk} would
not hold for other parameters. We can now extend that
comment by taking into account, as follows, the consid-
erations about von Neumann’s mixed states that we pro-
vided above. We explained that our multiple-preparation
approach to RCPS yields higher capabilities than the use
of mixed states, because it segments the measured data
and it is thus able to estimate some parameters (namely
the probabilities pk(α)), for each segment. But when
the length of each segment, i.e. the number of copies
of each state |ψ(α)〉, decreases down to one, not only the
probabilities pk(α) cannot be individually estimated, but
the concept of segment itself vanishes: we are left we an
overall set of states |ψ(α)〉, with one copy of each such
state, and the only averages we can compute are over this
complete data set. This corresponds to the higher level
of the two-level procedure that we defined above, after
(9), for this multiple-preparation approach, whereas the
lower level here disappears. But, if only computing an
overall average for the complete set of data, we thus get
back to von Neumann’s approach based on mixed states.
Therefore, unless we will disclose another trick for han-
dling the single-preparation configuration differently for
RCPS [56], at this stage it seems that it will face the
same limitation as the approach based on mixed states.

Two RCPS-based approaches with complementary fea-
tures are thus currently available. The first one is
the multiple-preparation approach, which has the above-
defined advantages, that result from the use of the
second-order and higher-order statistics of the proba-
bilities pk and the drawback of requiring multiple and
segmented preparations. The second one is the single-
preparation approach, which yields simpler operation or
is even required in some applications (e.g. statistical in-
trusion detection), as detailed e.g. in [2, 6, 11, 55], but
which currently applies only to QIP problems that can
be solved by only using the expectation, i.e. first-order
statistics, of pk.

V. OTHER RELATED WORKS

The above-defined topics of this investigation also com-
pare as follows with previous works from the literature.
The first topic is the concept of RCPS themselves and
hence its relationships with “random quantum states” in
a broad sense. Of course, usual concepts of quantum me-
chanics already involve randomness, because a measure-
ment performed for a deterministic-coefficient pure state
usually yields a random result. In the present section
we do not address that basic type of randomness (which
corresponds to the lower level of our multiple-preparation
procedure of Section II B), but the types of randomness
that may be defined in addition to that basic type and to
von Neuman’s concepts related to mixed states that we
presented in Section IV (for our RCPS, the additional
type of randomness corresponds to the higher level of
our multiple-preparation procedure of Section II B). This
yields the following three aspects.
First, not yet focusing on RCPS, some papers from

the literature contain limited statements about “random
quantum states” in a broad sense. In particular, [57] es-
pecially deals with quantum thermal states and considers
that “a random state [...] can be used to represent the
outcome of a measurement process, or to describe the
statistics of an ensemble” but does not use the concept
of RCPS as defined in the present paper (for the quantum
framework, [57] only mentions “random phases”).
Second, [58] mainly considers a random quantum pure

state as a whole, i.e. as a vector, without explicitly
providing its mathematical expression in a given basis:
that paper is not very detailed. It briefly mentions “the
components of the state vector, in some fixed basis”
but does not refer to random variables for these com-
ponents. Moreover, it is restricted to specific probability
distributions for the above quantities, namely to the case
when “pure states are distributed uniformly over the unit
sphere” and possibly in addition e.g. “subjected to the
restriction that all the components of the state vector in
the given basis be real.” In contrast, in the present pa-
per, we allow arbitrary probability distributions for the
ket coefficients. This is very important, because it is
required for being able to address a wide range of QIP
problems, especially blind (i.e. unsupervised) processing
problems, where some probability distributions may be
unknown.

Finally, quite a few papers, published more recently
than our first papers (that include [1]), have closer re-
lationships with our work: although they do not use
the term RCPS, they use that concept or closely related
ones, i.e. a ket whose coefficients are random variables,
or at least related to random variables. More precisely,
in [59] the ket coefficients are defined as “functions of
complex-valued random variables ξ” where ξ is a vec-
tor, whereas in [60] these coefficients themselves “are
chosen at random from some given probability distribu-
tion”. Moreover, both [59] and [60] then only focus on
quite specific probability distributions: see the symme-
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tries and constraints on even and odd functions imposed
in [59], together with the three specific probability den-
sities defined in its Table I, e.g. leading to states that
are uniformly distributed over the unit sphere; instead
[60] “consider[s] the [ket coefficients] as iid (real, complex
or quaternion-real) Gaussian variables with zero mean”
(which, by the way, cannot be an accurate model of ac-
tual behavior: the modulus of a ket coefficient is up-
per bounded by one, so that this coefficient cannot have
an unbounded Gaussian density). In contrast, as stated
above, we allow arbitrary probability distributions for the
ket coefficients.

Let us then focus on the only above-mentioned pa-
pers from the literature that are connected with RCPS,
namely [59, 60] and, to a much lower extent, [58]. Those
papers completely differ from the present one concern-
ing its other topics, beyond the RCPS concept. First,
the core feature analyzed in this paper consists of the
second-order and especially higher-order moments of the
random ket coefficients and associated random probabil-
ities, including their practical estimation. Instead, [59]
only mentions a very limited set of moments (see the
three moments in Table I), whereas [58, 60] do not men-
tion them at all. Second, apart from quantum theory,
the present paper aims at exploiting the above moments
for performing various QIP tasks, e.g. related to QPT
and quantum parameter estimation. In contrast, [59]
has other goals (quantum numerical simulation) and only
mentions (quite a few) moments as a by-product.

Finally, we stress that some papers from the quantum
literature mention concepts related to higher-order mo-
ments, but in quite different frameworks than ours. In
particular, in [61] Mielnik considers non-standard frame-
works as announced in his title: “Generalized quantum
mechanics”. He especially imagines what could be done
in “hypothetical theories” where one would “assume that
the class of observables F is not the set of the quadratic
forms like in orthodox theory but the set F2n of all the
continuous 2n-th order forms”. He thus develops “higher
order schemes” and comments about “higher order mul-
tipole moments”. This is quite different from our ap-
proach, that has the following features. We stick to or-
thodox measurements for each deterministic pure state
considered in the lower level of our procedure, so that
each outcome probability is equal to (the modulus of)
a “quadratic function of a ket coefficient”. This relates
to Mielnik’s statement: “one might define the orthodox
quantum mechanics as a theory of such a c-number wave
for which only the quadratic forms are the observables”.
But, unlike Mielnik, we perform our complete set of or-
thodox measurements for our new type of states, namely
RCPS, i.e. we organize these measurements according to
the higher level of our procedure. Our complete approach
is thus compatible with the orthodox theory, but yields

a new feature: it allows us to introduce the higher-order
moments associated with the (random) ket coefficients
of the considered new type of states. Besides, Mielnik
explains that “Since the quadratic character of the ob-
servables is conditioned by the linearity of the evolution
processes the most obvious [situation where the orthodox
quantum theory would not apply] consists in hypotheti-
cal evolution processes in which the quantum mechanical
wave function would undergo a non-linear change”. This
leads him to “non-linear versions of quantum mechanics
in which a non-linear wave equation would play the role
of the Schrödinger equation”. In contrast, our approach
is fully compatible with Schrödinger’s picture of quantum
mechanics and our “higher-order effects” come from the
advanced use of the statistics of random ket coefficients,
allowed by the existence of RCPS themselves.

VI. CONCLUSION

As explained in Section II C, when considering mixed
states, von Neumann claimed that one only needs to
use the density operator ρ and the mean of observable
Tr(ρÂ). In the present paper, we provide a detailed theo-
retical analysis of another type of states, that we repeat-
edly used in our application-driven papers since 2007.
We call these states “random-coefficient pure states” or
RCPS, since their coefficients ck in a given basis are ran-
dom variables (we compared RCPS with mixed states
in Section IV). With these RCPS too, one can asso-
ciate a density operator. However, restricting the use
of RCPS to that operator ρ and moreover possibly to a
mean of observable Tr(ρÂ) would result in only consider-
ing the second-order statistics of the random variables ck
and therefore in ignoring a large part of the information
available from RCPS. Instead, we proposed to exploit the
higher-order (i.e. higher than 2) statistics of ck, through
the second-order and higher-order statistics of the as-
sociated random probabilities pk = |ck|2. We showed
that this allows one to access much richer information
and to solve quantum information processing (QIP) prob-

lems that cannot be handled with the mean value Tr(ρÂ)
only. We illustrated that phenomenon for one concrete
QIP problem, related to the well-known quantum process
tomography task. Many other potential applications of
RCPS exist. Some of them were suggested above and we
plan to investigate such applications in future work.
So, having in mind Feynman’s general statement that

“There’s plenty of room at the bottom” e.g. for comput-
ing, we may summarize our main claim in this paper as
follows: to exploit the wealth of the information avail-
able from random-coefficient pure states, there is plenty
of room at the higher orders (of the statistics of the ran-
dom coefficients ck of these quantum states).
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