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The term “machine learning” especially refers to algorithms (and associated systems) that derive
mappings, i.e. intput/output transforms, by using numerical data that provide information about
the transform of interest in the considered application. The data processing tasks to be performed in
these applications not only include classification/clustering and regression, but also various problems
related to system identification, system inversion and input signal restoration or source separation
(i.e. signal separation) when considering several signals. In this paper, we first analyze the connec-
tions that exist between all these problems, in the classical and quantum frameworks. We then focus
on their most challenging versions, where quantum data and/or quantum processing means are con-
sidered and learning is performed in the unsupervised mode, also called the blind mode, i.e. without
“reference values” (at the input or output of the mapping, depending on the considered task). More-
over, we propose the quite general concept of SIngle-Preparation Quantum Information Processing
(SIPQIP). The term “preparation” refers to the initialization of qubit states. As explained in the
introduction, it is here used in a more general sense than usually in quantum mechanics: we mainly
consider kets with random-valued coefficients. The resulting methods only require one to estimate
expectations of probabilities of measurement outcomes associated with considered states. This may
be achieved with a single instance of each state in our SIPQIP framework. This avoids the burden
of usual methods, that have to very accurately create many copies of each fixed state, to estimate
statistical features associated with that state. We detail or discuss the application of this SIPQIP
concept to various tasks and systems that fulfill quantum mechanical principles, related to system
identification (blind quantum process tomography or BQPT, blind Hamiltonian parameter estima-
tion or BHPE, blind quantum channel identification/estimation, blind phase estimation), system
inversion and state estimation (blind quantum source separation or BQSS, blind quantum entangled
state restoration or BQSR, blind quantum channel equalization) and classification. Part of these
methods are detailed for a specific class of quantum processes, which then allows one to extend them
to other processes. These processes correspond to two qubits implemented as electron spins 1/2,
internally coupled according to the cylindrical-symmetry Heisenberg model, with unknown principal
values for the exchange tensor. The resulting numerical performance of these methods is reported,
thus showing that the proposed SIPQIP framework moreover yields much more accurate estimation
than the standard multiple-preparation approach, for a given total number of state preparations.
Several types of proposed methods are especially of interest when used in a quantum computer, that
we propose to more briefly call a “quamputer”: BQPT and BHPE simplify the characterization of
the gates of quamputers, whereas BQSS and BQSR allow one to design quantum gates that may
be used to compensate for the non-idealities that may alter states stored in quantum registers.
BQSS/BQSR moreover opens the way to the much more general concept of self-adaptive quantum
gates, that could automatically adapt their behavior, according to predefined rules that would allow
them to compensate for various non-idealities in quamputers.

I. INTRODUCTION

Classical machine learning is currently a booming
field [1] and various quantum machine learning exten-
sions are also being considered [2–5]. The processing
tasks that involve data-driven learning not only include
widespread classification/clustering [1, 3, 6–10] and re-
gression [6, 7, 9], but also especially: (a) classical system
identification [11–13] and its quantum extension, called
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(non-blind [14–23] or blind [24–26]) quantum process to-
mography, (b) system inversion and signal restoration
and (c) blind source separation (BSS) e.g. based on
independent component analysis (ICA) [27–33] (with a
close connection with principal component analysis [34–
36]) and quantum extensions of BSS/ICA [37–42]. More-
over, in various application fields, these tasks are given
different names (see the summary in Table I), especially
channel identification or channel estimation [12], (chan-
nel) equalization [12, 43], dereverbation [44], deconvolu-
tion [45], deblurring [45] or cocktail party problem [46].

Beyond their apparent diversity, the above data pro-
cessing tasks share major features, that are analyzed in
Section II: they involve mappings from input data to
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system identification system inversion,

signal restoration,

source separation

classical • channel identification, • channel equalization

signals channel estimation (communication)

(communication) • deconvolution

• impulse response (image, seismology...)

or transfer function • dereverberation

estimation (acoustics)

(acoustics...) • cocktail party

processing

(audio)

• deblurring

(image)

quantum • process tomography • source separation

states (Section IVA) (Section VA)

• Hamiltonian estimation • state restoration

(Section IVB) (Section VB)

• channel estimation • channel equalization

(Section IVC) (Section VC)

• phase estimation

(Section IVC)

TABLE I. Application-dependent terminology of classical and
quantum machine learning tasks (i.e. data-driven learn-
ing/adaptation methods) related to system identification, sys-
tem inversion, signal restoration and source separation (apart
from classification/clustering and regression). This yields
non-blind and blind (i.e., supervised and unsupervised) vari-
ants. The sections of this paper mainly dealing with the blind
(i.e., unsupervised) quantum single-preparation versions of
these methods are mentioned.

output data, and these mappings are derived from a set
of known values of these input and/or output quanti-
ties, depending whether that learning is performed in
the so-called supervised or unsupervised (i.e. non-blind
or blind) modes, whose definitions depend on the consid-
ered task and are also analyzed in Section II. These ap-
proaches are developed in order to characterize the map-
ping performed by a given natural or artificial system,
and/or in order to build an artificial system that per-
forms a mapping (i.e. a data transformation) suited to
the considered application.
In this paper, we investigate a variety of the above-

defined data processing tasks and we focus on advanced
configurations from the following points of view. First,
we only consider a quantum framework, in terms of the
nature of the data to be processed and/or of the means
used to process them. Second, we almost only address
unsupervised learning, which is more challenging than su-
pervised learning because it consists of learning mappings
without known values (but with a few known properties)
for the input or output of that mapping. The overview of
classical and quantum machine learning provided in Sec-

tion II includes references to the currently quite limited
set of works from the literature which is dedicated to that
quantum and unsupervised learning framework that we
tackle in this paper. Moreover, we here proceed beyond
that framework, by adding another feature: we focus on
what we call “single-preparation operation”. This con-
cept is detailed in Section III. To put it briefly, various
quantum machine learning methods from the literature,
e.g. intended for system identification (i.e., say, quantum
process tomography) or system inversion, use multiple-
preparation approaches in the sense that, for each quan-
tum state value that they consider, they estimate the
probabilities of corresponding measurement outcomes by
using the sample frequencies of these outcomes over a set
of measurements, which requires a set of copies of the
considered quantum state, to perform one measurement
for each copy (see details in Section III A). In contrast,
we very recently introduced a statistical approach which
yields much higher flexiblity, since it avoids the burden of
very acccurately preparing many ideally identical copies
of the same known state, by allowing one to replace these
copies by a set of states whose values are possibly dif-
ferent and unknown but only requested to belong to a
general known class [26, 47]. This concept is quite gen-
eral but, in [26, 47], we only detailed its application to
a single data processing task, namely single-preparation
blind (i.e. unsupervised) quantum process tomography.
In the present paper, we aim at showing how this single-
preparation processing concept may be applied to a vari-
ety of other quantum information processing tasks of in-
terest, thus yielding a general “SIngle-Preparation Quan-
tum Information Processing” (SIPQIP) framework.

The terminology used in this paper deserves the fol-
lowing comments. Quantum mechanics (QM) considers
that an isolated quantum system may be either in a pure
state - the result of some preparation -, described by
a ket with deterministic coefficients (in the Schrödinger
picture), or more generally in a state called a mixed state
or a statistical mixture, usually described by a density op-
erator. When developing our methods, first in the BQSS
then in the BQPT fields, we were led to distinguish be-
tween a “deterministic pure state” (the usual pure state
of QM), and a “random pure state”, described by a ket
with random-valued coefficients when developed over an
orthonormal basis of fixed vectors. It has been shown
that the system is then in a mixed state [48]. Deter-
ministic pure states may also be considered as a specific
subset of random pure states, corresponding to the case
when the random variables that define the ket coefficients
of random pure states reduce to fixed values, i.e. with
“no uncertainty”. In the context of BQSS or BQPT, de-
pending on the considered method, the system of inter-
est is initialized either in a deterministic or in a random
pure state. Most of the methods proposed in this paper
are based on qubits initialized with random pure states.
Such an initialization is also called a state preparation
hereafter.

The remainder of this paper is organized as follows. In
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Section II, we first provide an overview of major classi-
cal and quantum machine learning tasks, and we analyze
their connections, that are of interest for our subsequent
original contributions in this paper. Then, in Section
III, we define the single-preparation quantum processing
concept, which is an original general feature then used
in all processing methods proposed in this paper. These
methods deal with various problems related to quantum
system identification (Section IV), quantum system in-
version and state restoration (Section V) and quantum
classification (Section VI). Finally, Section VII contains
conclusions about the processing tasks addressed in this
paper and a discussion of potential extensions of the pro-
posed methods to other quantum information processing
problems.

II. CLASSICAL AND QUANTUM MACHINE
LEARNING APPROACHES FOR DATA

MAPPING

Many classical and quantum information processing
systems aim at applying transforms, defined by math-
ematical functions, to their input data, in order to
map them to output data. These transforms are often
called mappings or maps, both in the classical [6] and
quantum [49] information processing literature (quan-
tum maps are also called quantum channels [49], with
a reference to communications). In basic systems, the
considered transform is predefined by the human system
designer, depending on the target application. In con-
trast, more advanced systems, that are considered here-
after, are referred to as (self-)adaptive systems, since
they adapt their behavior (i.e. the mapping they per-
form) to the data they receive [50, 51], by means of al-
gorithms which perform so-called adaptation, training or
(machine) learning [1, 6–9]. In other applications, in-
put/output mappings are also learnt from data but with
other goals, especially to characterize the behavior of a
given natural medium or artificial system, as detailed
below. The classical and quantum versions of machine
learning thus involve various types of applications and
associated types of transforms, that are analyzed in more
detail hereafter.

Machine learning is first used in classical classification
and regression systems, whose transforms map a set of in-
put quantities (each of which has its own nature) to out-
put quantities which often have a different nature from
input ones. This is especially true for classification sys-
tems [1, 6–9], which receive a set of input quantities that
are most often continuous valued, whereas their (possibly
thresholded) outputs are binary valued. More precisely,
let us first consider a classification system without the
rejection capability that is defined further. Such a sys-
tem generally outputs C values, where C is the number
of classes involved in the considered application. Only
one of these outputs is equal to 1, say output with index
c, whereas all other outputs are equal to 0. The index

c of the active output defines the decision made by the
classifier: it considers that its input values correspond
to a case when the input belongs to class c. During the
final use of the classifier, called the “resolution phase”,
“classification phase” or “test phase”, the above output
values are provided to the target application. A typical
use of this framework is Optical Character Recognition
(OCR) [6, 8, 9]. The classifier then receives an image,
i.e. a set of pixel values (or features, i.e. parameters,
extracted from them), where a letter or symbol belong-
ing to a given alphabet is written. The classifier sets its
c-th output to 1 if it considers that this particular input
image contains the c-th symbol of that alphabet. More-
over, improved classification algorithms are able to detect
when they consider that the input that they receive dur-
ing the resolution phase does not belong to any of the
considered classes, e.g. when the received image is not
similar enough to any character of the considered alpha-
bet (indeed, an image may contain a shape which is not a
character of any written language). Such a classifier then
decides that it is not able to classify the considered input
“object” and it rejects it. This may be expressed e.g. by
setting all C outputs to zero or by adding a (C + 1)-th
output to the classifier, which is equal to 1 when this
classifier succeeds in classifying the considered input and
to 0 otherwise.

Before the above resolution phase, machine learning
algorithms are typically used, e.g. in OCR systems, to
initially build an adequate input-output mapping, dur-
ing the so-called “learning phase”, “training phase” or
“adaptation phase” (this possibly includes a so-called
“validation”), by using data composed of training exam-
ples. In supervised learning approaches, each example
consists of an input (e.g., an image containing a charac-
ter for OCR) and its correct class, i.e. the associated de-
sired values of the classifier outputs (called labels), which
are provided by a supervisor, i.e. typically a human ex-
pert of the considered application. In contrast, in un-
supervised learning approaches for classification (called
clustering [9]), the system self-organizes by using only
inputs (e.g., images in the OCR example), i.e. unlabeled
data. Various system architectures and supervised or un-
supervised learning algorithms have thus been developed,
especially including (artificial) neural networks [6–9] and
their recent deep extensions [1], as well as Support Vector
Machines (SVM) [7–9].

Regression systems [6, 7, 9] are similar to the above
classifiers, except that their outputs are continuous-
valued. They typically first use a supervised training
phase in order to learn mappings from data samples,
which are examples of adequate pairs composed of in-
put values and correct corresponding output values in
the considered applications. Once this mapping has been
fixed, such a regression system may eventually be used
e.g. to control an industrial setup in a factory: the regres-
sion system then receives, as its inputs, different types
of measured quantities provided by sensors available in
the factory, and this system maps its inputs to possi-
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bly different types of continuous-valued quantities, used
to drive the actuators that control the industrial setup.
More specifically, regression systems where the inputs
and output(s) have the same nature especially concern
prediction tasks for time series, where the system aims
at providing the expected future value(s) of a quantity
(e.g. a currency exchange rate or streamflow) from its
past values.

Whereas the above concepts were initially developed
for classical data, they are currently being extended to
quantum data and/or quantum processing means [3], es-
pecially because the Quantum Information Processing
(QIP) [14] community is investigating quantum exten-
sions of classifiers to handle the huge processing power
and amount of data involved in current real-world ap-
plications. These extensions include the implementation
of SVM classifiers on quantum computers with very low
computational complexity [10]. Besides, the versatile
quantum optical neural networks proposed in [52] can
perform different related tasks, including reinforcement
learning.

Although one may first have in mind the above general
classification and regression/prediction tasks when think-
ing of classical and quantum machine learning, data-
driven algorithms are also widely used in a partly re-
lated set of processing tasks, called system identification
and system inversion, with an extension to source separa-
tion. First considering the classical framework, this e.g.
includes situations when an electromagnetic or acoustic
signal is emitted from a first location, then transferred
through a medium, which may be seen as an electromag-
netic or acoustic “channel” that transforms its input com-
posed of the emitted signal. The output of that channel is
then the signal received by an electromagnetic antenna
or microphone in a second location. These and other
practical situations yield two types of machine learning
problems. The first one is often called system identifi-
cation [11–13], and more specifically channel identifica-
tion or channel estimation in the field of electromagnetic
communications [12]. Its simpler version [13], called the
“non-blind version” by the signal and image processing
community and the “supervised version” by the machine
learning and data analysis community, operates as fol-
lows. As in the above regression task, it uses a set of
known continuous-valued pairs composed of input values
and corresponding output values of the considered “sys-
tem”, i.e. of the above-defined channel, in order to esti-
mate, i.e. learn, the unknown transform (i.e. mapping)
performed by this system. It should be noted that, in the
above examples involving electromagnetic or acoustic sig-
nals, the considered “‘system” is not an artificial system
to be built by human beings in order to perform a given
type of data processing (as in the above classification
and regression tasks), but the “natural system” formed
by the considered electromagnetic or acoustic propaga-
tion medium. The goal of system identification is then
to characterize this medium.

System identification methods have also been extended

to the more challenging blind, i.e. unsupervised, config-
uration [11, 12]. In that case, during the learning or esti-
mation phase, only the values of the system output (i.e.
the values of the received channel output in the above
examples) are known, whereas its input values are un-
known. However, the system input is most often required
to have some known properties, e.g. some known sta-
tistical features, so that this configuration is sometimes
stated to be semi-blind or semi-supervised. This prob-
lem may therefore be seen as a non-conventional form of
regression, with only partial knowledge about the input
data. Besides, it should be noted that the known values
are only the output values in blind system identification,
whereas they are only the input values in the above un-
supervised classification problem. Whereas non-blind or
blind system identification is applied to single-input sin-
gle output (SISO) systems in its basic form, it may then
be extended to multiple-input multiple-output (MIMO)
systems.

The second considered machine learning problem, in
connection with system identification, deals with system
inversion and signal restoration. One then again consid-
ers an unknown “system”, called the direct system, but
one here aims at building an artificial system that es-
sentially performs a transform equal to (an estimate of)
the inverse of that of the direct system (assuming that
direct transform is invertible). This inverse transform is
first learnt during the training/adaptation phase, either
directly or by first learning the direct transform (using
system identification methods) and then deriving its in-
verse (in low-noise scenarios). Then, in the “inversion
phase”, which corresponds to the final use of the inver-
sion system, the (estimated) inverse transform is applied
to known output values of the direct system, in order
to recover (estimates of) corresponding unknown input
values of that direct system. This approach e.g. applies
to the above two configurations involving channels. The
direct system then corresponds to the physical propa-
gation medium, such as an electromagnetic communica-
tion channel, which alters the emitted signal in a initially
unknown way. One then aims at restoring the emitted
signal from its altered received version, by learning an
adequate inverse transform from data samples. In the
field of radio-frequency communications, this signal pro-
cessing task is often referred to as (channel) equaliza-
tion [12, 43]. Similarly, the restoration of an unknown
emitted acoustic signal from its received version altered
by reverberation during propagation is often called dere-
verbation [44]. More generally speaking, the problem of
restoring a source signal only from an observation which
is a transformed version of that source signal is called de-
convolution (for a linear invariant transform) or deblur-
ring in various fields, such as astronomical image analysis
[45]. Whatever the considered application field, the ini-
tial learning procedure for estimating the inverse trans-
form may be applied in the non-blind or blind mode,
i.e. respectively with known or unknown input values for
the direct system, whereas the output values of that sys-
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tem are known in both modes. This “(unknown) system
inversion” task may also be extended to MIMO configu-
rations, in order to restore a set of unknown signals from
a set of their transformed versions.

The blind MIMO system inversion problem is also
closely related to the field of blind source separation
(BSS) [27–33], whose quantum extension is one of the
major topics tackled further in this paper, together with
quantum extensions of system identification. In BSS,
the goal is also to restore a set of unknown source sig-
nals from a set of available combinations of these signals
(called mixtures in BSS), that result from an unknown
transform which combines (i.e. mixes) these source sig-
nals. However, in BSS, one most often allows each re-
stored signal to be equal to a source signal only up to an
acceptable residual transform (called an indeterminacy),
because such transforms cannot be avoided, due to the
limited constraints that are set on the considered classes
of signals and mixing transforms. When applied to the
separation of acoustic/audio signals from their mixtures
recorded by a set of microphones, BSS is often referred
to as the “cocktail party problem” [46].

The first class of BSS methods that was developed and
that is still of major importance is Independent Compo-
nent Analysis, or ICA [29–32]. ICA is a statistical ap-
proach, which essentially requires statistically indepen-
dent random source signals. Thus, ICA is guaranteed
to restore the source signals up to limited indetermina-
cies for the simplest class of mixtures, that is when the
available signals are linear instantaneous (i.e. memory-
less) combinations of the unknown source signals [29–
32]. For such mixtures, ICA may be seen as an extension
of more conventional Principal Component Analysis, or
PCA [34, 35].

PCA and ICA may both be used to perform mappings
from the available P variables to P output variables that
are linear instantaneous mixtures of these available vari-
ables. In other words, they yield a representation of the
same data in a new basis. The selected bases are different
in PCA and ICA. PCA uses one of the bases that are such
that the output variables are uncorrelated. ICA uses one
of the bases that are such that these output variables
are statistically independent, which includes uncorrelat-
edness but is more constraining (for non-Gaussian sig-
nals). This is the reason why PCA alone cannot achieve
BSS [32], but is often used as a first stage in ICA al-
gorithms. Outside the framework of ICA, PCA is most
often used as a mapping that projects the available data
onto a lower-dimensional space, i.e. with dimension D
lower than P , by keeping only the first D coordinates
in the output basis, for visualization (with D = 2, i.e.
projection onto a plane, or D = 3, i.e. 3-dimensional vi-
sualization) or compression tasks. Such a projection may
also be used as a preprocessing stage of ICA, in order to
reduce the influence of noise, when the available mixed
signals contain noise and their number P is higher than
the number M of source signals: one then keeps the first
D =M output components of PCA.

ICA also has connections with the above fields of clas-
sification and regression in the sense that a significant
part of the algorithms developed in all these fields are
based on the same class of tools, namely neural networks.
More precisely, when initially developing ICA methods
for linear instantaneous mixtures, one of the very first
proposed approaches was the well-known Hérault-Jutten
neural network (see e.g. [53–57] for its definition and
analysis) and extended versions of that network were
then introduced and analyzed (see e.g. [58, 59]). Neu-
ral approaches were then proposed for specific classes of
nonlinear mixtures or without considering any restric-
tions on the type of mixture (see e.g. [60–63]). Finally,
the interest in neural methods recently raised again also
in the field of BSS/ICA. For instance, generative adver-
sarial networks (GANs) were used to perform linear and
non-linear ICA [64].

The above connected fields of classical system iden-
tification, system inversion, (B)SS and PCA have been
partly extended as follows to the quantum framework.
Among these problems, the one which was first studied
is the quantum version of non-blind system identifica-
tion, especially [65] introduced in 1997 in [66] and called
“quantum process tomography” or QPT by the QIP com-
munity: see e.g. [14–23]. The connection between non-
blind system identification and regression (and hence, to
a lower extent, classification), that we highlighted above,
was by the way mentioned for the quantum framework in
[67], which states “Quantum process tomography is able
to learn an unknown function within well-defined sym-
metry and physical constraints - this is useful for regres-
sion analysis” and further considers “Regression based
on quantum process tomography”.

The quantum version of the above-mentioned classical
source separation, called Quantum Source Separation, or
QSS, and especially its blind version, or BQSS, were then
introduced in 2007 in [37]. Two main classes of BQSS
methods were developed since then. The first one may
be seen as a quantum extension of the above-mentioned
classical ICA methods, since it takes advantage of the sta-
tistical independence of the parameters that define ran-
dom source quantum states (qubit states). It is called
Quantum Independent Component Analysis (or QICA,
see e.g. [37],[38]) or, more precisely, Quantum-Source In-
dependent Component Analysis (or QSICA, see e.g. [39])
to insist on the quantum nature of the considered source
data, whereas it uses classical processing means (after
quantum/classical data conversion). The second main
class of BQSS methods was introduced in 2013-2014 in
[40],[41] and then especially detailed in [42]. It is based
on the unentanglement of the considered source quantum
states and it typically uses quantum processing means
to restore these unknown states from their coupled ver-
sion. Independently from the above quantum extensions
of BSS/ICA, a quantum version of PCA was introduced
in 2014 in [36]. Finally, the blind extension of QPT was
introduced in 2015 in [24] and then especially extended
in [25] for its multiple-preparation version.
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Indeed, the above blind or non-blind QPT and (B)QSS
methods are restricted to “multiple-preparation” opera-
tion, as defined in Section I. Beyond these approaches,
we hereafter proceed to the general “single-preparation”
QIP (or SIPQIP) framework that may be built to ob-
tain a more efficient operation and we then present its
application to various QIP tasks.

III. SINGLE-PREPARATION QUANTUM
INFORMATION PROCESSING (QIP)

A. Multiple-preparation QIP

Let us consider an arbitrary number Q of distinguish-
able [42] qubits, physically implemented as spins 1/2. If
the quantum state |ψ〉 of this set of qubits at a given
time is pure and deterministic, it belongs to the 2Q-
dimensional space E defined as the tensor product of the
2-dimensional spaces respectively associated with each of
the considered qubits. Moreover, this state reads

|ψ〉 =
2Q∑

k=1

ck|k〉 (1)

where the vectors |k〉, with k ∈ {1, . . . , 2Q}, form
the standard basis of E , i.e. they are respec-
tively equal to |+〉1 ⊗ |+〉2 ⊗ . . .⊗ |+〉Q−1 ⊗ |+〉Q to
|−〉1 ⊗ |−〉2 ⊗ . . .⊗ |−〉Q−1 ⊗ |−〉Q, where |+〉j and |−〉j
form the standard basis of the state space associated with
the qubit with index j and ⊗ is the tensor product. The
complex-valued coefficients ck are fixed and arbitrary, ex-
cept that they meet the normalization condition

2Q∑

k=1

|ck|2 = 1. (2)

When simultaneously measuring the spin components
of all Q qubits along the quantization axis, the obtained
result is a vector of Q values respectively associated
with each of the qubits. That vector has a random na-
ture and its 2Q possible values (in normalized units) are
[+ 1

2 ,+
1
2 , . . . ,+

1
2 ,+

1
2 ], [+

1
2 ,+

1
2 , . . . ,+

1
2 ,− 1

2 ], and so on,
these values being respectively associated with the basis
vectors |k〉 and hereafter indexed by k. Thus, the ex-
periment consisting of this Q-qubit measurement yields
a random result, and each elementary event [68] Ak is
defined as: the result of the experiment is equal to the
k-th Q-entry vector in the above series of possible values
[+ 1

2 ,+
1
2 , . . . ,+

1
2 ,+

1
2 ] and so on. Moreover, the proba-

bilities of these events are equal to

P (Ak) = |ck|2 ∀ k ∈ {1, . . . , 2Q}. (3)

The standard procedure, applied in practice to esti-
mate the above probabilities for a given Q-qubit state,
requires one to prepare a large number (typically from a
few thousand up to a few hundred thousand [38, 42]) of

copies of that state, so that we hereafter call this standard
approach “multiple-preparation QIP” (this terminology
and the connection between these methods and classical
adaptive processing are discussed in Appendix A). These
copies may be obtained in parallel from an ensemble of
systems or successively for the same system (“repeated
write/read”, or RWR, procedure [37–39]). The above
type of measurement is performed for each of these copies
and one counts the number of occurrences of each of the
possible results [+ 1

2 ,+
1
2 , . . . ,+

1
2 ,+

1
2 ] and so on. The

associated sample relative frequencies are then used as
estimates of the probabilities P (Ak).
As stated above, this approach requires many copies of

the same quantum state. This is therefore constraining,
especially in the framework of blind QIP, where the pro-
cessing methods should operate with unknown values of
some quantum states (e.g. unknown inputs of the process
to be identified with QPT): being able to operate with-
out requiring known values of quantum states in blind
methods is attractive, but then requesting many copies
of each such state to be available is still a limitation, be-
cause it still requires some form of control of these states,
that we would like to avoid, in order to simplify the prac-
tical operation of the considered methods and to make
them “blinder”. We hereafter provide a solution to this
problem.

B. Single-preparation QIP based on probability
expectations

The above description was provided for an arbitrarily
selected deterministic pure quantum state |ψ〉. When
developing our first class of BQSS methods (see e.g.
[37–39, 48]) and associated BQPT methods (see e.g.
[24, 25, 48]), we had to extend that framework to ran-

dom pure quantum states. We especially detailed that
concept in [48]. Briefly, the coefficients ck in (1) then be-
come complex-valued random variables, instead of fixed
parameters. Hence, the probabilities in (3) also become
random variables!
The problem tackled in this section is the estimation

of some statistical parameters of these random variables
defined by (3), namely their expectations. The natural
(global) procedure that may be used to this end, and
that we used in our above-mentioned first BQSS and
BQPT investigations, consists of the following two levels.
The lower level only concerns one deterministic state (1)
and the associated probabilities (3) which are estimated
from a large number of copies of the considered state, us-
ing the multiple-preparation QIP framework of Section
IIIA. This is repeated for different states (1) and then,
at the higher level, the sample mean over all these states
is separately computed for each probability P (Ak) (with
samples supposedly drawn from the same statistical dis-
tribution).
Beyond the above natural procedure, we hereafter fo-

cus on a more advanced approach, that we recently intro-
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duced in the short conference paper [47]. We then only
partly described it and applied it to a single QIP task
(namely BQPT) in the journal paper [26] whereas, in
the present paper, we define it and analyze it in more de-
tail and we then show that it also applies to a wide range
of other QIP tasks. That modified procedure is based on
the following principle: At the above-defined lower level,
we aim at using a small number of copies of the consid-
ered state, or ultimately a single instance of that state,
thus developing what we call “SIngle-Preparation QIP”or
more briefly SIPQIP (this terminology and the connec-
tion between these methods and classical adaptive pro-
cessing are also discussed in Appendix A). At first sight,
it might seem that this is not possible, because the lower
level would thus not provide accurate estimates, that one
could then confidently gather at the higher level. How-
ever, we claim and show below that this approach can
be used if one only aims at estimating some statistical
parameters of the considered quantum states.
We now first build the proposed approach by starting

from the frequentist view of probabilities (see e.g. [68]) at
the above-defined two levels of the considered procedure,
that is:

• At the higher level, where one combines the con-
tributions associated with N states of the set of Q
qubits. These states are indexed by n ∈ {1, . . . , N}
and denoted as |ψ(n)〉.

• At the lower level, which concerns one determin-
istic state |ψ(n)〉 and the associated probabilities
P (Ak, n) defined by (3) but with coefficients ck(n)
which depend on state |ψ(n)〉.

At the lower level, each probability P (Ak, n) is defined
as

P (Ak, n) = lim
K→+∞

N (Ak, n,K)

K
(4)

provided this limit exists. N (Ak, n,K) is the number of
occurrences of event Ak for the state |ψ(n)〉 when per-
forming measurements for a set of K copies of that state
|ψ(n)〉. In practice, one uses only a finite number K
of copies of state |ψ(n)〉 and therefore only accesses the
following approximation of the above probability:

P ′(Ak, n,K) =
N (Ak, n,K)

K
. (5)

The higher level of the considered procedure then ad-
dresses the statistical mean associated with samples, in-
dexed by n, of a given quantity, which is here theoreti-
cally P (Ak, n). In the frequentist approach, this statisti-
cal mean is defined (if the limit exists) as

E{P (Ak)} = lim
N→+∞

∑N

n=1 P (Ak, n)

N
. (6)

At the higher level too, in practice one uses only a finite

numberN of states |ψ(n)〉, which first yields the following

approximation if only performing an approximation at
the higher level of the procedure:

E′{P (Ak)} =

∑N

n=1 P (Ak, n)

N
. (7)

The latter expression may then be modified by replacing
its term P (Ak, n) by its approximation (5). This yields

E′′{P (Ak)} =

∑N

n=1 N (Ak, n,K)

NK
. (8)

∑N
n=1 N (Ak, n,K) is nothing but the number, hereafter

denoted as N (Ak, L), of occurrences of event Ak for
the complete considered set of L = NK measurements.
Therefore, E′′{P (Ak)} is the relative frequency of oc-
currence of that event over these L measurements, or
“‘trials”, using standard probabilistic terms [68]. This
quantity (8) may therefore also be expressed as

E′′{P (Ak)} =
N (Ak, L)

L
(9)

=

∑L
ℓ=1 11(Ak, ℓ)

L
(10)

where 11(Ak, ℓ) is the value of the indicator function of
event Ak for trial ℓ, which takes the value 1 if Ak occurs
during that trial, and 0 otherwise. When using (10), one
now considers the L = NK trials as organized as a single
series, with trials indexed by ℓ. One thus fuses the above-
defined two levels of the procedure into a single one, thus
disregarding the fact that, in this series, each block of K
consecutive trials uses the same state |ψ(n)〉. One may
therefore wonder whether the number K of used copies of
each state |ψ(n)〉 may be freely decreased, and even set
to one, while possibly keeping the same total number L of
trials. A formal proof of the relevance of that approach,
using Kolmogorov’s view of probabilities, is provided in
Appendix B. Moreover, Appendix B thus proves that
the proposed estimator (10) of E{P (Ak)} is attractive
because, for states independently randomly drawn with
the same distribution and with one instance of each state,
this estimator is asymptotically efficient.
It should be clear that this procedure for estimating

E{P (Ak)}, and hence the resulting SIPQIP methods,
can be freely used with either one instance or several
(e.g. many) copies per state, i.e. this SIPQIP terminol-
ogy means that these methods allow one to use a single
instance of each state. In contrast, so-called multiple-
preparation QIP methods force one to use many state
copies to achieve good performance.

C. Single-preparation QIP based on sample means
of probabilities

As explained in Section III B, the framework intro-
duced in that section is intended for a formalism based
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on random pure states, that we use in most of this pa-
per. In addition, we employ the more standard formal-
ism of deterministic pure states in Section VI, where the
considered QIP task eventually boils down to estimating
the mean, over a finite number (i.e. the sample mean)
of deterministic pure states, of the (hence deterministic)
probabilities respectively associated with each of these
states. Although this framework is conceptually differ-
ent from the one of Section III B, it eventually yields the
same implementation as will now be shown. Here again,
at the lower level, each of the considered probabilities
is theoretically defined by (4) but then replaced by (5)
in practice. The difference with respect to Section III B
then appears at the higher level of the approach, since we
here directly aim at handling a finite number of quantum
states, so that we directly consider the quantity in (7).
The remainder of the analysis of Section III B then also
applies to the framework considered here, so that our
SIPQIP concept also applies to this framework and thus
here again yields the above-defined advantages.

IV. QIP TASKS RELATED TO SYSTEM
IDENTIFICATION

A. Blind quantum process tomography

As explained in Sections I and II, the quantum version
of system identification is often referred to as Quantum
Process Tomography (QPT). It is of major importance,
especially for characterizing the actual behavior of quan-
tum gates (see e.g. [14, 17, 18, 20, 21, 23]), which are
the building blocks of a quantum computer, that, by the
way, we propose to more briefly call a “quamputer”. In
this section, we consider the blind and single-preparation
extension of QPT. This corresponds to the only SIPQIP
task that we detailed in our previous papers (see [47]
for a partial version and [26] for complete extensions).
We hereafter summarize the major features of the main
method that we proposed in [26], because several origi-
nal contributions introduced further in this paper build
upon that single-preparation blind QPT method.
Various papers from the literature dealing with con-

ventional (i.e. non-blind and multiple-preparation) QPT
are focused on specific processes or classes of processes:
see e.g. [19, 21, 69]. Similarly, the method that we intro-
duced in [26] is dedicated to the class of configurations
involving two distinguishable [42] qubits implemented as
electron spins 1/2, that are internally coupled accord-
ing to the cylindrical-symmetry Heisenberg model, with
unknown principal values Jxy and Jz of the exchange ten-
sor. We stress that this type of coupling is only used as a
concrete example [70], to show how to fully implement
the proposed general concepts in a relevant case, but
that these concepts and resulting practical algorithms
(for performing BQPT and other QIP tasks detailed fur-
ther in this paper) may then be extended to other classes
of quantum processes and associated applications.

The above Heisenberg model is detailed in Appendix
C. This shows that the associated quantum process, from
its input (i.e. initial) quantum state |ψ(t0)〉 to its out-
put (i.e. final) quantum state |ψ(t)〉, is represented by
a matrix M , and that the only quantities that must
be estimated in order to obtain an estimate of M are

exp
[
i
Jxy(t−t0)

~

]
and exp

[
iJz(t−t0)

2~

]
. The main method

proposed in [26] to estimate M uses three values of the
time interval (t− t0), denoted as τ1, τ2 and τ3, with

τ2 = 2τ1 and τ3 = 2τ2. (11)

These values are respectively used to first estimate

exp
[
i
Jxyτ1

~

]
, then estimate exp

[
iJzτ2

2~

]
and finally ob-

tain an estimate ofM which is non-ambiguous only from
the point of view of the final use of this process with
(t− t0) = τ3 ([26] discusses the relevance of finally using
a quantum process in conditions, i.e. here with a value of
(t−t0), different from those initially used to identify that
process, e.g. when that process corresponds to a gate of
a quamputer).
More precisely, when applying the considered BQPT

method in the purely single-preparation mode, the first
part of this method uses one instance of each output
quantum state |ψ(t)〉. For each such state, it measures
the components of the considered two spins along the
Oz axis. As discussed in [26] and in Section IIIA of
the present paper, the result of each such measurement
has four possible values, that is (+ 1

2 ,+
1
2 ), (+ 1

2 ,− 1
2 ),

(− 1
2 ,+

1
2 ) or (− 1

2 ,− 1
2 ) in normalized units. Their proba-

bilities are respectively denoted as p1zz to p4zz hereafter.
Using the moduli rj and the phases θj and φj of the polar
representation (C3) of the qubit parameters that define
the input state |ψ(t0)〉, these probabilities read [38, 39]

p1zz = r21r
2
2 (12)

p2zz = r21(1− r22)(1 − v2) + (1− r21)r
2
2v

2

−2r1r2

√
1− r21

√
1− r22

√
1− v2v sin∆I (13)

p4zz = (1− r21)(1 − r22) (14)

with

∆I = (φ2 − θ2)− (φ1 − θ1) (15)

∆E = −Jxy(t− t0)

~
(16)

v = sgn(cos∆E) sin∆E . (17)

Probability p3zz is not considered hereafter because the
sum of p1zz to p4zz is equal to 1.
Using (t − t0) = τ1 in the first part of this method,

(16)-(17) may then be inverted as

Jxyτ1
~

= −∆Ed + kxyπ (18)

with

∆Ed = arcsin(v) (19)
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where ∆Ed is a determination associated with the actual
value ∆E , i.e. ∆Ed is equal to ∆E up to the additive
constant −kxyπ, where kxy is an integer.
The SIPQIP framework defined in Section III B then

makes it possible to derive an estimate ∆̂Ed of ∆Ed as
follows. We consider the case when r1, r2 and ∆I are
random valued and when these random variables are sta-
tistically independent. Eq. (13) then yields

E{p2zz} = E{r21}(1− E{r22})(1− v2)

+(1− E{r21})E{r22}v2

−2E{r1
√
1− r21}E{r2

√
1− r22}

√
1− v2v

×E{sin∆I}. (20)

In this equation, E{p2zz} is known: in practice, it is es-
timated by using the SIPQIP approach of Section III B,
i.e. by using the sample mean of the estimates of all val-
ues of p2zz , themselves typically estimated with sample
frequencies (possibly each reduced to one measurement
outcome). Similarly, E{r21} and E{r22} are known: as
detailed in [26], they may be derived by solving the two
equations obtained by taking the expectation of (12) and
(14), which involve E{p1zz} and E{p4zz}, that are also
estimated with the SIPQIP approach. Finally, the blind
version of QPT concerns the case when the individual
values of the input quantum states of the considered pro-
cess are unknown, but it allows one to request some of
the statistical parameters of these inputs to be known.
Therefore, we here request the states |ψ(t0)〉 to be pre-
pared with a procedure which is such that the value of
E{sin∆I}, or at least its sign, is known. Thus, (20)
can be exploited so that the only unknown is v. Ref.
[26] shows how to solve this equation. More precisely,
two instances of this equation, with different values of
E{sin∆I}, are used: the first one yields an estimate of
the absolute value of v and the second equation provides
an estimate of the sign of v. Combining these two results

yields an estimate v̂ of v and hence an estimate ∆̂Ed of
∆Ed by using v̂ in (19).

Based on (18), once the above estimate ∆̂Ed has been

obtained, corresponding shifted estimates of
Jxyτ1

~
are de-

rived as

Ĵxyτ1
~

= −∆̂Ed + k̂xyπ (21)

where k̂xy is an integer, that corresponds to kxy in (18).

The value of k̂xy has to be selected without knowing the
actual value of kxy in the fully blind case considered here,
i.e. when no prior information is available about the
value of Jxy. But this is not an issue from the point
of view of the considered BQPT method, because that
method is designed so that the obtained estimate of the
process matrix M , for (t − t0) = τ3, does not depend

on the integer value of k̂xy [26]. The simplest approach

therefore consists of setting k̂xy = 0 in (21).

Similarly, [26] shows that

Jzτ2
~

= ∆Φ1,0d + 2kzπ +
Jxyτ2
~

+
GBτ2
~

(22)

where kz is an integer. This is used to derive the estimate

Ĵzτ2
~

= ∆̂Φ1,0d + 2k̂zπ +
Ĵxyτ2
~

+
GBτ2
~

(23)

where the SIPQIP framework of Section III B is again

used to obtain an estimate ∆̂Φ1,0d of the quantity ∆Φ1,0d

that may be derived from the same type of probability
expectations E{pkzz} as above and from the probability
expectations E{pkxx} of results of additional measure-
ments of spin components along the Ox axis (see details

in [26]). Besides, k̂z is an integer whose value has no
influence on the final estimate of the process matrix M ,

and that may therefore be set to zero. Moreover,
Ĵxyτ2

~
is

equal to twice the value previously computed with (21)
and the other parameters have known values.
It should be noted that this QPT method only uses

the known outputs of the considered process and gen-
eral known properties of its inputs, not its input values,
which are unknown. This is therefore indeed a blind QPT
method (moreover operating in the single-preparation
mode). In contrast, non-blind methods are supposed to
operate with predefined values of their input states and
are in practice very sensitive to errors in the preparation
of these value, as detailed in [26]. Their performance for
actual preparations is therefore significantly degraded,
whereas the above blind operation yields much better
accuracy in the tests reported in [26].
Beyond BQPT itself, we hereafter move to one of the

new methods that we propose in this paper, for other
QIP tasks, that further exploit the results of the above
algorithm.

B. Blind Hamiltonian parameter estimation

1. Proposed method

As shown in Appendix C, the behavior of the device
composed of two Heisenberg-coupled qubits that we con-
sidered above is primarily defined by its Hamiltonian,
whereas the above process matrixM follows when consid-
ering the evolution of the state of that system from a fixed
time t0 to a fixed time t. Therefore, beyond the estima-
tion of the process matrixM , a related QIP task consists
of estimating the primary unknown parameters of the
Hamiltonian of the studied device, namely the principal
values Jxy and Jz of the exchange tensor (similar consid-
erations are also provided in [71]). This type of task (for
the parameters of this or other Hamiltonians) is called
Hamiltonian parameter estimation hereafter and also es-
pecially in [71–73]. Such parameter estimation problems
are also addressed but often referred to as Hamiltonian
identification e.g. in [22, 74, 75] and partly [76]. To our
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knowledge, in the literature this task has been studied
only in the non-blind or “controlled” mode and/or us-
ing multiple preparations in approaches that are closely
connected with conventional QPT [76] or that are based
on specific protocols, such as periodical sampling (hence
with a potentially quite high total number of required
state preparations) [22, 71, 75], use of a closed-loop [74]
or optimal feedback [73] structure, or curve fitting with
respect to the experimental results obtained for various
angles of the magnetic field [72]. In contrast, we here-
after investigate a single-preparation and blind (without
control) version of this Hamiltonian parameter estima-
tion task, based on measurements along the Oz and Ox
axes, that we did not address in our previous papers,
that has direct connections with the above-defined single-
preparation and blind version of QPT and that yields the
same type of attractive features as for QPT: it avoids the
burden of very accurately and repeatedly preparing pre-
defined states to estimate the unknown parameters of the
considered Hamiltonian. Here again, we show how to de-
velop such an extension for the specific class of Hamiltoni-
ans defined in Appendix C, namely Heisenberg coupling
with unknown Jxy and Jz , but this should be considered
only as an example, that the reader may then extend to
other types of Hamiltonians. Similarly, various investi-
gations in the literature considered specific parametrized
Hamiltonians, with a limited number of unknown param-
eters, as the core of the proposed approaches or to illus-
trate them: see e.g. [22, 71–76].

The blind Hamiltonian parameter estimation (BHPE)
method that we propose builds upon the BQPT algo-
rithm summarized in Section IVA but it requires sub-
sequent developments for the following reason. As ex-
plained in Section IVA, that BQPT method is strongly

connected with estimating the quantities exp
[
i
Jxy(t−t0)

~

]

and exp
[
iJz(t−t0)

2~

]
, using some types of measurements.

The estimation of these very quantities would define their

phase arguments
Jxy(t−t0)

~
and Jz(t−t0)

2~ , only up to addi-
tive integer multiples of 2π, that would yield the inde-
terminacies of this estimation procedure from the point
of view of BHPE. More precisely, using the data pro-
vided by the considered measurements, the above BQPT
method yields the indeterminacies that consist of the ad-

ditive constants k̂xyπ and 2k̂zπ of (21) and (23). It thus

does not provide a unique solution with respect to
Ĵxyτ1

~

and Ĵzτ2
~

, and hence Ĵxy and Ĵz , so that it does not solve
the Hamiltonian parameter estimation problem consid-
ered here (related comments may be found in [71]). For
instance, let us consider the test conditions defined in Ap-
pendix E, including the available prior knowledge about
the range of values to which Jxy is guaranteed to belong.
Then, a single run of our BQPT method yields 32 accept-
able determinations of Jxy in that range and no means
to know which of these numerous potential solutions cor-
responds to the actual value Jxy.

We here aim at developing a BHPE method that takes

advantage of the above BQPT algorithm so as estimate

Ĵxy and Ĵz without indeterminacies. The trick that we
propose to this end is based on estimating each of the
parameters Jxy and Jz by using two values of the above-
defined time interval (t− t0), instead of one in the funda-
mental principle of the above BQPT method. This trick
also has relationships with the practical approach that we
used in [26], for BQPT only: starting from a basic BQPT
method that uses a single value of (t− t0) and that thus
yields some indeterminacies with respect to M , we then
moved to a more advanced BQPT method, that uses sev-
eral values of (t− t0) and thus avoids all indeterminacies
with respect to M (this is the method summarized in
Section IVA). However, for BQPT, we thus eventually
used several values of (t − t0) for the complete practical
procedure but only one value for each part of that BQPT
method, e.g. associated with the phase factor involving
one of the parameters Jxy and Jz (see (21) and (23),
respectively), whereas, for BHPE, we here move to two
values of (t− t0) per parameter Jxy and Jz, these values
therefore being exploited in a new way, that we describe
hereafter.
Let us first consider the estimation of Jxy. To this

end, we use the procedure of the first part of the BQPT
method of Section IVA. We apply it twice, with τ1 of
Section IVA successively replaced by two values denoted
as τ11 and τ12. Combining (18) and (21), with τ1 replaced
by τ11 and similarly with an additional index “1” for
the other variables whose values are specific to that first
application of the procedure, yields

Ĵxy1 = Jxy +
~

τ11

(
∆Ed1 − ∆̂Ed1 +∆kxy1π

)
(24)

with

∆kxy1 = k̂xy1 − kxy1. (25)

This shows that the procedure applied with the time in-
terval τ11 yields a regular one-dimensional grid of pos-

sible estimates Ĵxy1 of Jxy (associated with the values

of k̂xy1), with a step equal to ~π
τ11

. Similarly, the second
application of that procedure, with a time interval τ12,
yields

Ĵxy2 = Jxy +
~

τ12

(
∆Ed2 − ∆̂Ed2 +∆kxy2π

)
(26)

with

∆kxy2 = k̂xy2 − kxy2. (27)

The corresponding estimates Ĵxy2 of Jxy therefore form

a regular grid with a step equal to ~π
τ12

.
We here aim at exploiting the differences between the

above two [77] grids of values. As a preliminary stage,
let us consider the ideal case, i.e. when

∆̂Ed1 = ∆Ed1 and ∆̂Ed2 = ∆Ed2. (28)
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Then, the above two grids share at least one value, equal

to Jxy and obtained when k̂xy1 and k̂xy2 are respectively
set to kxy1 and kxy2, which results in ∆kxy1 = 0 and
∆kxy2 = 0. Moreover, let us consider the case when
τ12/τ11 is set to an irrational value. Then, the above
grids only share the value Jxy, because (24) and (26) show

that, when (28) is met, the values of k̂xy1 and k̂xy2 that

are such that the corresponding estimates Ĵxy1 and Ĵxy2
are equal are those that meet ∆kxy1/τ11 = ∆kxy2/τ12 so
that, when ∆kxy1 and ∆kxy2 are nonzero, this requires
τ12/τ11 to be equal to the rational value ∆kxy2/∆kxy1.
So, when (28) is met and τ12/τ11 is set to an irrational
value, a simple criterion for determining Jxy is: it is the
only value shared by the above two grids. This behavior
has a relationship with the influence of the sampling pe-
riod when sampling a sine wave, as e.g. detailed in [78],
which thus also indirectly shows that the above attrac-
tive behavior of our grids is obtained only if τ12/τ11 is
irrational.
The above criterion must then be modified when mov-

ing to practical situations, because the available esti-

mates ∆̂Ed1 and ∆̂Ed2 are somewhat and independently
shifted with respect to the corresponding actual values.
Therefore, to estimate Jxy, instead of looking for val-
ues of both grids which are identical in the ideal case,

this here suggests to compare each value Ĵxy1 of the first

grid to each value Ĵxy2 of the second grid in order to de-
rive the couple of closest values. Moreover, in practical
configurations, one usually has prior knowledge about a
range of values to which Jxy and hence its relevant esti-
mates are guaranteed to belong. This known range may

be exploited in such a way that the values of Ĵxy1 and

Ĵxy2 which are the closest to one another in this range
are also those which are the closest to Jxy, by using the
method detailed in Appendix D. From these two spe-
cific values, an estimate of Jxy is eventually derived as

Ĵxy1 + Ĵxy2
2

.

Similarly, the parameter Jz is estimated by using the
procedure of the second part of the BQPT method of
Section IVA, based on (22) and (23). This procedure is
here applied twice, with different values of the parameter
τ2 of Section IVA. The resulting method is described in
Appendix D.

2. Test results

The physical implementation of qubits is an emerging
topic which is beyond the scope of this paper. We there-
fore assessed the performance of the proposed BHPE
method by means of numerical tests performed with data
derived from a software simulation of the considered con-
figuration. Each elementary test consists of the following
stages. We first create a set of N input states |ψ(t0)〉.
Each such state is obtained by randomly drawing its six
parameters rj , θj and φj , with j ∈ {1, 2}, and then us-

ing (C3), (C4), (C6) (the state (C6) is defined by the
above six parameters, but only the four parameters rj
and φj − θj have a physical meaning). We then process
the states |ψ(t0)〉 according to (C7), with given values of
the parameters of the Hamiltonian (C1) and hence of the
matrix M involved in (C7). This yields the states |ψ(t)〉.
More precisely, we eventually use simulated measure-
ments of spin components associated with these states
|ψ(t)〉. For measurements along the Oz axis, this means
that we use the model (12)-(14) with a given value of
the parameter v, corresponding to the above values of
the parameters of the Hamiltonian (C1). For each of
the N states |ψ(t0)〉, corresponding to parameter values
(r1, r2,∆I), Eq. (12)-(14) thus yield the corresponding
set of probability values (p1zz, p2zz, p4zz), which are used
as follows. We use K prepared copies of the considered
state |ψ(t0)〉 to simulateK random-valued two-qubit spin
component measurements along the Oz axis, drawn with
the above probabilities (p1zz , p2zz, p4zz). We then derive
the sample frequencies of the results of these K mea-
surements, which are estimates of p1zz, p2zz and p4zz for
the considered state |ψ(t0)〉 (see (5)). Then computing
the averages of these K-preparation estimates over all N
source vectors |ψ(t0)〉 yields (NK)-preparation estimates
of probability expectations E{pkzz} (see (8)). Spin com-
ponent measurements for the Ox axis are handled simi-
larly (with other state preparations), thus yielding esti-
mates of probability expectations E{pkxx}. Both types
of estimates of probability expectations are then used by
our BHPE method defined in Section IVB1, to derive

the estimates Ĵxy and Ĵz.

In these tests, the above parameters N and K were
varied as described further in this section, whereas the
numerical values of the other parameters were fixed as
explained in Appendix E, so that we used the same val-
ues for the parameters of the Hamiltonian (C1) in all
tests. For each considered set of conditions defined by
the values of N and K, we performed 100 above-defined
elementary tests, with different sets of states |ψ(t0)〉, in
order to assess the statistical performance of the consid-
ered BHPE method over up to 100 estimations of the
same set {Jxy, Jz} of parameter values. More precisely,
all 100 estimates of Jxy were real-valued and were kept.
In constrast, for some test conditions, some estimates of
Jz were complex-valued (because they were derived from
trigonometric equations, where some estimates of sines
or cosines may be situated out of the interval [−1, 1]).
Since these false values can actually be detected and re-
jected in practice, the estimation performance for Jz was
computed only over its real-valued estimates.

The considered performance criteria are defined as fol-
lows. Separately for each of the parameters Jxy and
Jz, we computed the Normalized Root Mean Square Er-
ror (NRMSE) of that parameter over all considered es-
timates, defined as the ratio of its RMSE to its actual
(positive) value. The values of these two performance
criteria are shown in Fig. 1 and 2, where each plot cor-
responds to a fixed value of the product NK, i.e. of
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the complexity of the BHPE method in terms of the to-
tal number of state preparations. Each plot shows the
variations of the considered performance criterion vs. K,
hence with N varied accordingly, to keep the considered
fixed value of NK.

Fig. 1 and 2 first show that the proposed BHPE
method is able to operate with a number K of prepa-
rations per state |ψ(t0)〉 decreased down to one, as ex-
pected. Moreover, for a fixed value of NK, the errors
decrease when K decreases, which is expected to be due
to the fact that the number N of different used states
thus increases, allowing the estimation method to better
explore the statistics of the considered random process.
The magnitude of the error reduction from the highest
value of K down to K = 1 is often quite large, especially
for Jxy, that is, between one and two orders of magni-
tude even when disregarding the “discontinuity” in some
plots discussed hereafter. This means that the proposed
SIPQIP framework is then of high interest not only in
terms of simplicity of operation of QIP methods, but also
with respect to their accuracy.

Moreover, some of the plots contain the above-
mentioned type of discontinuity. For example, in Fig.
1, the NRMSE of Jxy for the fixed value NK = 100, 000
abruptly decreases from around 2× 10−2 when K = 200
to around 2× 10−4 when K = 100. This behavior is nor-
mal: it is due to the intrinsically discontinuous nature
of the specific type of estimation algorithm used here for
Jxy (the same considerations apply to Jz, as confirmed
by Fig. 2). More precisely, in conditions when Jxy is es-
timated with a low accuracy, the following phenomenon
may occur for one or several runs of the estimation pro-
cedure: that procedure may select a false determination
of the estimate of Jxy, that is, a value corresponding to
false (i.e. nonzero) values of ∆kxy1 in (24) and ∆kxy2
in (26). The estimated value of Jxy is thus strongly
shifted, because e.g. the corresponding values on the
first grid (24) are shifted by multiples of the step ~π

τ11
as explained above. For the numerical values considered
here, the corresponding step for the determinations of

Ĵxy/kB is ~π
τ11kB

≃ 0.048 K, as compared to the actual

value of Jxy/kB equal to 0.3 K in these tests. Therefore,
a shift equal to one step, i.e. obtained with ∆kxy1 = 1,

corresponds to a relative error for Ĵxy/kB, and hence

for Ĵxy, around 16 % for the considered estimate of Jxy.
The overall error for 100 estimates then depends on the
number of runs where such false determinations are se-
lected, but as long as at least one of them is selected, the
NRMSE of Jxy is lower bounded to a significant value.
In constrast, in conditions when Jxy is estimated with a
better accuracy, the correct determination of Jxy is se-
lected for all 100 runs of the procedure and the NRMSE
of Jxy is not lower bounded anymore: it regularly de-
creases when NK increases or when K decreases. This
is precisely what occurs in the above-mentioned example
of Fig. 1 with NK = 100, 000: we manually checked all
100 estimates of Jxy (not shown here), which proved that

one of them corresponds to a false determination (with a
shift equal to a single step in the above-mentioned grid)
for K = 200 and no false determination for K = 100.
The main conclusion of this analysis is that, when us-
ing enough state preparations, the proposed procedure
avoids false determinations and thus has the usual be-
havior, with performance regularly increasing when the
conditions (values of NK and/or K) are improved.
By considering a wide range of test conditions, Fig. 1

and 2 show that a wide range of estimation accuracies
may be obtained for Jxy and Jz. Focusing on the most
interesting cases, namely when K = 1, the NRMSE of
Jxy can e.g. here be made equal to 2.75× 10−2 = 2.75 %
for only N = 104 state preparations or 8.46 × 10−5 for
N = 105 or 2.74×10−5 forN = 106. Similarly, whenK =
1, the NRMSE of Jz can e.g. be made equal to 7.66 %
for N = 105 or 2.17 % for N = 106 or 9.07 × 10−5 for
N = 107. The “very low” NRMSE values, corresponding
to the absence of false determinations and to the parts
“below possible discontinuities” in the plots of Fig. 1 and
2, are thus achieved for N higher than 104 for Jxy and
106 for Jz.
All above results show that, for given values of K and

N , the parameter Jxy is often estimated much more ac-
curately than Jz. This is reasonable because, on the one
hand, Jxy is estimated by using only measurements along
the Oz axis, that lead to a relatively simple data model
and hence a simple estimation procedure, which is likely
to yield good estimation accuracy, whereas, on the other
hand, Jz is estimated by combining measurements along
the Ox and Oz axes, and those along the Ox axis involve
a more complex data model, which yields an estimation
procedure with possibly degraded estimation accuracy.
This also means that, whereas we here used a simple
protocol by considering the same values of the set of pa-
rameters {K,N} in the series of state preparations used
for estimating Jxy and Jz , one might instead use lower
values of the number N of state preparations (preferably
with K = 1) in the series of preparations performed for
estimating Jxy than in those used for Jz, in order to
balance the estimation accuracies achieved for Jxy and
Jz while reducing the total number of state preparations
(the BQPT method used here yields related considera-
tions, that were detailed in [26]).

C. Channel estimation and phase estimation

In Sections I and II, we explained that, in the classical
framework, the same information processing task is given
different names, depending on the considered application
field. In particular, the system identification task in the
field of automatic control corresponds to the channel es-
timation task in the field of communications. The same
phenomenon occurs in the quantum framework. In par-
ticular, QPT, and hence our blind (and possibly single-
preparation) extension addressed in Section IVA, is often
stated to be the quantum counterpart of classical system
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FIG. 1. Normalized Root Mean Square Error (NRMSE) of
estimation of parameter Jxy vs. number K of preparations of
each of the N used states.
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FIG. 2. NRMSE of estimation of parameter Jz vs. number
K of preparations of each of the N used states.

identification (see e.g. [14] p. 389). QPT applies to
general quantum systems, not necessarily defined by a
small set of parameters, and could therefore be called
nonparametric system identification. But the Hamilto-
nian parameter estimation task, and hence our blind (and
single-preparation) extension introduced in Section IVB,
is also closely connected with system identification, and
more precisely to parametric system identification, since
it estimates a small set of parameters (e.g., the principal
values of the exchange tensor in the case of Heisenberg
coupling that was considered above as an example), and
these parameters then completely define the behavior of
that system, including the resulting process matrix in the
associated QPT task.
Moreover, although a different terminology is used for

other quantum information processing tasks, some of
these tasks actually address the same type of problems
as above. This first concerns the quantum channel es-
timation task: as explained e.g. in [49], a map from
the density operator associated with a quantum state to
another density operator is often called a quantum chan-
nel, as a reference to classical communication scenarios.
The identification of such a map may therefore be called
quantum channel estimation and is closely linked to the
QPT problem that we considered above, possibly in its

blind and single-preparation form. Similarly, a standard
quantum information processing procedure is phase es-
timation. In [14] p. 221, it is defined as the estimation
of the phase Φ of an eigenvalue e2πiΦ of a unitary op-
erator. This task is therefore related as follows to both
investigations reported in Sections IVA and IVB. First,
as explained in Section IVA, the considered (B)QPT
problem essentially consists of estimating the parame-

ters exp
[
i
Jxy(t−t0)

~

]
and exp

[
iJz(t−t0)

2~

]
and hence the

exponential terms of the diagonal representationD of the
considered operator (see (C9)-(C13)). This is therefore
equivalent to estimating the phases of these exponentials,
up to a multiple of 2π. Moreover, the method introduced
in Section IVB is directly connected with removing the
additive indeterminacy due to this multiple of 2π.

This discussion shows that the blind and single-
preparation extensions that we proposed above in this
paper for quantum information processing tasks related
to system identification are expected to be of importance
not only for the scientific communities focused on QPT
and Hamiltonian parameter estimation but also for quan-
tum scientists who investigate a variety of related prob-
lems, such as quantum channel estimation and phase es-
timation. Moreover, in this Section IV, we restricted
ourselves to problems related to the characterization (i.e.
identification) of the considered quantum process itself.
As explained in Sections I and II, related QIP problems
consist of building processing systems, with quantum
and/or classical means, that essentially implement the in-
verse of an initially unknown quantum process. This cor-
responds to the quantum source separation and related
tasks, that we investigate in the next section, still aiming
at extending the considered configurations to blind and
single-preparation ones.

V. QIP TASKS RELATED TO SYSTEM
INVERSION AND STATE RESTORATION

A. Blind quantum source separation

A rather general version of the blind quantum source
separation (BQSS) problem addressed here may be de-
fined as follows. A set of qubits with indices j are in-
dependently prepared with states |ψj〉. The state |ψ〉
of the system composed of these qubits, which is equal
to the tensor product of the above single-qubit states
|ψj〉, is then transformed, i.e. mapped to another state
|ψ′〉 = M(|ψ〉), where the mapping function M e.g. cor-
responds to temporal evolution with coupling between
qubits, as detailed below. In the blind configuration, the
user is given a set of transformed states |ψ′〉 but does not
know the corresponding set of original states |ψ〉, and
hence the source states |ψj〉, nor the mapping function
M. The user then eventually wants to restore the infor-
mation contained in (at least part of) the source states,
either in quantum form, by deriving estimates of these
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states |ψj〉, or in classical form, typically by eventually
using a classical computer to derive estimates of the co-
efficients of the states |ψj〉 in a given basis.
This generic problem is connected with various appli-

cation fields. The first one, on which we focus hereafter,
is related to the operation of quamputers. In such a fu-
ture quamputer, data will be stored in registers of qubits,
for subsequent use. Due to non-idealities of the physical
implementation of such a register, the qubits which form
it may have undesired coupling with one another, such
as Heisenberg coupling, e.g. if considering quamputer
implementations related to spintronics [79–81]. As time
goes on, the register state will therefore evolve in a com-
plicated way due to this undesired qubit coupling, thus
making the final value of that register state not directly
usable in the target quantum algorithm executed on that
quamputer. BQSS may then be used as a preprocessing
stage, to restore the initial register state, before providing
it to the target application of that quamputer.
To analyze this BQSS problem in more detail, we here-

after focus on a basic case, from which the reader may
then extend this analysis to other configurations. In the
considered case, the device (e.g., the qubit register) is
restricted to two qubits, implemented as electron spins
1/2, and the undesired coupling which exists between
them is again based on the cylindrical-symmetry Heisen-
berg model defined in Appendix C. Using the notations
of that appendix, the initial state |ψ(t0)〉 of the device
(e.g., the state stored at time t0 in the register), which
corresponds to state |ψ〉 in the above general definition of
BQSS, may be represented by the column vector C+(t0)
of the components of |ψ(t0)〉 in the standard basis, de-
fined by (C8). Similarly, the final state |ψ(t)〉 of the de-
vice (e.g., the only state available to the user, at a later
time t, in the register), which corresponds to state |ψ′〉
in the above general definition of BQSS, may be repre-
sented by the column vector C+(t) of the components of
|ψ(t)〉 in the standard basis. The effect of coupling is
then represented by the relationship

C+(t) =MC+(t0) (29)

where M is the matrix defined in Appendix C.
The first class of BQSS methods that we previously

developed for handling this configuration (see especially
[37–39]) is the “least quantum” one, in the sense that,
starting from the available quantum states |ψ(t)〉, it first
converts them into classical-form data (probability esti-
mates) by means of measurements and then processes
the latter data with only classical means, as shown in
Fig. 3. More precisely, in the reported investigations,
only measurements of the components of the two spins
along the Oz axis were considered. The probabilities of
the outcomes of these measurements are therefore again
defined by (12)-(14). Unlike the BQPT method of Sec-
tion IVA, the BQSS methods summarized here do not
use the SIPQIP framework. Instead, they separately de-
rive an estimate of each set of probabilities pkzz , with
k = 1, 2 and 4, associated with one final state |ψ(t)〉, so

Mψ
0(t  )>|

| ψ (t)> p
classical

processing
y

classicalquantum

mixing stage separating stage

FIG. 3. Global (i.e. mixing + separating) blind quantum
source separation (BQSS) configuration when only applying
measurements and classical processing to the available cou-
pled quantum state.

that they require each initial state |ψ(t0)〉 to be prepared
many times.

This class of BQSS methods therefore uses the map-
ping (29), from a state |ψ(t0)〉 to a state |ψ(t)〉, indirectly:
it only involves the mapping (12)-(14), which goes from
the set of initial qubit parameters {r1, r2,∆I}, to the set
of probabilities {p1zz, p2zz , p4zz}. The transform (12)-
(14) is then the “mixing model”, using the classical BSS
terminology and, indeed, even if they are derived from an
intrinsically quantum phenomenon, the inputs and out-
puts of this transform may be stored in classical form,
on a classical computer: the moduli rj and the phases
θj and φj (in fact, only their differences φj − θj have a
physical meaning) may be stored on a classical computer
before they are used by the procedure that prepares the
corresponding state |ψ(t0)〉. The output of this “mix-
ing stage”, equal to an estimate of {p1zz, p2zz, p4zz}, is
then connected to the input of the “separating stage”
(see Fig. 3 again), which is composed of the separat-
ing system that we proposed for restoring an estimate of
{r1, r2,∆I} from its input. In other words, this separat-
ing system ideally aims at implementing the inverse of
the mapping (12)-(14). This can be done (up to an ap-
proximation due to estimating the probabilities pkzz) in
the ideal case when the exact value of the parameter v of
(13) is known, because the inverse of (12)-(14) can be an-
alytically determined: see details in [37–39]. In contrast,
the blind version of the problem, i.e. when the value of
v is unknown, is handled as follows. One considers the
class of direct mappings obtained by replacing v by a free
parameter v in (12)-(14). One then determines the an-
alytical expression of the corresponding class of inverse
mappings, which is derived by replacing v by v in the
above ideal inverse mapping. The idea is then to derive
an estimate v̂ of v, in order to use it as the value of v in the
inverse mapping. Various methods have been proposed
to this end (see e.g. [37–39]), by extending differents con-
cepts used in classical Independent Component Analysis
(ICA) to the considered quantum problem.

The complete operation of the above class of BQSS
methods consists of two phases, which correspond to the
general features that we provided in Section II for classi-
cal and quantum machine learning methods:
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FIG. 4. Mixing stage + quantum-processing inverting block
of separating system.

1. First, in the adaptation (or training) phase, a set
of states |ψ(t)〉 is used to derive the above estimate
v̂, i.e. to learn the (direct and) inverse mapping.

2. Then, in the inversion phase (which corresponds
to the final, useful, operation of the separating sys-
tem), the probabilities estimated for each new state
|ψ(t)〉 are transferred through the above estimated
inverse mapping, to restore the considered param-
eters of the corresponding state |ψ(t0)〉.

As mentioned above, a major constraint in that first
class of BQSS methods is that it requires the same state
|ψ(t0)〉 to be prepared many times, both in the adap-
tation and inversion phases. This makes these methods
“less blind” because, although these states |ψ(t0)〉 are
allowed to be unknown from the point of view of the
adaptation procedure, some control is required so that
the same value is repeatedly prepared for each of these
states.
A solution to the above problem was introduced, but

only for the inversion phase, in our second class of BQSS
methods, especially described in [40–42]. We now detail
it, since we take advantage of it in the fully SIPQIP meth-
ods that we introduce further in this paper for BQSS. In
that second class of BQSS methods, during the inver-
sion phase, each state |ψ(t)〉 available as the input of the
separating system is directly used in quantum form, i.e.
without performing measurements, so that this separat-
ing system outputs a quantum state |Φ〉 that should ide-
ally be equal to the multi-qubit source state |ψ(t0)〉 that
one aims at restoring. That part of the separating sys-
tem, called the inverting block, is thus a global quantum
gate (see Fig. 4), which only requires a single instance of
its input state |ψ(t)〉 to derive its corresponding output
state |Φ〉.
The above gate is designed as follows. Although we

here do not keep all the features of the above first class of
BQSS methods, we build upon some of its principles. In
particular, we exploit the fact that, although the actual
value of the mixing matrixM of (29) is not known in the
blind configuration, from Appendix C one knows that it
belongs to the class of matrices defined as

M = QDQ (30)
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FIG. 5. Implementation of quantum operator defined by ma-
trix D̃, used in inverting block.

where Q = Q−1 is a known, fixed, matrix and D is a
diagonal matrix, whose diagonal entries have unit modu-
lus (and a structure that is disregarded in this approach).
We therefore use an inverting block of the separating sys-
tem which is adaptive (or tunable), i.e. such that some
of the values of the parameters that define its behavior
may be modified. More precisely, this block is designed so
that it is able to implement the inverse of any transform
in the above-defined class, depending on its parameter
values. Its operation is therefore represented by a matrix
defined as

U = QD̃Q (31)

with

D̃ =




eiγ1 0 0 0

0 eiγ2 0 0

0 0 eiγ3 0

0 0 0 eiγ4


 (32)

where γ1 to γ4 are free real-valued parameters. This in-
verting block is thus the cascade of three simpler quan-
tum gates, as shown in Fig. 4. The implementation of
each gate corresponding to the matrix Q, as a combina-
tion of even simpler gates, was detailed in [38]. Moreover,
the adaptive gate corresponding to (32), introduced in
[42], may be decomposed as shown in Fig. 5, where the
closed (i.e. black) and open circle notations respectively
indicate conditioning on the qubit being set to one or
zero, as in [14] p. 184. In [42] and in the new use of that
gate introduced further in this paper, the values of the
parameters γ1 to γ4 are controlled by classical-form sig-
nals. These parameters may e.g. be independent, known
but arbitrary, increasing, functions of control voltages.
Such control voltages are e.g. used in the real device
described in [81].
The complete operation of this second class of BQSS

methods therefore consists of the same phases as for the
above first class of methods:
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1. First, in the adaptation phase, a set of states |ψ(t)〉
is used to adapt the matrix D̃, i.e. to learn the
inverse mapping.

2. Then, in the inversion phase, each new state |ψ(t)〉
is transferred through the gates of Fig. 4, which
perform the above estimated inverse mapping, to
restore the corresponding state |ψ(t0)〉.

The method used in [42] to adapt the matrix D̃ is based
on the probabilities of measurements associated with a
set of output states |Φ〉 of the inverting block of Fig.
4. These probabilities are essentially used to measure
the degree of entanglement of these states |Φ〉. The ma-

trix D̃ is adapted so as to essentially make these states
|Φ〉 unentangled, so that this type of methods performs
an “Unentangled Component Analysis” [42], as opposed
to the above-mentioned classical and quantum Principal
Component Analysis and Independent Component Anal-
ysis. The complete structure of the resulting separating
system is shown in Fig. 6. Unlike in the inversion phase,
during the adaptation phase this structure requires many
copies of each of its input states |ψ(t)〉, in order to de-
rive the corresponding copies of the output states |Φ〉
and hence the corresponding probability estimates based
on sample frequencies of measurement outcomes. This
second class of BQSS methods is thus “more quantum”
than the first one, first because it uses quantum process-
ing means in the inverting block, and second because it
is based on the quantum concept of entanglement, which
has no classical counterpart.
In the present paper, we introduce a third class of

BQSS methods, which proceeds further than the above
two classes, by using the SIPQIP framework in all the
operation of the separating system, i.e. by using a sin-
gle preparation of each state also during the adaptation
phase. To this end, we exploit the structure of the ma-
trix D, defined in (C11)-(C13). We take into account the

fact that the matrix D̃ of the separating system should
ideally be set to the inverse of D. Therefore, by replacing

Jxy and Jz by their estimates Ĵxy and Ĵz in (C11)-(C13),

we set D̃ as in (32), but here with the following structure
for the phases of its diagonal elements:

γ1 =
GBτ3
~

− Ĵzτ3
2~

, γ2 = − Ĵxyτ3
~

+
Ĵzτ3
2~

, (33)

γ3 =
Ĵxyτ3
~

+
Ĵzτ3
2~

, γ4 = −GBτ3
~

− Ĵzτ3
2~

(34)

where τ3 is the value of the time interval (t − t0) used
in the inversion phase of the proposed BQSS method. In
this new BQSS method, we take advantage of the BQPT
method that we described in Section IVA: when ap-
plying the latter method with time intervals (t− t0) set
according to (11) with a freely selected value of τ1, we
get (21) and (23), which shows that all the quantities in
(33)-(34) required to assign γ1 to γ4 are known or can be
estimated. The adaptation phase of the proposed BQSS
method therefore consists of applying the above BQPT

method, then using (33)-(34) to derive the selected values
of γ1 to γ4 and finally using the supposedly known cor-
respondence function which makes it possible to convert
these values of γ1 to γ4 into the practical control signals
(e.g., voltages) of the gates of Fig. 5 which make these
gates operate with these desired values of γ1 to γ4. The
resulting global configuration is shown in Fig. 7. Each
state |ψ(t)〉 is thus used only once (see also [42] about the
no-cloning theorem): during the adaptation phase, these
states are sent to the part of the system which performs
measurements and BQPT (dashed line and lower part of
Fig. 7); then, during the inversion phase, they are sent
to the inverting block (dash-dotted line and upper right
part of Fig. 7).
Thanks to the properties of the BQPT method reused

here as a building block of the proposed BQSS method,
the output of the latter method does not depend on the

values used in (21) and (23) for the integers k̂xy and k̂z.
This may be seen by inserting (21)-(23) in (33)-(34) and
then in (32), with (11), which shows that the terms of

(21)-(23) that include k̂xy and k̂z yield terms in (33)-
(34) that are integer multiples of 2π, and that therefore

have no influence on the value of D̃.

B. Blind quantum (entangled) state restoration

In the classical framework, the concept of blind source
separation (BSS) intrinsically refers to situations involv-
ing several (unknown) source signals, created by several
“sources” that may be some kinds of “objects”. Such
a situation may be mathematically described by gath-
ering all the values of these source signals, e.g. at a
given time, as the elements of an overall source vector. In
our quantum extensions of this classical BSS, we started
from a similar situation, involving several objects, such
as qubits implemented as spins 1/2, and we first inde-
pendently considered the “signal value”, i.e. the initial
quantum state |ψj(t0)〉, of each of them (see (C2)). We
then “gathered” these individual states by defining the
state of the complete system (see (C5)) as the tensor
product of the states |ψj(t0)〉, somehow as the quantum
counterpart of the above vector of classical signal values.
However, the quantum framework opens the way to much
richer situations, because the possible states of a com-
plete system are not restricted to the tensor products of
the individual states of independent parts of this system:
they also include entangled states. An extension of the
above BQSS problem is therefore blind quantum state
restoration (BQSR), aiming at restoring a possibly en-

tangled deterministic pure state of a multi-qubit system,
starting from an altered version of it. One thus conceptu-
ally considers a single arbitrary multi-qubit source state,
instead of several single-qubit source states. In partic-
ular, this includes restoring the possibly entangled ini-
tial state |ψ(t0)〉 of a multi-qubit system, from the state
|ψ(t)〉 of that system at a later time.
We here investigate this extension of BQSS to possibly
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FIG. 6. Global (i.e. mixing + separating) configuration, which a feedback separating system that includes a quantum-processing
inverting block and a classical-processing adapting block. Each quantum state |Φ〉 is used only once (no cloning): see [42].
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FIG. 7. Global (i.e. mixing + separating) configuration, with
a feedforward separating system that includes a quantum-
processing inverting block and a classical-processing adapt-
ing block. Each quantum state |ψ(t)〉 is used only once (no
cloning): see text.

entangled source states, by considering the use of such
states in the second phase of the operation of this sys-
tem, i.e. in the above-defined inversion phase, after the
transform performed by this system has been fixed by
means of the adaptation phase. We claim that the BQSS
system defined in Fig. 7 is directly able to perform the
considered BQSR task, since it operates as follows. An
unknown state |ψ(t0)〉 is created, then modified by an
operator represented by the matrix M , thus yielding the
state |ψ(t)〉. The latter state is the state processed by the
new separating system that we designed in Section VA.
The transform performed by this system is represented by
the matrix U = QD̃Q (see (31)). But, during the adap-
tation phase of that separating system that occurred be-
fore this inversion phase, U was made equal to the inverse
of M (up to estimation errors) by the proposed adapta-
tion method. Therefore, when applying that separating
transform U to |ψ(t)〉, the output state of the separating
system becomes equal to |ψ(t0)〉 (up to estimation errors)

and this analysis does not depend at all whether |ψ(t0)〉
is entangled or not. In particular, if the proposed BQSS
(and hence BQSR) method is used to restore the initial
state of a qubit register by compensating for the unde-
sired coupling between its qubits, as discussed above, this
means that this method also applies when an entangled
state is stored in this qubit register.

C. Blind quantum channel equalization

As discussed in Sections I, II and IVC, in the classical
and quantum frameworks, the same information process-
ing task is given different names depending on the con-
sidered application field. This is also true for the generic
QIP problem, related to system inversion, that we ini-
tially defined for non-entangled states at the beginning
of Section VA , that we then extended to possibly entan-
gled states in Section VB and that may be summarized
as follows: a user is given a set of transformed states
|ψ′〉 = M(|ψ〉), but does not know the original states
|ψ〉, nor the mapping function M; the user wants to re-
store the original states |ψ〉. Whereas we illustrated that
QIP task with one type of application in Sections VA and
VB, we anticipate that it will have various other appli-
cations as the quite general field of QIP keeps on grow-
ing. In particular, this problem too may be rephrased
as a quantum communication scenario. The above user
is then the receiver, who only knows the received states
|ψ′〉, that have been altered by the channel M. Without
knowing that channel, the receiver aims at restoring the
emitted states |ψ〉 that he does not know either (or the
information, in classical form, contained in these states
|ψ〉). This therefore corresponds to the blind quantum
channel equalization problem and the generic methods
that we proposed in Sections VA and VB also allow one
to solve this problem, moreover with the advantages of
the proposed SIPQIP framework.
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VI. CONTRIBUTING TO QUANTUM
CLASSIFICATION

We now come back to the other main aspect of machine
learning discussed in Section II, namely classification. In
the classical framework, many classification algorithms
receive data that consist of vectors which contain fea-
tures that characterize the “objects” to be classified [67].
These algorithms heavily rely on computing the dot (i.e.,
scalar or inner) product vTj vk of two column vectors vj
and vk, where

T stands for transpose, or on computing
the distance ||vj − vk|| between the associated two data
points [67]. These two quantities are moreover directly
connected, since

||vj − vk||2 = ||vj ||2 + ||vk||2 − 2vTj vk. (35)

In particular, for any unit-norm vectors, this yields

||vj − vk||2 = 2(1− vTj vk). (36)

Using the signal/data processing terminology, vTj vk is
also the basic, i.e. non-centered and non-normalized, cor-
relation parameter of the data vectors vj and vk, whereas
their non-centered correlation coefficient (also called the
cosine similarity [67]) is

ρ(vj , vk) =
vTj vk

||vj ||.||vk||
. (37)

These two correlation parameters coincide for unit-norm
vectors. The correlation coefficient ρ(vj , vk) is e.g. widely
used for data characterization and classification by the
Earth observation (i.e. remote sensing) community. Each
of the vectors vj and vk then typically defines a spectrum,
which consists of the light reflectance values of a mate-
rial at a set of “frequencies” (in fact, narrow spectral
bands) [31]. More precisely, one then computes the ar-
ccosine of ρ(vj , vk), which is equal to the angle between
vj and vk [67] and is therefore called the “Spectral Angle
Mapper” (SAM) between these vectors [82]. A low value
of that SAM corresponds to a high value of the “spec-
tral similarity” of the considered materials, i.e. of their
similarity in terms of the shape of the variations of their
reflectance functions with respect to frequency (where
“shape” means regardless of their global scale: that scale
has no influence on (37) and hence on SAM). Similar
approaches are used in the field of Astrophysics, with
spectral data vectors which consist of luminance values
(i.e. direct light flux from the observed object), instead
of reflectance.
Let us now consider the situation when data that are

initially in classical form are to be classified by using a
quantum classifier, in order to achieve higher classifica-
tion speed [10, 67, 83]. This first requires one to trans-
form the initial classical data into quantum states. To
this end, each classical-form vector is stored in a qubit
register with index r, that consists of Q qubits. Each
individual qubit is thus indexed by r and q ∈ {1, . . . , Q}.

Its state space is denoted as Erq and a basis of this space
is composed of the two kets |krq〉rq with krq ∈ {0, 1}.
All deterministic pure states of the qubit register r then
belong to the space Er1 ⊗ . . . ErQ and read

|ψr〉 =
∑

S(kr•)

crkr1...krQ
|kr1〉r1 ⊗ . . .⊗ |krQ〉rQ (38)

where the compact notation S(kr•) means: the set of all
values of the ordered set of Q integers krq correspond-
ing to the fixed value r and to all values q ∈ {1, . . . , Q},
again with krq ∈ {0, 1}. Besides, the 2Q complex-valued
coefficients crkr1...krQ

are indexed by the index r of the
considered register and by all integers krq which define to
which basis state each coefficient crkr1...krQ

corresponds.
These coefficients are such that |ψr〉 has unit norm. Let
us then consider a classical-form complex-valued unit-
norm vector vj with dimension 2Q (or lower: zero-valued
components are then added to vj to reach 2Q compo-
nents). This vector may be stored in a ket |ψr〉 defined
by (38), by setting the coefficients crkr1...krQ

of |ψr〉 re-
spectively to the values of the components of vj (a com-
mon phase reference may be used for all considered kets).
If the norm of vj is not equal to one, it may be handled
separately, while vj/||vj || is stored in |ψr〉, as stated in
[83].
The above-defined kets (38) may then be employed in

quantum classifiers, which often use (i) the dot product
〈ψ1|ψ2〉 of such kets or (ii) the squared modulus of this
dot product, which is called the overlap of these kets (see
[84, 85] or [67] p. 120), or (iii) the distance between the
points associated with such kets, as e.g. discussed in [10,
67, 83]. The dot product formally associated with two
states (38) respectively stored in registers with indices
r = 1 and r = 2 is defined as if these kets belonged to
the same state space. This dot product therefore reads

〈ψ1|ψ2〉 =
∑

S(kr•)

c∗1kr1...krQ
c2kr1...krQ

(39)

where ∗ stands for complex conjugate. Some quantum
circuits were proposed in the literature for computing
the corresponding state overlap. A widely used approach,
called the swap test, was proposed in [86] to essentially
test the equality of two states. The quantity used to this
end is the probability of an outcome of a measurement
performed at the output of the considered circuit. This
quantity is equal to 0 if the considered states are equal,
and essentially equal to 1/2 otherwise (more precisely, it
is higher than a bound close to 1/2 if the states are far
enough from one another). Beyond this binary decision,
this probability is a continuous-valued quantity, which
may be shown to be linearly related to the overlap of the
considered quantum states (part of the corresponding cal-
culations are provided in [67, 86]). Another approach for
computing the overlap of quantum states is based on the
circuit of Fig. 6(B) of [84]. The behavior of that circuit
is only briefly defined in [84], which outlines how to ex-
press the overlap associated with the density operators
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of the two multi-qubit inputs of the considered circuit
as the result of classical post-processing applied to the
results of measurements performed at the output of that
circuit. Our own calculations (to be detailed elsewhere),
performed for deterministic pure input states |ψ1〉 and
|ψ2〉, confirm that the squared modulus of (39) may be
expressed as a (multistage) linear combination of prob-
abilities of outcomes of measurements performed at the
output of that quantum circuit. In appendix F, we show
how the above quantum circuits may be further exploited
in order to compute dot products 〈ψ1|ψ2〉, not only their
(squared) moduli.

The above dot products or overlaps may be used in var-
ious ways in the general framework of quantum classifica-
tion. More specifically, we hereafter show how enhanced
approaches may be developed by combining quantum
classification principles that use dot products or overlaps
with our SIPQIP, i.e. single-preparation, concept. We
illustrate this approach with a first original contribution
to single-preparation quantum classification, that will be
extended in future papers. In this contribution, we fo-
cus on the second phase of the operation of a classifier,
that is on the “resolution phase” defined in Section II,
which takes place after the (unsupervised or supervised)
learning phase. This is, by the way, similar to what we
did for BQSS, by first applying our SIPQIP concept to
the second phase of operation, i.e. the inversion phase,
before we extended it to the first, i.e. adaptation, phase
as explained in Section VA.

In the proposed approach, we consider the situation
when the classical-form vectors to be classified are char-
acterized by their shapes, not their magnitudes, e.g. as
in the Earth observation and Astrophysics applications
outlined at the beginning of the present section. There-
fore, these vectors may initially be rescaled to have unit
norm, so that this norm is not an issue when transform-
ing these classical vectors into quantum states. We here-
after address the general situation when the considered
classification problem involves C classes, indexed by c,
with c ∈ {1, . . . , C}. Moreover, we consider the usual
case when the classical-form data vectors, and hence the
associated dot products of kets, are real-valued.

To describe how classification is here performed, let
us first consider the non-realistic situation when each
class with index c is initially defined by a single known
classical-form vector vc1 and hence a single associated
quantum state |ψc1〉. When analyzing a new “object”
of the considered application (e.g. the spectrum of an
unknown material in the above Earth observation or As-
trophysics applications), represented by a quantum state
|φ〉, a basic method for classifying that object consists of
separately estimating its dot product 〈φ|ψc1〉 with each of
the states |ψc1〉 and in deciding that this object belongs
to the class which yields the highest estimated value of
the dot product 〈φ|ψc1〉, i.e. the best similarity with
|φ〉. This approach may be simplified as follows in the
case when the components of the considered classical-
form data vectors are nonnegative, which e.g. applies

to the reflectance or luminance values that compose the
above-mentioned spectra. In that case, the square root
of the overlap |〈φ|ψc1〉|2 coincides with the corresponding
dot product 〈φ|ψc1〉. This overlap is therefore sufficient
for measuring similarity in that case (as opposed to the
sign indeterminacy that it yields with respect to the dot
product for possibly negative data). The above classifier
then operates equivalently by deciding that the consid-
ered object belongs to the class which yields the highest
estimated value of overlap |〈φ|ψc1〉|2. This is attractive,
because an overlap is computed more easily that the cor-
responding dot product, as shown in Appendix F.

An improved variant of the above classification method
employs a user-defined threshold in addition, in order to
achieve the rejection capability defined in Section II: if
the highest of the above dot products (or overlaps, in the
simplified version) remains lower than this threshold, the
considered object is “rejected”, i.e. the classifier decides
that it is not able to classify that object, because it is
not similar enough to any of the classes of objects that
are known in the considered problem.

All these classifiers are based on computing overlaps,
because their decisions are either directly based on such
overlaps or based on dot products, that may be derived
from overlaps, as explained in Appendix F. Each of these
overlaps, such as |〈φ|ψc1〉|2, is typically estimated by us-
ing the sample frequency estimate(s) of one or several
types of probabilities associated with overlap in the quan-
tum circuits that were defined above for estimating over-
laps. This then means that, for each class c, many copies
(typically 105, as explained in Section IIIA) of the state
|ψc1〉 must be prepared to estimate these probabilities.

Now consider the realistic version of the above prob-
lem, when each class with index c is initially defined by
a full set of classical-form vectors vcj , with a vector in-
dex j ranging from 1 to a maximum value that may de-
pend on the class. These vectors are then transformed
into quantum states |ψcj〉. The above classifiers may be
extended as follows for this situation, focusing on their
version that directly bases its decisions on overlaps, for
the sake of clarity. For each class, one may first compute
a full set of (estimates of) overlaps |〈φ|ψcj〉|2 and these
quantities should then be reduced to a single parameter
that characterizes the overall similarity of the considered
class with |φ〉. A natural parameter that may be used
to this end is the mean of all overlaps |〈φ|ψcj〉|2 associ-
ated with the considered class. Here again, in practice,
only an estimate of this mean overlap is obtained, by
using various quantum state preparations and measure-
ments. However, unlike in the above non-realistic sce-
nario, this may here be achieved with two quite different
approaches. The first approach, which might be consid-
ered as the most natural one if disregarding our previous
contributions in this paper, consists of separately esti-
mating each of the overlaps |〈φ|ψcj〉|2 as above, therefore
typically preparing 105 copies of each state |ψcj〉 (and of
|φ〉), and then computing (on a classical computer) the
mean of these estimated overlaps. This is an application
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of the standard, multiple-preparation, approach defined
in Section IIIA. However, we stress that we here only
aim at computing the mean of this finite set of overlaps,
so that we only need to estimate the mean(s) of the corre-
sponding set(s) of probabilities (as explained above, this
involves one or several types of probabilities, depending
on the considered quantum circuit). In Section III C, we
showed that this may be performed much more efficiently
by using our SIPQIP framework, which here means de-
creasing the number of preparations per state |ψcj〉 and
taking advantage of the averaging of measurement results
that is then performed over all these states (thus still re-
questing one copy of |φ〉 per measurement). This number
of preparations per state may even be decreased down to
one if enough different states |ψcj〉 are available to reach
a high enough estimation accuracy: in [26] and Section
IVB2 of the present paper, we analyzed the numerical
performance achieved by this SIPQIP approach for the
BQPT and BHPE tasks, and we plan to investigate it for
classification in future papers. In the literature, quantum
classifiers have especially been considered for big-data,
i.e. large-scale, applications [10, 83]. In such applica-
tions, the above-mentioned large number of states |ψcj〉
will actually be available and our SIPQIP framework will
take full advantage of it (besides, it can also attractively
operate with a somewhat lower total number of states
|ψcj〉 and a number of preparations per state somewhat
higher than one).

VII. CONCLUSION

The term “machine learning” especially refers to algo-
rithms (and associated systems) that derive mappings,
i.e. intput/output transforms, by using numerical data
that provide information about the transform which is
of interest in the considered application. The data pro-
cessing tasks to be performed in these applications not
only include classification and regression, but also system
identification, system inversion and input signal restora-
tion (or source separation when considering several sig-
nals). Whereas these problems have been and are still
widely investigated in a purely classical framework, part
of them are currently being extended to configurations
which involve quantum-form data and/or quantum pro-
cessing means. Within this general quantum framework,
we here tackled the most challenging configurations from
two points of view. First, almost all this paper is devoted
to unsupervised, i.e. blind, configurations, which have
not been addressed in the literature for most of the tasks
considered here. Unsupervised learning is very attrac-
tive because, as detailed in Sections I and II, it avoids
the need for known “reference values” (e.g., input val-
ues for system identification) to learn the required map-
pings. Second, we here mainly aim at extending a variety
of aspects of quantum machine learning by introducing
new algorithms which can operate with only one instance
of each prepared state (where the term “preparation”

is used for both deterministic and random pure states,
as explained in Section I). This approach first avoids
the burden of having to prepare many ideally identical
copies of each used state in order to compute statisti-
cal parameters separately for each such state. Moreover,
this approach yields much better performance than the
multiple-preparation approach for a given total number
of state preparations, as shown for blind quantum process
tomography in our very recent paper [26] and confirmed
here by our new results for blind Hamiltonian parameter
estimation. Besides, this original single-preparation ap-
proach is especially of interest when combined with unsu-
pervised learning, because using the multiple-preparation
approach instead, in the unsupervised framework, would
mean allowing the “reference values” to be unknown but
still requesting that the same (unknown) reference value
be prepared many times, which would still require sig-
nificant control in the considered quantum learning pro-
cedure, so that this procedure would be “less unsuper-
vised”.
The above concepts thus result in a general SIngle-

Preparation Quantum Information Processing (SIPQIP)
framework. We illustrated it for various processing tasks,
including with a quantitative evaluation of the numeri-
cal performance that it yields. For the tasks related to
the blind, i.e. unsupervised, version of system identifica-
tion (including quantum process tomography and Hamil-
tonian parameter estimation), system inversion and sig-
nal restoration (including source separation), we showed
how to apply the proposed approach to a concrete ex-
ample, related to spintronics, which involves Heisenberg
coupling between two qubits. Starting from the explicit
algorithms and system architectures that we detailed for
this configuration, the reader may then adapt them to
other types of processes, and we will also extend this ap-
proach to other processes in the future. Similarly, we pro-
vided a first illustration of the application of this SIPQIP
framework to quantum classification and we plan to re-
port extensions of this approach in future papers.
Moreover, when aiming at compensating for undesired

Heisenberg coupling between qubits, we proposed two
quantum system architectures: see Fig. 6 for a feed-
back structure and Fig. 7 for a feedforward structure.
These architectures open the way to the much more gen-
eral concept of “self-adaptive quantum gates”, i.e. gates
which include the following two features:

1. some means for controlling the values of parame-
ters that define the quantum state transform that
such a gate performs within a predefined class of
transforms,

2. an autonomous (i.e. blind or unsupervised) algo-
rithm which controls the adaptation of these pa-
rameter values, so as to achieve a predefined con-
dition, that could consist of ensuring output disen-
tanglement, as in the above example, or that could
be a counterpart of that condition, depending on
the available data and on the type of undesired be-
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havior that one wants to compensate for.

Such gates would especially be of interest for a quantum
computer that, by the way, we proposed to more briefly
call a “quamputer”: by adequately selecting the above-
mentioned adaptation condition and designing an as-
sociated adaptation algorithm, one could create a self-
adaptive quantum gate that automatically compensates
for a given type of non-ideality (instead of undesired
Heisenberg coupling in the above example) that occurs
e.g. in a gate that precedes the considered self-adaptive
gate, thus allowing practical future quamputers to oper-
ate correctly despite these non-idealities, thanks to their
internal compensation means.

Appendix A: Connection of single-preparation and
multiple-preparation QIP with classical adaptive

processing

Various types of classical data processing methods are
based on adapting the parameter values of a system, e.g.
of a filter, an artificial neural network (including the
above-mentioned deep learning approaches) or a blind
source separation system (see e.g. [1, 9, 29, 31, 32, 51, 87–
89] and references in Sections I and II). This adaptation
is based on a set of (often multidimensional) data sam-
ples, which are typically used to minimize a cost function
that depends on the considered problem. This yields the
following two approaches.
The first approach corresponds to so-called batch algo-

rithms [9, 32]. These algorithms are often iterative, and
each of their steps uses the complete set of available data
samples. This especially includes gradient descent algo-
rithms [87] (i.e., steepest descent algorithms [51]), where
each step uses the gradient of the cost function defined
by all data samples to perform one update for all param-
eters.
The cost functions of the above algorithms, and hence

their gradients, are often defined as the mean of an “el-
ementary term” associated with a single data sample,
where this mean is the expectation if considering a proba-
bilistic representation, or the mean (or sum) over all data
samples if using an empirical framework. The second
type of adaptation algorithms is then derived from the
first one essentially by removing the above mean from the
update rule used in each adaptation step [51, 87, 89] (see
e.g. [9] for comments about Robbins-Monro algorithms
and stochastic approximation theory). Each such step
thus uses only the “elementary term” associated with
a single data sample (or a few samples [1]), where this
term corresponds to a random variable in a probabilistic
framework (as opposed to the expectation of these terms
used in deterministic, batch, algorithms). This yields
so-called online [9, 32] or stochastic algorithms, and es-
pecially stochastic gradient descent algorithms [1, 51], in-
cluding the famous least-mean-square (LMS) or Widrow-
Hoff algorithm [9, 51, 87–89].

If only considering a single step of the above second
type of algorithms, these algorithms may at first glance
appear not to be sound, because such a step only uses the
elementary term associated with a single data sample to
estimate the relevant expectation derived for the above
first type of algorithms. However, one should instead
consider the complete set of adaptation steps, which uses
(once or repeatedly [9]) all data points: this overall set of
steps of the algorithm eventually yields relevant behavior.

Unlike most above classical methods, the procedure
that we described in Section III B does not concern iter-
ative algorithms for optimizing a cost function. However,
these two types of methods share a two-level structure,
where the lower level uses only one (or a few) data sam-
ple(s), and the higher level gathers all the contributions
derived from the lower level, thus extracting overall infor-
mation that is relevant for the considered applications.

The lower level of these quantum methods might there-
fore be stated to be “stochastic” (in the sense “us-
ing a single data sample”), but that might be mislead-
ing for some QIP tasks, so that we instead call them
“single-preparation (QIP) methods”, for the sake of clar-
ity. Therefore, the QIP methods based on the approach
of Section III A are called “multiple-preparation (QIP)
methods”, whereas they might have been called “batch
(QIP) methods”, as a reference to the above batch clas-
sical methods.

Appendix B: Validating the single-preparation QIP
framework with Kolmogorov’s approach

One may decide to use the approach defined in Section
III B only as a means for proposing to use the expres-
sion obtained in (10) as an estimator of the quantity of
interest, that is of E{P (Ak)} for any k ∈ {1, . . . , 2Q},
and to then validate the relevance of this estimator from
scratch, by using Kolmogorov’s view of probabilities (see
e.g. [68]). This validation consists of deriving the mean
(and hence bias) and variance of this estimator. It is pro-
vided hereafter, first for a finite number L of trials, and
then for the asymptotic case L→ +∞.

The result of the trial with index ℓ, which corresponds
to the indicator function in (10), is here represented by
a binary-valued random variable denoted as Xℓ, which
takes the values 1 and 0 respectively with probabilities
P (Ak, ℓ) (defined as in Section III B) and [1− P (Ak, ℓ)].
Then, the overall result (10) for all L trials is represented
by the random variable

X =

∑L
ℓ=1 Xℓ

L
(B1)

where we omit in notations that all Xℓ and hence X
depend on k.
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1. Mean of X for a finite L

As a first scenario, let us consider the case when the
pure states |ψ(n)〉 and hence the quantities P (Ak, ℓ) are
deterministic and the number K of copies of each state
|ψ(n)〉 is arbitrary (including K = 1). It is then easily
shown that

E1{Xℓ} = P (Ak, ℓ) (B2)

where E1{.} stands for expectation, i.e. statistical aver-
aging with respect to the possible values (1 and 0) of Xℓ,
with their above fixed probabilities, in this first scenario.
Eq. (B1) then yields

E1{X} =

∑L

ℓ=1 P (Ak, ℓ)

L
. (B3)

Then, the second scenario, which is the one of interest
here, is when the quantities P (Ak, ℓ) are stochastic and
their samples are drawn with the same statistical distri-
bution for all values of ℓ. The expectation of this distri-
bution is denoted as E{P (Ak)}, since it does not depend
on ℓ. The expectation E2{X} of X is then obtained by
performing statistical averaging not only with respect to
the possible values of Xℓ, as above, but also with respect
to the possible values of the quantities P (Ak, ℓ). Apply-
ing the latter averaging to (B3) yields

E2{X} =

∑L

ℓ=1E{P (Ak, ℓ)}
L

(B4)

= E{P (Ak)}. (B5)

So, for a finite L, the expectation of the proposed esti-
mator X of E{P (Ak)} is equal to E{P (Ak)}, i.e. this
estimator is unbiased.

2. Asymptotic mean of X

Starting from the above second scenario, when L tends
to infinity, the above mean (B5) of course remains equal
to E{P (Ak)}. The proposed estimator X of E{P (Ak)}
is therefore asymptotically unbiased.
It should be noted that, in the above first scenario,

(B3) similarly yields

lim
L→+∞

E1{X} = lim
L→+∞

∑L
ℓ=1 P (Ak, ℓ)

L
(B6)

provided this limit exists. This result is consistent with
the frequentist view of probabilities and statistical mean
because, in the latter view, the right-hand term of (B6)
is the statistical mean of the samples P (Ak, ℓ).

3. Variance of X for a finite L

We here consider the case when the number K of
copies of each state |ψ(n)〉 is equal to one, assuming these

states are independently drawn (with the same distribu-
tion again) in the second scenario. For both scenarios, it
may be shown that the random variables Xℓ are uncor-
related and that the variance of X, defined with E1{.} or
E2{.} depending on the considered scenario, meets

var{X} =

∑L
ℓ=1 var{Xℓ}

L2
. (B7)

For deterministic values of the quantities P (Ak, ℓ), the
variance of each random variable Xℓ is easily calculated,
and (B7) then yields

var1{X} =

∑L

ℓ=1[P (Ak, ℓ)− P (Ak, ℓ)
2]

L2
. (B8)

Since P (Ak, ℓ) ∈ [0, 1], Eq. (B8) yields

0 ≤ var1{X} ≤ 1

4L
. (B9)

For stochastic values of the quantities P (Ak, ℓ), one sim-
ilarly obtains

var2{X} =
E{P (Ak)} − (E{P (Ak)})2

L
(B10)

and

0 ≤ var2{X} ≤ 1

4L
. (B11)

4. Asymptotic variance of X

Eq. (B9) and (B11) directly yield

lim
L→+∞

var1{X} = 0 (B12)

lim
L→+∞

var2{X} = 0. (B13)

This, together with the above result concerning the
asymptotic mean of the proposed estimator X, shows
that this estimator is asymptotically efficient. This
is the counterpart, for our framework, of the conver-
gence/stability analysis of the non-quantum adaptive
systems considered in Appendix A.

Appendix C: Considered quantum process and state
properties

In this paper, we consider a device composed of
two distinguishable [42] qubits implemented as electron
spins 1/2, that are internally coupled according to the
cylindrical-symmetry Heisenberg model, which is e.g. rel-
evant for spintronics applications [79–81]. The symmetry
axis of this model is here denoted as Oz. The considered
spins are supposed to be placed in a magnetic field (also
oriented along Oz and with a magnitude B) and thus



23

coupled to it. Moreover, we assume an isotropic g ten-
sor, with principal value g. The time interval when these
spins are considered is supposed to be short enough for
their coupling with their environment to be negligible.
In these conditions, the temporal evolution of the state
of the device composed of these two spins is governed by
the following Hamiltonian:

H = Gs1zB +Gs2zB − 2Jxy(s1xs2x + s1ys2y)

−2Jzs1zs2z (C1)

where:

• G = gµe, where µe is the Bohr magneton, i.e. µe =
e~/2me = 0.927×10−23JT−1 and ~ is the reduced
Planck constant,

• sjx, sjy , sjz , with j ∈ {1, 2}, are the three com-
ponents of the vector operator −→sj associated with
spin j in a cartesian frame,

• Jxy and Jz are the principal values of the exchange
tensor.

Among the above parameters, the value of g may be ex-
perimentally determined, and B can be measured. The
values of Jxy and Jz are here assumed to be unknown.
We here suppose that each spin j, with j ∈ {1, 2}, is

prepared, i.e. initialized, at a given time t0, in the pure
state

|ψj(t0)〉 = αj |+ 〉+ βj | − 〉 (C2)

where |+〉 and |−〉 are eigenkets of sjz , for the eigenvalues
1/2 and −1/2 respectively. We will further use the polar
representation of the qubit parameters αj and βj , which
reads

αj = rje
iθj βj = qje

iφj j ∈ {1, 2} (C3)

where i is the imaginary unit, and with 0 ≤ rj ≤ 1 and

qj =
√
1− r2j j ∈ {1, 2} (C4)

because each spin state |ψj(t0)〉 has unit norm. Moreover,
for each couple of phase parameters θj and φj , only their
difference has a physical meaning. After they have been
prepared, these spins are coupled according to the above-
defined model for t ≥ t0.
Hereafter, we consider the state of the overall system

composed of these two spins. At time t0, this state is
equal to the tensor product of the states of both spins
defined in (C2). It therefore reads

|ψ(t0)〉 = |ψ1(t0)〉 ⊗ |ψ2(t0)〉 (C5)

= α1α2|++〉+ α1β2|+−〉
+β1α2| −+〉+ β1β2| − −〉 (C6)

in the four-dimensional basis B+ = {| + +〉, | + −〉, | −
+〉, | − −〉}.

The state of this two-spin system then evolves with
time. Its value |ψ(t)〉 at any subsequent time t may be
derived from its above-defined Hamiltonian. It is defined
[38] by

C+(t) =MC+(t0) (C7)

where C+(t0) and C+(t) are the column vectors of com-
ponents of |ψ(t0)〉 and |ψ(t)〉, respectively, in basis B+.
For instance, as shown by (C6),

C+(t0) = [α1α2, α1β2, β1α2, β1β2]
T (C8)

where T stands for transpose. Moreover, the matrix M
of (C7), which defines the transform applied to |ψ(t0)〉,
reads

M = QDQ−1 = QDQ (C9)

with

Q = Q−1 =




1 0 0 0

0 1√
2

1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1


 (C10)

and D equal to



e−iω1,1(t−t0) 0 0 0

0 e−iω1,0(t−t0) 0 0

0 0 e−iω0,0(t−t0) 0

0 0 0 e−iω1,−1(t−t0)


 .

(C11)

The four real (angular) frequencies ω1,1 to ω1,−1 in (C11)
depend on the physical setup. In [38], it was shown that
they read

ω1,1 =
1

~

[
GB − Jz

2

]
, ω1,0 =

1

~

[
−Jxy +

Jz
2

]
, (C12)

ω0,0 =
1

~

[
Jxy +

Jz
2

]
, ω1,−1 =

1

~

[
−GB − Jz

2

]
.

(C13)

Since the values of the parameters Jxy and Jz of the
Hamiltonian of (C1) are presently unknown, the values
of the parameters ω1,1 to ω1,−1 of the quantum process
involved in (C7) are also unknown. Combining (C11) and
(C12)-(C13) shows that the only quantities that must be
estimated in order to obtain an estimate of D and hence

of M are exp
[
i
Jxy(t−t0)

~

]
and exp

[
iJz(t−t0)

2~

]
.

The (B)QPT problem then consists of estimating the
matrix M involved in (C7), which defines the considered
quantum process. More precisely, its blind, i.e. unsuper-
vised, version proposed in [26] operates as follows:

• It uses values of the output state |ψ(t)〉 of this pro-
cess.
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• It does not use nor know values of its input state
|ψ(t0)〉.

• But it knows and exploits some properties of these
states |ψ(t0)〉. In [26], these requested properties
are as follows. The states |ψ(t0)〉 are required
to be unentangled (as shown by (C5)). Besides,
the proposed BQPT methods are statistical ap-
proaches and the six parameters rj , θj and φj ,
with j ∈ {1, 2}, defined in (C3) are constrained to
have properties that are similar to those requested
in the above-mentioned QSICA methods: (i) these
parameters are random valued, so that we consider
random pure quantum states |ψi(t0)〉 (see [48] for
more details) and (ii) some combinations of the ran-
dom variables rj , θj and φj are statistically inde-
pendent and have a few known statistical features,
as detailed in [26].

Appendix D: A method for estimating Jxy and Jz

1. Estimating Jxy

We here consider the problem of estimating the Hamil-
tonian parameter Jxy, defined in Section IVB. We fo-
cus on the practical situation with estimation errors for
∆Ed1 and ∆Ed2, and with a known range for Jxy. We
hereafter show how to exploit this range in such a way

that the values of Ĵxy1 and Ĵxy2 which are the closest
to one another are also those which are the closest to
Jxy. To this end, one takes into account that ∆̂Ed1 and

∆̂Ed2 are always in the interval
[
−π
2
,
π

2

]
(because they

are values of the arcsin function: see (19)). This, to-

gether with the known range of possible values of Ĵxy1,
the known value of τ11 and the corresponding version

of (21) defines the range {k̂min
xy1 , . . . , k̂

max
xy1 } of integers

in which it is guaranteed that k̂xy1 should be selected.
Similarly, the value of τ12 is to be selected as explained
hereafter, and for the application of the procedure with

any given value τ12, the integer k̂xy2 should be selected

in a known interval {k̂min
xy2 , . . . , k̂

max
xy2 }. When the esti-

mation errors for ∆Ed1 and ∆Ed2 remain low enough,

the values Ĵxy1 and Ĵxy2 of the grids respectively cor-
responding to ∆kxy1 = 0 and ∆kxy2 = 0 both remain
close to their theoretical value Jxy. Around these values,
the two grids almost coincide. Then, for larger values of
|∆kxy1| and |∆kxy2| corresponding to the above-defined
intervals, we here want the associated parts of the two
grids to become more “desynchronized”, i.e. we want
the gaps between the values of the two grids to become
larger. This is obtained by adequately selecting τ12 for
an arbitrarily chosen value τ11, but this should be per-
formed without knowing where Jxy is in the considered
interval. We therefore use a worst-case approach in terms
of desynchronization, for the ideal estimation (28), as fol-
lows. The reference point, shared by both grids, is equal

to Jxy and is obtained when ∆kxy1 = 0 and ∆kxy2 = 0.
We consider the case when this reference point is the

lowest value in both bounded grids, i.e. k̂min
xy1 = kxy1 and

k̂min
xy2 = kxy2. For any given τ11, we select a value τ12

which is only somewhat larger than τ11, thus considering

that k̂min
xy2 = k̂min

xy1 and k̂max
xy2 = k̂max

xy1 . The values are then
somewhat closer to one another in the second grid than in
the first one. Moreover, we select τ12 so that, when mov-
ing towards the higher values in both bounded grids, the
gaps between the corresponding points of the two grids
increase, until they reach the maximum possible gap for
the highest values. This means that we set τ12 so that
the highest value in the first bounded grid (i.e. the value

of Ĵxy1 in (24) corresponding to k̂xy1 = k̂max
xy1 , moreover

taking into account (28)) is equal to that of the middle
of the interval of the second grid defined as follows: the
lower bound of that interval is the highest value in the
bounded part of that grid considered here (i.e. the value

of Ĵxy2 in (26) corresponding to k̂xy2 = k̂max
xy2 = k̂max

xy1 ,
moreover taking into account (28)) and the higher bound
of that interval is the next value that would be found in
that grid, when moving towards higher values, if that
grid were complete, i.e. this upper bound is equal to the
lower bound plus ~π

τ12
. Using (24) to (28), it may easily

be shown that the above desynchronization condition for
the highest values of the two grids yields

~

τ11
(k̂max

xy1 − k̂min
xy1 )π =

~

τ12
(k̂max

xy1 − k̂min
xy1 +

1

2
)π. (D1)

Therefore, for a given value τ11, one should set τ12 so
that

τ12
τ11

=
k̂max
xy1 − k̂min

xy1 + 1
2

k̂max
xy1 − k̂min

xy1

(D2)

=
2(k̂max

xy1 − k̂min
xy1 ) + 1

2(k̂max
xy1 − k̂min

xy1 )
. (D3)

The latter expression shows that the value thus obtained
in this practical procedure for a bounded interval on Jxy
yields a rational value of τ12

τ11
(unlike the above prelimi-

nary procedure for the ideal case and without restrictions
on the domain of Jxy).

2. Estimating Jz

The method used for estimating Jz is very similar to
the approach described above for Jxy. It is therefore
more briefly outlined hereafter. It uses the procedure of
the second part of the BQPT method of Section IVA,
based on (22) and (23). This procedure is here applied
twice, i.e. with τ2 of Section IVA successively replaced
by two values denoted as τ21 and τ22. For τ21, combining
(22) and (23) and using the same type of notations as for
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Jxy yields

Ĵz1 = Jz+
~

τ21

[
∆̂Φ1,0d1 −∆Φ1,0d1 + 2∆kz1π

]
+(Ĵxy−Jxy)

(D4)
with

∆kz1 = k̂z1 − kz1 (D5)

and where Ĵxy is the estimate of Jxy without any indeter-
minacy that was obtained in the first part of this Hamil-
tonian parameter estimation method. This shows that
the procedure applied with the time interval τ21 yields a

regular one-dimensional grid of possible estimates Ĵz1 of
Jz, with a step equal to 2~π

τ21
. Its application with the time

interval τ22 is analyzed in the same way. We here exploit
the differences between these two grids, by transposing
the approach that we described above for Jxy. Thus, first
considering the case with no estimation errors and with
Jz equal to the lowest value of both bounded grids leads
one to select τ21 and τ22 so that

~

τ21
2(k̂max

z1 − k̂min
z1 )π =

~

τ22
2(k̂max

z1 − k̂min
z1 +

1

2
)π (D6)

and hence

τ22
τ21

=
k̂max
z1 − k̂min

z1 + 1
2

k̂max
z1 − k̂min

z1

(D7)

where the integers k̂min
z1 and k̂max

z1 are defined by using
the same approach as for Jxy, here taking into account
that ∆Φ1,0d1 and hence its relevant estimates are guar-
anteed to be in the interval [−π, π] (see the expression of

∆Φ1,0d1 in [26]) and that Ĵxy and GB are known.
Then, for the practical situation with estimation er-

rors, and still with prior knowledge about an interval
which contains the actual value Jz , the method proposed

for determining Jz consists of comparing each value Ĵz1
of the first bounded grid to each value Ĵz2 of the sec-
ond bounded grid in order to derive the couple of closest

values and then the corresponding estimate
Ĵz1 + Ĵz2

2
.

Appendix E: Test conditions

We here define the conditions used for all the tests re-
ported in Section IVB2. The actual values of the param-
eters of the Hamiltonian (C1) were first selected by us-
ing the following properties. Conventional Electron Spin
Resonance generally operates at X or Q bands (around
10 and 35 GHz respectively). For electron spins with
g = 2, at 35 GHz, the resonance field is near 1.25 T. In the
simulations, we used the values g = 2 and B = 0.99 T.
Concerning the exchange coupling, we chose Jz/kB ≃ 1 K
and Jxy/kB = 0.3 K. These values were motivated by
[26], Appendix E of [38] and [90]. As in [26], we selected
part of the parameters defined above and below so as to

avoid specific cases (see footnote [50] of [26]), but this
here led us to slightly shift some of these values as com-
pared with those of [26], because we here have to take
these specific cases into account for four time intervals
(τ11, τ12, τ21 and τ22) instead of only three (τ1 τ2, τ3)
in [26], so that the blind Hamiltonian parameter estima-
tion (BHPE) method proposed here is somewhat more
constraining that the BQPT method of [26].

The parameters of the BHPE method were then set as
follows. The six parameters rj , θj and φj , with j ∈ {1, 2},
of each initial state |ψ(t0)〉 were randomly drawn with a
uniform distribution, over an interval which depends on
the part of the considered BHPE method, in order to
meet the constraints on the statistics of these parame-
ters that are imposed by that BHPE method. The pa-
rameters q1 and q2 were then derived from (C4). More
precisely, the parameter Jxy was first estimated by apply-
ing the procedure of the first part of the BQPT method
of Section IVA successively to each of the two values τ11
and τ12. For each of these values, as a first step, to esti-
mate the absolute value of v as detailed in [26], the qubit
parameter values r1 and r2 were selected within the 20%-
80% sub-range of their 0%-100% allowed range defined in
[26], that is, [0.1, 0.4[ for r1 and [0.6, 0.9[ for r2, as in [39].
Besides, φ1 and φ2 were drawn over [0, 2π[ whereas θ1
and θ2 were fixed to 0 (as stated above, the parameters
which have a physical meaning are φj − θj). These data
are thus such that E{sin∆I} = 0, as required by this
step of the considered BQPT method. Then, as a sec-
ond step, to estimate the sign of v as detailed in [26], the
same conditions as in the above first step were used for
rj , θj and φj , with j ∈ {1, 2}, except that φ1 was fixed to
0 and φ2 was drawn over [0, π[. These data are thus such
that E{sin∆I} is non-zero and has a known sign (here,
it is positive), as required by this step of the considered
BQPT method. The above two steps were performed
with τ11 = 0.5 ns and then τ12 defined by (D2), with

k̂min
xy1 = 0 and k̂max

xy1 = 31 because the only prior knowl-
edge about Jxy which is provided to this BHPE method
is that Jxy/kB is in the range [0, 1.5K] (the upper bound
1.5 K was selected as 5 times the value 0.3 K, which was
actually used to create the data processed in these tests
as explained above). For τ12, the above interval of values

of Jxy/kB results in k̂min
xy2 = 0 and k̂max

xy2 = 32.

The parameter Jz was then estimated by applying the
procedure of the second part of the BQPTmethod of Sec-
tion IVA successively to each of the two values τ21 and
τ22, with τ21 = 0.53 ns and then τ22 defined by (D7), with

k̂min
z1 = −13 and k̂max

z1 = 7 because the only prior knowl-
edge about Jz which is provided to this BHPE method
is that Jz/kB is in the range [≃ 0.45K,≃ 2.24K] (these
two bounds were selected as the actual value ≃ 1 K re-
spectively divided and multiplied by

√
5). For τ22, the

above interval of values of Jz/kB results in k̂min
z2 = −13

and k̂max
z2 = 7. The proposed method uses measurements

along the Oz and Ox axes. For each of the parameters rj ,
θj and φj , with j ∈ {1, 2}, we used the same statistics for
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measurements along the Oz and Ox axes. These statis-
tics were also the same when using τ21 and τ22, and they
are defined as follows. The proposed method is based on
two instances of Eq. (40) of [26]. For the first instance
of this equation, r1 and r2 were drawn over [0.1, 0.4[ and
φ1 and φ2 were drawn over [−π/2, π/2[, whereas θ1 and
θ2 were fixed to 0. For the second instance of the above
equation, r1 and r2 were drawn over [0.6, 0.9[, whereas
φ1, φ2, θ1, and θ2 were selected in the same way as for
the first instance of that equation.

Appendix F: Computing the dot product of two kets

In Section VI, we considered the situation when two
known unit-norm classical-form vectors v1 and v2 are
stored in two unit-norm kets |ψ1〉 and |ψ2〉, and one then
uses quantum circuits from the literature to compute the
corresponding overlap |〈ψ1|ψ2〉|2. We here propose an
extension of this approach, that has not been reported
in the literature to our knowledge, and that allows one
to compute the complex-valued dot product 〈ψ1|ψ2〉 it-
self, not only its (squared) modulus. To this end, we first

consider the classical-form vector

v3 = µ3(v1 + v2) (F1)

where µ3 is real-valued and selected so that v3 has unit
norm. v3 is stored in the unit-norm ket

|ψ3〉 = µ3(|ψ1〉+ |ψ2〉). (F2)

Simple calculations then yield

|〈ψ1|ψ3〉|2 = µ2
3(1 + |〈ψ1|ψ2〉|2 + 2ℜ(〈ψ1|ψ2〉). (F3)

The above-mentioned quantum circuits allow one to com-
pute the overlaps |〈ψ1|ψ3〉|2 and |〈ψ1|ψ2〉|2, and (F3) then
yields ℜ(〈ψ1|ψ2〉). Similarly, ℑ(〈ψ1|ψ2〉) is obtained by
using the ket |ψ4〉 corresponding to the vector

v4 = µ4(v1 + iv2) (F4)

where µ4 is real-valued and selected so that v4 has unit
norm. Similar calculations then yield

|〈ψ1|ψ4〉|2 = µ2
4(1 + |〈ψ1|ψ2〉|2 − 2ℑ(〈ψ1|ψ2〉). (F5)

The dot product 〈ψ1|ψ2〉 is eventually derived from its
above real and imaginary parts.
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