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Résumé 
L’imagerie hyperspectrale a démontré son intérêt pour la caractérisation des propriétés biochimiques, biophysiques et 
structurelles de la végétation, des sols naturels et agricoles ainsi que des surfaces artificialisées. A la suite de la mission 
Hyperion, de nouvelles missions spatiales ont vu le jour (PRISMA, EnMAP), ou sont en phase d’étude (SBG, CHIME). Ces 
spectro-imageurs ont une résolution spatiale au sol de l’ordre de 30 m, un large champ de vue et peuvent couvrir de vastes 
zones du globe terrestre afin de caractériser les écosystèmes terrestres et océaniques avec un temps de revisite variant de 4 
à 16 jours. Néanmoins, leur résolution spatiale est limitée ce qui induit un nombre important de pixels mixtes réduisant leur 
potentiel de discrimination pour des zones hétérogènes. La mission BIODIVERSITY a pour objectif de compléter ces missions 
par des acquisitions de meilleure résolution spatiale (typiquement 8-10 m) avec une revisite de l’ordre de 5 jours sur des sites 
de référence ciblés possédant des caractéristiques identifiées et bien localisées. Elle permettra ainsi de répondre à deux 
problématiques scientifiques qui vont dimensionner l’instrument. La première problématique porte sur la distribution spatiale 
et temporelle des traits de la végétation dans les assemblages d’espèces ; ces traits sont associés à la résilience des 
écosystèmes terrestres, aux influences anthropiques et à la biodiversité des écosystèmes en termes de composition et 
d’assemblages en espèces. La seconde problématique porte sur l’amélioration de nos connaissances des zones côtières et 
des eaux continentales en termes de biodiversité, de qualité des eaux et de bathymétrie, pour ensuite évaluer l’impact de 
l’activité anthropique sur leurs écosystèmes. Enfin, ces deux applications qui déterminent les spécifications de l’instrument 
seront complétées par l’étude, à fine résolution spatiale, de l’impact des pratiques de gestion des sols dans un processus 
environnemental tels que le stockage du carbone dans les sols, l’infiltration et la rétention d’eau en surface ou l’érosion des 
sols. Elles ouvrent également de nouvelles voies pour évaluer comment les matériaux urbains influencent notre environnement 
proche et pour caractériser les pollutions urbaine et industrielle. Les défis scientifiques ainsi que les exigences-utilisateurs pour 
une telle mission sont présentés pour chaque application. 

Mots-clés : imagerie hyperspectrale, mission spatiale, végétation, biodiversité, écosystèmes côtiers, zone critique, qualité 
des sols, milieu urbain 

Abstract 
Imaging spectroscopy has demonstrated an interest in characterizing the biochemical, biophysical and structural properties of 
vegetation, natural and agricultural soils, as well as artificial surfaces. Following the Hyperion mission, new space missions 
have emerged (PRISMA, EnMap), or are under study (CHIME, SBG). Most of these space missions have a ground sampling 
distance (GSD) of 30 m, a wide swath and thus they can cover large regions of the Earth simultaneously to characterize 
different terrestrial and oceanic ecosystems with a revisit period varying from 4 to 16 days. However, their spatial resolution is 
limited which induces a large number of mixed pixels reducing their potential to discriminate heterogeneous areas. The 
BIODIVERSITY mission aims to complement these space missions with a better GSD (typically 8-10 m), a 5-day revisit on 
targeted reference sites with identified and well-located characteristics. It will thus provide answer to two scientific issues that 
will design the instrument. The first issue concerns the spatial and temporal distribution of vegetation traits in species 
assemblages; these traits are associated with the resilience of terrestrial ecosystems, anthropogenic influences, and the 
biodiversity of ecosystems in terms of species composition and assemblages. The second issue relates to improving our 
knowledge of coastal areas and inland waters in terms of biodiversity, water quality and bathymetry, to assess the impact of 
human activity on their ecosystems. Finally, these two applications, which determine the specifications of the instrument, will 
be supplemented by the study, at fine spatial resolution, of the impact of soil management practices in an environmental 
process such as soil carbon sequestration, infiltration and retention, runoff or soil erosion. They also open new avenues for 
evaluating how urban materials influence our close environment and for characterizing urban and industrial pollution. The 
scientific challenges as well as the user requirements for such a mission are presented for each application. 

Revue Française de Photogrammétrie et Télédétection 
https://doi.org/10.52638/rfpt.2022.568

 
           33

Numéro spécial Imagerie Hyperspectrale 
n° 224 (année 2022)

https://u-paris.fr/
http://www.ipgp.fr/fr


Keywords: imaging spectroscopy, hyperspectral, space mission, vegetation, biodiversity, coastal ecosystems, critical zone, 
soil quality, urban area 

1. Introduction

The world is experiencing a biodiversity crisis due to 
unprecedented high rates of loss and transformation of 
natural habitats, invasion by exotic species, and global 
climate change (Cardinale et al., 2012; Dornelas et al., 
2014; McGill et al., 2015). Radical changes in biodiversity 
are observed over a broad range of terrestrial and aquatic 
ecosystems from tropical to boreal regions (Battistella et 
al., 2015; Magurran et al., 2015; Newbold et al., 2015; 
Cardinale et al., 2018). Biodiversity is also a natural capital, 
delivering a multitude of benefits to humanity, from food to 
cultural heritage known as ecosystem services (Figure 1) 
(Costanza et al., 1998; Baveye, 2017), and biodiversity 
loss directly affects our livelihoods and well-being. 

Figure 1: Conceptual framework drawn up by the MAES 
initiative (Maes et al., 2013). It links socio-economic 
systems with ecosystems via the flow of ecosystem 

services and through the drivers of change that affect 
ecosystems either because of using the services or as 

indirect impacts due to human activities. 

Recent reports about the global state of nature and 
ecosystem services on land (IPBES, 2019; IPCC, 2019) 
conclude that neither climate mitigation and adaptation, nor 
biodiversity conservation strategies, will be successful 
unless these two challenges are jointly addressed. They 
further stress that neglecting the inter-linkages between 
ecosystem status and the generation of multiple 
ecosystem services, including those that underpin climate 
mitigation and adaptation, will fail to achieve the 
Sustainable Development Goals (SDGs) agreed under the 
UN Agenda 2030. The latest IPBES report (IPBES, 2019) 
highlights no progress in the achievement of global 
biodiversity conservation targets (the Aichi targets in the 
CBD biodiversity strategy 2010-2020, 
https://www.cbd.int/sp/targets/,). In particular, the targets 
the achievement of which needs to address trade-offs 
between conservation of (semi-)natural ecosystems and 
resource management (e.g., habitat loss halved, 
degradation and fragmentation reduced), are far from 
being reached. This means that current actions for 
biodiversity protection have failed to address the 
fundamental causes of biodiversity loss and ecosystem 
degradation (IPBES, 2019). 

In order to meet the ambitions of biodiversity conservation 
and to act swiftly against its erosion, it is necessary to 
identify the relevant information to collect and to quantify 
biodiversity, and to set up a monitoring system based on 
regular collection of data on various ecosystems (Luque et 
al., 2018). These data acquired over time and space will 
allow deriving indicators characteristic of the state of the 
planet biodiversity in order to assess the effectiveness of 
the implemented conservation policies (Gardner et al., 
2010; Hansen et al., 2013; Rocchini et al., 2016). 
The Essential Biodiversity Variables (EBVs) framework 
sustained by the Group on Earth Observation – 
Biodiversity Observation Network (GEO BON) contributes 
to this pressing need to monitor the multiple dimensions of 
biodiversity. These EBVs include genetic composition, 
species populations, species traits, community 
composition, ecosystem function and structure attributes 
(Pereira et al., 2013; Skidmore et al., 2015; Jetz et al., 
2016; Pettorelli et al., 2014, 2016, and 2018). GEO BON 
ensures the development of this framework towards an 
efficient monitoring system, combining appropriate tools 
and relevant indicators of ecosystem processes (Secades 
et al., 2013). As it is repeatable, consistent, borderless, 
and scale independent, remote sensing is crucial for long-
term wide-area coverage. Thus, it appears as an 
appropriate tool to monitor EBVs. The EBVs framework is 
built upon the synergy between in situ experiments; fine-
scale mapping of ecosystem attributes using remote 
sensing; and regional and global assessments of 
biodiversity changes using a combination of global 
observations and modelling tools (Figure 2). 

Figure 2: The Essential Biodiversity Variables 
framework (https://geobon.org/ebvs/what-are-ebvs/ 

after Pereira et al., 2013). 

Biodiversity is a multidimensional, complex concept that 
refers to multiscale and multitemporal structures and 
processes occurring at different levels of functional 
organization, that is, from the genetic to the ecosystemic 
level (Figure 3).  
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Figure 3: Scales and sensors. Recent advances in 
remote sensing of tropical forests have improved our 
understanding of a range of ecological processes that 

operate at varying spatial and temporal scales. Colored 
boxes show the spatial and temporal ranges of coverage 
from different satellite and airborne sensors (red, GOES; 
green, MODIS; pink, LiDAR, Radar; yellow, Landsat, EO-
1; blue, IKONOS, Quickbird, Airborne). Suitable overlap 

between the scales of ecological processes, human 
actions and remote-sensing technology is denoted by 

dashed and dotted boxes (Chambers et al., 2007). 

One of the most widely used methodology to track changes 
in species composition and turnover is based on taxonomic 
approaches and community ecology theories, yet there are 
satellite-based alternatives to this common approach. Jetz 
et al. (2016) highlighted the data gap in regional species 
trait measurements, leading to critical knowledge gaps on 
species and traits, especially in tropical regions (Figure 4). 

Figure 4: The gap in species and corresponding trait 
measurements. The graph shows the latitudinal variation 
in the number of vascular plant species for which at least 
one trait has been measured regionally (open boxes; left 

axis) in relation to all species expected for this region 
(filled boxes; right axis). Regions are here defined as 110 
× 110 km² grid cells (n = 11,626); data on their expected 

richness is from Kreft & Jetz (2007), and region trait data 
comes from the TRY database, (Kattge et al., 2011). 
Regions are analyzed at the grid cell level and their 

variations are summarized in 5° width latitudinal bands. 
On average, only 2% of species have such regional 
measurements, and the data gap is the largest in the 

tropics. These limits understanding of both biodiversity 
and ecosystem functions and services (Jetz et al., 2016). 

In this vein, previous and current Earth Explorer missions 
are focused on the understanding of the Earth System at a 
global scale, leaving behind environmental processes at 
local scales. However, key biodiversity processes occuring 
at spatial scale from local to regional (Loreau et al., 2001; 
Wang & Loreau, 2016) cannot be fully represented in 
global models, and our understanding of these processes 
requires strong improvements (Le Treut et al., 2007; Wang 
& Loreau, 2016). While global models describing local 
processes are refined, they still incorporate biosphere as 
simplified blocks or as a set of Plant Functional Types 
(PFTs), ignoring the relationships between biodiversity and 
other Earth System components. These models could 
benefit from a better description of multiple parameters 
such as the geographic distribution of biodiversity (α, β, γ 
diversity; Whittaker, 1972), or traits and functions of 
species and species assemblages, such as the 
photosynthetic phenology of vegetation, among others. 
Hence, few studies have addressed the measurement of 
species compositional turnover from satellite imagery. 
Rocchini et al. (2018) highlight the emphasis put on 
methodological developments for the estimation of α-
diversity when using remote sensing, at the expense of 
methods focusing on β-diversity, and provided an overview 
of different methods applicable to map compositional 
turnover from airborne and spaceborne sensors. More 
recently, Laliberté et al. (2020) developed a method for 
partitioning plant spectral diversity, into additive α and β 
components of diversity, based on imaging spectroscopy. 
Partitioning spectral diversity improves the understanding 
of underlying biological traits driving spectral diversity at 
different spatial scales. 

Advantages of imaging spectroscopy 

Ustin & Middleton (2021) reviewed current and near-term 
advances in Earth observation for ecological applications, 
covering the optical domain from 0.4 to 12 µm. They 
pointed out the benefits of hyperspectral missions. Indeed, 
imaging spectroscopy is now a well-established technique 
(Schaepman et al., 2009) to map and monitor the 
composition and functional biodiversity of a large variety of 
ecosystems, including croplands, grasslands, forests, 
seagrasses and coral reefs (Feilhauer et al., 2011; 
Hochberg, 2011; Moisan et al., 2013; Féret & Asner, 
2014a, 2014b; Asner et al., 2015b; Cavender-Bares et al., 
2020). Jetz et al. (2016) suggested that spaceborne 
sensors providing global coverage could fill the gaps in the 
plant traits. The main advantage of imaging spectrometers 
over broadband sensors is their ability to quantitatively 
estimate the biophysical and biochemical properties of 
various surface types including soil, water and vegetation, 
based on their interactions with sunlight. Narrow spectral 
bands are particularly relevant to disentangle the relative 
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contribution of the many factors that contribute to the 
dimensions of biodiversity in complex ecosystems. In case 
of vegetation, it is assumed that the set of morphological, 
physiological and phenological traits of plant species that 
respond to light correspond to unique optical traits that can 
be measured by imaging spectroscopy and provide a 
quantification of the function of plant species, assemblages 
and ecosystems (Ustin & Gamon, 2010; Violle et al., 2014). 
Characterizing and monitoring these traits requires high 
spectral resolution for traits discrimination, high temporal 
revisit to capture changes and phenological traits, and high 
spatial resolution to link in situ observations from species 
or species assemblages to spaceborne measurements 
with low uncertainty. To our knowledge, there is no 
currently operational or planned mission that can fulfill such 
requirements. 

The BIODIVERSITY mission seeks to characterize 
environmental changes on the spatial and temporal 
evolution of species assemblages, including their traits and 
composition at all scales from local to regional. More 
particular, it aims at answering two major scientific 
questions (SQ) using hyperspectral imagery: 

SQ1 - Does the spatial and temporal distribution of traits 
within species assemblages affect their resilience 
capacities? Is the resilience of terrestrial ecosystems to 
anthropogenic impact linked with their biodiversity in terms 
of species composition and assemblages? 

SQ2 - What are the biodiversity, water quality and 
bathymetry of selected shallow water test areas? How 
much do anthropogenic activities affect both coastal and 
inland waters biodiversity? 

Additionally, BIODIVERSITY will address two other SQ: 

SQ3 - What is the impact of management practices on 
environmental processes such as soil carbon storage, soil 
infiltration, surface retention, runoff and soil erosion? 

SQ4 - How do urban materials and industrial pollution 
impact on vulnerable surrounding? 

Imaging spectroscopy is to date the most appropriate 
remote sensing technology for fine description of complex 
and heterogeneous surfaces, giving access to a wide 
range of biophysical and biochemical properties (Lausch et 
al., 2016, 2018). In this perspective, BIODIVERSITY aims 
at 1) exploring and implementing novel technologies and 
methods at different spatial scales; 2) establishing formal 
links with the Copernicus and GEO Global Ecosystem 
initiative; 3) exploring and suggesting innovative 
opportunities New Space companies. 

The objective of this study aims at presenting the scientific 
user requirements based on a new hyperspectral mission, 
BIODIVERSITY, originally submitted at CNES SPS 
(Séminaire de Prospective Scientifique) 2019 at Caen 
(France). It will especially focus on the spectral resolution 
and range, the ground sampling distance, the landscape 
size, and the revisit required answering SQ1 to SQ 4. SQ1 

and SQ2 are the drivers for the mission design as they 
focused on biodiversity analysis. SQ3 and SQ4 are two 
added applications, which could benefits of such a mission, 
they are presented but less detailed. 

2. SQ1 –Does the spatial and temporal distribution of
traits within species assemblages affect their

resilience capacity? Is the resilience of terrestrial
ecosystems to anthropogenic impact linked with their 

biodiversity in terms of species composition and 
assemblages? 

Biodiversity loss has been well documented in the past 
decades. Attempts to halt or reduce it did not succeed 
despite the awareness of the international community 
(Tittensor et al., 2014; Hallmann et al., 2017; Sánchez-
Bayo & Wyckhuys, 2019; Ceballos et al., 2020). In the case 
of terrestrial ecosystems, multiple drivers are associated 
with biodiversity loss, all linked to human activity: habitat 
loss, land use and cropping practice changes, pollution, 
changes in biogeochemical cycles, climate alterations, and 
spread of diseases and invasive species (Morris, 2010; 
Ceballos et al., 2015). These drivers show complex 
interactions and feedbacks with biodiversity, changes in 
ecosystem functions, climate change, and habitat 
degradations (Chapin et al., 2000). This results in the 
incapacity of natural ecosystems and anthropogenic areas 
to maintain their ecological functions, and to provide goods 
and services for society, with strong negative impacts on 
human well-being (Díaz et al., 2006). 

Challenges for biodiversity monitoring 

The EBVs framework is built upon the synergy between in 
situ monitoring, fine-scale mapping of ecosystem attributes 
using remote sensing, and regional and global 
assessments of biodiversity changes using a combination 
of global observations and modeling. The link between in 
situ measurements and remote sensing data remains 
challenging (Vanden Borre et al., 2011), as the spatial 
variability of key indicators such as traits, phenology and 
composition at each hierarchical level (individuals, 
assemblages, ecosystems, and biomes) needs to be 
accurately estimated to monitor changes in ecosystem 
functions occurring at different time scales (Lausch et al., 
2016). From an ecological perspective, the species 
assemblage scale is particularly relevant but our 
understanding of the relation between biodiversity and 
ecosystem functions within species assemblages is limited 
(Wang & Loreau, 2016). Rare species may 
disproportionately contribute to the functional structure of 
species assemblages (Mouillot et al., 2013; Oliver et al., 
2015; Leitao et al., 2016), suggesting that the tools 
dedicated to biodiversity monitoring should provide 
information at spatial scales close to the scale of the 
individual species. 

BIODIVERSITY priority terrestrial ecosystems 

The global map showing the species number of vascular 
plants (Mutke & Barthlott, 2008) highlights the strong 
influence of climate on plant biodiversity (Figure 5). These 
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main world’s biomes, listed below, differ from each other 
by their biodiversity, climatic conditions, and the origin of 
perturbation. 

Figure 5: Global biodiversity of vascular plants (Mutke & 
Barthlott, 2008). 

Tropical rainforests display the highest diversity in both 
plant and animal species (50%) over a small land fraction 
(6%). They are particularly vulnerable to climate change 
and we have limited knowledge of the environmental 
controls on their biodiversity (species compositions and 
spatial assemblages) (Myers et al., 2000). Increasing rates 
of deforestation and forest degradation are mainly due to 
human activities, with long-term consequences for global 
biogeochemical cycles. Quantifying biodiversity loss in 
tropical rainforests is challenging because they are difficult 
to access and hence accurately monitor. Therefore, the 
development of operational methods, strategies and 
ecosystem services is critical. 

Temperate and alpine forests have been uniformly and 
extensively lost and altered by human activities for 
thousands of years. Despite their moderate biodiversity 
compared to tropical forests, they also face biodiversity 
loss and intense changes in their ecosystem functions. 
However, response to climate change of biodiversity and 
ecosystem functions in such forests may trigger very 
different ecological mechanisms than their tropical 
counterparts.  

As for tundra, it is particularly vulnerable to climate change 
due to permafrost thawing, the increasing exploitation of oil 
and other natural resources, species extinctions, and 
changes in species migration routes in response to 
increasing temperatures (Schuur et al., 2008; Schaefer et 
al., 2014). Ecological response to permafrost thawing is 
critical in relation to carbon sequestration. Tundra 
ecosystems are also fundamental to climate regulation 
through the positive feedbacks between climate and 
albedo changes associated with reduced snow cover and 
increased shrub and forest cover. Tundra-dependent 
species such as migratory birds may face extinction when 
the melting of the permafrost will release methane in the 
atmosphere. 

Croplands are found along a broad latitudinal gradient, but 
they dominate in temperate regions. In the 20th century, 
mechanized agriculture and selected cultivars led to major 
changes in farming practices. Moreover, the massive 
usage of pesticides resulted in a dramatic loss of 
biodiversity (Tscharntke et al., 2005; Pisa et al., 2017). The 
issue of soil conservation and fertility management, raised 
by soil loss due to unsustainable agricultural practices 
(e.g., the Dust Bowl episode), is still critical. Fertile 
croplands provide a number of ecosystem services, 
particularly carbon storage, which was recently 
emphasized through the 4p1000 initiative 
(http://4p1000.org/) (Minasny et al., 2017; Chabbi et al., 
2017), but they are threatened by urban spread. 

Grasslands, savannas and shrublands are also found from 
the tropical to the boreal regions. They are characterized 
by no or few trees. Savannas are particularly important 
ecosystems for a variety of animals including birds, large 
mammals, and insects, and they provide numerous 
ecosystem services to people. These ecosystems are 
threatened by changes in land use and conversion to 
agriculture, as well as climate change, which influences 
temperature, precipitation, fire regime, biodiversity and the 
stability of these systems (Sala et al., 2000). 

Observation needs (Table 1) 

Earth Observation provides valuable information to monitor 
biodiversity changes, mainly through the presence, the 
status and the dynamics of vegetation. Current satellites 
such as Landsat and MODIS are particularly appropriate at 
regional and global spatial scales (Tuanmu & Jetz, 2015). 
The Sentinel-1 and Sentinel-2 satellites of the Copernicus 
program now offer radar and multispectral images of the 
Earth at high spatial resolution. They should strongly 
contribute to the improvement of regional monitoring in the 
next decade (Bae et al., 2019; Ma et al., 2019). However, 
it is important to move beyond trend and change detection, 
towards better understanding, more comprehensive 
modeling of complex systems, and more robust prediction 
of how global changes may affect ecosystem functions. A 
better monitoring of fine scale processes, which requires 
appropriate observation tools, is urgent. This is particularly 
true when attempting to monitor heterogeneous natural 
ecosystems with limited in situ information (Soudani & 
Francois, 2014). Accessing and integrating this fine scale 
and spatially exhaustive information is a critical step 
towards regional upscaling and global monitoring (Schimel 
et al., 2013; Violle et al., 2014; Costion et al., 2015). For 
example, Earth System models lack fundamental inputs 
like continuous metrics of functional diversity to 
parameterize biogeochemical cycle models. Emerging 
concepts such as functional biogeography depend on the 
accurate estimation of various plant biophysical properties 
in a continuous surface. In addition, ecological models may 
also benefit from such continuous input variables as they 
help to provide a greater understanding of, for example, 
functional adaptation of vegetation to climate change, 
invasive species, and pathogens (Underwood et al., 2007; 
Violle et al., 2014; Pappas et al., 2016; Royimani et al., 
2019). 

Imaging spectroscopy is the only technology so far that 
fulfills these aims for fine scale mapping of a wide variety 
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of species (Figure 6) and biophysical and biochemical 
vegetation properties. Such properties help to improve the 
description and monitoring of several dimensions of 
biodiversity, including taxonomic and functional diversity, 
plant traits, and structure, for a wide range of ecosystems 
(Schimel et al., 2013; Schaepman et al., 2015; Jetz et al., 
2016). BIODIVERSITY will monitor leaf chemical traits 
(Jacquemoud & Ustin, 2019), species richness and 
abundance, as well as the spatial distribution of species 
communities (Table 1) to define indicators of the state and 
functions of these assemblages. The latter will inform us 
about physiological, structural, and biochemical properties, 
which are indicators of plant responses to ecological 
processes and environmental conditions or disturbances 
(Ustin & Gamon, 2010; Homolova et al., 2013; Hill et al. 
2019).  

Figure 6: Mean reflectance spectra of plant species 
collected in tropical seasonal semi-deciduous forests 

(Ferreira et al., 2016). The missing values correspond to 
strong atmosphere absorption bands. 

One might consider that this mission can produce 
additional bio-geophysical products in the near future: 
monitoring of phenology, including pollination (Chen et al., 
2019; Bera & Gaulton, 2021; Dixon et al., 2021) and spatial 
distribution of species communities. 

Table 1: Biogeophysical vegetation traits as a function of 
the BIODIVERSITY mission characteristics (spectral, 

spatial and temporal) linked to the three dimensions of the 
biodiversity (taxonomy, structure and function). 

BIODIVERSITY Spectral Spatial Temporal 

Taxonomic 
biodiversity 

Identification 
of species, 

composition 
and richness 

Mapping 
individuals, 

population and 
community 

Change in 
species 

composition and 
distribution 

(persistence, 
local extinctions) 

Structural 
biodiversity 

Identification 
of 

physiognomic 
and 

morphological 
traits 

Heterogeneity 
in structural 

traits, 
connectivity, 

fragmentation 

Change in 
structural 
patterns 

Functional 
biodiversity 

Identification 
of 

biochemical 
and 

biophysical 
traits 

Interspecific 
and 

intraspecific 
variability of 

functional traits 
Heterogeneity 
in structural 

traits, 
connectivity, 

fragmentation 

Phenology, 
interannual 
variability of 
ecosystem 
productivity, 

biotic and abiotic 
stress  

BIODIVERSITY as an ideal platform for ecological 
monitoring 

High spatial resolution (< 10 m) Visible to Short 
Wavelength InfraRed (VisSWIR) imaging spectroscopy is 
particularly adapted to monitor optically distinguishable 
functional types defined as “plant optical types” (Ustin & 
Gamon, 2010). Erudel et al. (2019) recently showed that 
the optimal GSD to discriminate temperate forest species 
from hyperspectral imagery around 12-15 m. Feilhauer et 
al. (2011) mapped floristic gradients in open 
heterogeneous temperate landscapes with HyMap (Cocks 
et al., 1998) data (4 m GSD). Species richness, community 
composition and leaf chemical traits were mapped in the 
Amazon forest and in the Bushveld of South-African with 
the CAO AToMS (2 m GSD, 
http://cao.carnegiescience.edu) and related to landscape 
biogeochemistry and microtopography (Gamon et al., 
2019; Baldeck et al., 2014; Féret & Asner, 2014a, 2014b; 
Asner et al., 2015a; Chadwick & Asner, 2016). Imaging 
spectroscopy demonstrated its efficiency for mapping key 
vegetation characteristics, from tropical to boreal 
ecosystems. Many studies also showed the potential of 
imaging spectroscopy for the detection of invasive species 
(Ustin et al., 2002; Asner et al., 2008; Hestir et al., 2008) 
or subtle changes in leaf chemistry (pigment, water) 
induced by vegetation stress due to climate, pollution or 
other environmental factors (Somers & Asner, 2012; 
Gholizadeh & Kopačková, 2019). These products can be 
useful to monitor threatened ecosystem services such as 
pollination (Szigeti et al., 2016). 

Completing Miglani’s works on Hyperion satellite data 
(Miglani et al., 2008), Thenkabail et al. (2013) determined 
the optimal number of bands to retrieve crop and 
vegetation biophysical parameters and showed the 
benefits of using the entire spectral range from 0.4 to 2.3 
µm. These studies support hyperspectral data 
characterization and applications from missions such as 
the Hyperspectral Infrared Imager (HyspIRI, 2018) and the 
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Advanced Responsive Tactically Effective Military Imaging 
Spectrometer (ARTEMIS-TacSat3, 
https://directory.eoportal.org/web/eoportal/satellite-
missions/t/tacsat-3). They suggested that the main 
parameters characterizing crops like pigments, LeafArea 
Index (LAI), dry matter, water content and soil properties 
could be estimated with a 10 nm spectral resolution. Two 
parameters seem to be more difficult to estimate as they 
require a higher spectral resolution of 1 nm and a high SNR 
to measure the solar induced fluorescence of vegetation 
and a high SNR at 405 nm for nitrogen estimation. 
So far, imaging spectroscopy is the only technology that 
fulfills these needs for fine scale mapping of a variety of 
biophysical and chemical properties of vegetation. Such 
vegetation properties also directly contribute to improved 
description and monitoring of several dimensions of 
biodiversity, including taxonomic diversity, traits and 
function, for a large range of ecosystems (Schimel et al., 
2013; Schaepman et al., 2015; Jetz et al., 2016). 
Thenkabail et al. (2013) showed the benefits of 
hyperspectral imagery compared with broadband imagery 
1) to improve the discrimination/separation between
vegetation and crop types and their species; 2) to explain
greater variability in modeling vegetation and crop
biophysical, yield, and biochemical characteristics; 3) to
increase accuracies (reducing errors and uncertainties) in
vegetation/land cover classification; and 4) to allow the
study of specific biophysical and biochemical properties
from specific targeted portion of the spectrum. Despite a
wide spectrum coverage and a high number of spectral
bands, many useful wavebands are not covered by
Sentinel-2 MSI and most of them are dedicated to
vegetation studies only. There is a gap between Band 9
(945 nm) dedicated to water vapor assessment and Band
10 (1375 nm) dedicated to cirrus assessment. This gap
covers wavelengths of interest for the estimation of water
stress, LAI, biomass, and plant height among other
vegetation variables (Thenkabail et al., 2014; Miglani et al.,
2008). The other gap between Bands 11 (1614 nm) and 12
(2202 nm) covers some applications such as cellulose,
lignin, starch or biomass estimation. Even if Sentinel-2 is
well suited for biomass estimation (Müller et al., 2013;
Sibanda et al., 2015, 2016), one could expect better results
with a full coverage of these spectral ranges.

A revisit time higher than one week gives access to 
applications such as crop and vegetation monitoring. 
Considering cloud cover, a revisit time of 5 days with a 
constant viewing zenith angle is recommended. There are 
only a few operational airborne systems dedicated to 
ecological monitoring. They include APEX (Marcinkowska 
et al., 2014; Schaepman et al., 2015), CAO AToMS (Asner 
et al., 2012; Féret & Asner, 2014b), and NEON (Kampe, 
2010). Financial and logistic limitations prevent frequent 
acquisitions needed to monitor terrestrial ecosystems, 
hindering the contribution of these programs to the future 
Biodiversity Observation Networks (BON, 
https://geobon.org/). In this context, a satellite mission 
would be more appropriate to such global needs as it would 
bring benefits to a broad scientific community. 

The monitoring strategy for the BON is built upon 
biodiversity metrics, which are being discussed, and the 

combination of sensors monitoring these metrics at 
different time and spatial scales has yet to be defined. 
Scale and knowledge gaps between global environmental 
and physical information monitored at very fine scales on 
the one hand, and very coarse information about species 
traits and composition on the other hand, are clearly 
identified (Schimel et al., 2013; Jetz et al., 2012, 2016). 

The vegetation covering the latitude range between ±80° 
requires access over this range. 

To take variability gradient into account, an area around a 
few hundreds of km² is recommended. 

In short, the BIODIVERSITY mission intends to bridge the 
gap between field studies on vegetation properties and 
regional monitoring and modelling of ecosystem 
processes, in order to gain a better understanding of 
vegetation functioning. They are often collected at 
resolutions finer than other geographically structured 
environmental datasets such as topography or land cover 
(Jetz et al., 2012). Filling in such a gap will provide 
continuous products on the distribution of traits and 
biophysical properties, which will be inputs of 
unprecedented accuracy to ecological models (e.g., 
species distributions, ecosystem processes, etc.) and 
physical models (e.g., radiative transfer, biogeochemical 
cycling) that will bring about benefits to a transdisciplinary 
scientific community information. It will enable to assess 
the impact of human activities on biodiversity composition 
and functionality, which is highly relevant to decision 
makers. To sum up the main user requests are 
summarized in Table 2. 

Table 2 : User requirements for vegetation 
characterization. 

User requirement types 

Ground sampling distance (m) < 15 

Area size (km²) 100-200

Spectral range (µm) 0.4 – 2.5 

Spectral resolution (nm) 8-15

Revisit (days) 5 

Accessibility Worldwide 

3. SQ2 – What are the biodiversity, water quality and
bathymetry of selected shallow water test areas? How
much do anthropogenic activities affect coastal and

inland waters biodiversity? 

Inland water and coastal ecosystems play an essential 
role in human life. Areas less than 100 km from the 
coastline provide benefits equivalent to over 60% of global 
gross national product (MEA, 2005). They include 
economic value, food, energy and space for cultural and 
recreation activity. However, with more than 50% of the 
world population living within a 60 km coastal belt, the 
impact of increased population has important implication 
for the maintenance of coastal water ecological quality. 

Challenges for marine biodiversity monitoring 

Coastal and inland waters ecosystems are subject to high 
spatial and temporal variability in their bio-optical (e.g., 

Revue Française de Photogrammétrie et Télédétection 
https://doi.org/10.52638/rfpt.2022.568

 
           39

Numéro spécial Imagerie Hyperspectrale 
n° 224 (année 2022)



absorption and scattering processes), morphological and 
biogeochemical (e.g., phytoplankton biomass, mineral-like 
hydrosols) properties. Marine ecosystems are defined as 
physically and biologically structured habitats where 
organisms and communities develop. Characterizing their 
structures as well as the shifts due to human activities and 
changing climate is a key subject for many scientific 
researches. However, it is difficult to address such relevant 
questions at a global scale since biodiversity assessment 
is often temporarily and spatially limited to small areas 
(typically < 100 km²), and because of the strong spatial 
heterogeneity of coastal ecosystems. Indeed, although 
field measurements are very detailed and informative, they 
are expensive, difficult to conduct, and often limited to 
accessible areas. Thus, for the most part, the aquatic 
habitats in the coastal areas remain among the most 
under-sampled on Earth. To be relevant for scientific, 
conservation, and socioeconomic goals, these 
observations need to be acquired synoptically and 
frequently. Satellite remote sensing that provides 
consistent observations and sensitive measurement can 
characterize changes in inland water and coastal 
ecosystems and meet these objectives. For instance, 
quantification of absorption by accessory or marker 
pigments beyond chlorophyll-a is often necessary to 
identify phytoplankton or macrophytes by taxonomic group 
or species. To better understand the functioning of these 
complex dynamic ecosystems, it is therefore essential to 
observe them both at high spatial (typically < 10 m) and 
spectral resolutions with an appropriate radiometric 
resolution and a revisit period better than those of current 
sun-synchronous satellites. In addition, such observations 
are required inputs for mesoscale physical models 
predicting the evolution of these ecosystems, which is 
needed for coastal and inland water socio-economic 
management as well as European Directives 
implementation by means of biological indicators. 

BIODIVERSITY priority targeted coastal ecosystems 

While it is likely that climate change affects all ecosystems, 
it is important to prioritize which ones have the highest 
biodiversity so that they may be concerned first and will be 
the most heavily damaged. Such critical zones can thus be 
used as study sites of key ecosystems. The maximum 
coverage necessary for a coastal and inland water 
observatory is less than global, but it should cover most of 
the Earth’s landmasses and waters near their margins 
(Figure 7). An approximate site number lower than 100 is 
recommended to be able to consider different types of 
waters (clear, moderated turbid, turbid, eutrophization…). 
The minimum coverage corresponds to a set of 
representative sites, which depend on the scientific issues 
and conservation requirements. 

Figure 7: Global distribution of coastal and inland aquatic 
ecosystems. The red color indicates regions where water 

depth is lower than 50 m and where land elevation is 
lower than 50 m. Light to dark violet color gives the 

concentration of inland wetlands, lakes, rivers and other 
aquatic systems. Increased darkness means greater 

percentage of area coverage for inland aquatic 
ecosystems (UNEP-WCMC, 2005a, 2005b). 

Shallow coral reefs form some of the most diverse 
ecosystems on Earth. They cover less than 0.1% of the 
area of the World's oceans but they support at least 25% 
of all marine species. Coral reefs deliver ecosystem 
services to tourism, fisheries and shoreline protection 
managements. The annual global economic value of coral 
reefs is estimated between US$ 29.8-375 billion. However, 
they are fragile ecosystems and some of the most 
vulnerable to climate change. In addition to the threat 
posed by ocean acidification due to increased dissolved 
carbon dioxide in seawater, coral reefs also suffer from 
high mortality due to coral bleaching in response to 
increased seawater temperature (Carpenter & Brock, 
2008). Finally, they have both high ecological and 
economic values, as they serve as habitat for many other 
species, and they play a major role in food production and 
other materials, with an estimated value of US$ 6,075 per 
hectare per year (Costanza et al., 1997). Moreover, coral 
reefs are more sensitive than most other coastal 
environments to anthropogenic threats (Paskoff, 2003). 

Seagrass meadows, a biodiversity hotspot, play an 
important ecological and environmental role by providing 
food and shelter for many marine animals. Seagrasses 
also provide services to people by cleaning water, 
protecting coastlines by weakening wave energy and 
stabilizing sediments. The most important threats to 
seagrasses are damage from boat anchors, dredging, and 
pollution. They are also vulnerable to the effects of 
chemical pollution and exposure to toxic substances. 
Costanza et al. (1997) estimated the economic value of a 
hectare of marine angiosperms beds at US$ 19,004 per 
year. This habitat is however subject to natural and 
anthropogenic pressure, with an annual decline of 2 to 5% 
of their area globally (Duarte et al., 2008). Monitoring the 
spatio-temporal dynamics of seagrass meadows is thus 
essential to implement appropriate management and 
protection measures. 
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Estuaries are semi-enclosed bodies of water formed when 
freshwater from rivers and coastal streams flow into and 
mix with seawater from the oceans. They can generate 
year-round primary production from macrophytes 
(seaweeds, seagrasses, and marsh grasses), benthic 
microphytes (mud algae), and phytoplankton. Many 
commercially and recreationally important species depend 
on this ecosystem. However, estuaries are one of the 
coastal areas most at risk due to human activities. Both 
urbanization in and around estuaries and increasing 
population growth affect these areas. 

Inland waters are also a topical issue for the management 
of freshwater resources. “Increased discharges of 
untreated sewage, combined with agricultural runoff and 
inadequately treated wastewater from industry have 
resulted in the degradation of water quality around the 
world” (UNEP-WCWC, 2005a, 2005b). The EU Water 
Framework Directive and the Bathing Water Directive 
should safeguard our EU inland waters. Inland waters are 
optically complex as the concentrations of optically active 
substances in the water column (suspended particulate 
matter, CDOM (Colored Dissolved Organic Matter), 
phytoplankton pigments) can vary significantly between 
lakes and independently from each other. The absorption 
features of these optically active constituents vary in depth, 
width and location and may even overlap leading to 
confounding effects when isolating any one biophysical 
parameter (Ampe et al., 2015; Hestir et al., 2015). 

Imaging spectrometers are required to provide repeated 
and global coverage of coastal areas. There are key gaps 
in knowledge in the extent, fragmentation, degradation and 
condition of temperate coastal marine habitats, kelp 
forests, intertidal and sub-tidal ecosystems, vulnerable 
habitats, and benthic habitats. Information that is more 
accurate is necessary to meet this gap, with high spatial 
resolution sensors. More importantly, hyperspectral data 
are required to distinguish accessory pigments and 
pigment assemblages that are specific to aquatic species. 
A limited number of wavelengths or large wavebands are 
not adapted as the absorption features of these pigments 
are generally narrow (Table 3). 

Figure 8: Top plot: Examples of surface reflectance of 17 
selected representative substratum types (Australian 
Shallow Waters Spectral Library, Hestir et al., 2015). 
Bottom plot: Representative reflectance spectra of 

emergent, floating and submerged aquatic vegetation 
measured above water. The inset graph shows the above 
water surface reflectance of submerged vegetation under 

1 m of water (CHL = 0.8 mg.m−3, TSM = 0.7 gm−3, and 
CDOM(440nm) = 0.2 m−1) (Giardino et al., 2019) 

Observations needs (Table 3) 

Most of the methods to retrieve the sea bottom biodiversity 
estimate bathymetry and water column composition 
simultaneously. 

Regarding benthic features, targeted metrics aim at 
recording both the presence/absence of species and 
habitats and quantitative estimates of biological variables 
such as the cover fraction of different seabed types as well 
as the biomass of the main marine vegetation 
(macrophytes, seagrasses). For benthic estimated 
metrics, ground truth data are needed to validate 
algorithms and to assess the accuracy of retrieved 
biophysical variables from hyperspectral images. 
Complementary laboratory analysis could also be required 
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to validate quantitative estimates such as the 
microphytobenthos biomass, for instance. Measured 
metrics are key information about the diversity, 
composition, and functional traits of coastal benthic 
ecosystems (Table 3). 

Bathymetry depends on the seabed topography but may 
also vary with sediment transfer. Maritime traffic requires 
accurate bathymetric maps acquired at high temporal 
resolution. However, high-resolution bathymetry can be 
affected by vegetation located on the seabed. The 
underwater plant height can be monitored using high 
spatial resolution images. Bathymetry can be measured by 
the attenuation of the sea bottom reflectance by the water 
column. Bathymetry influences all wavelengths, but some 
are more sensitive to water attenuation than others, 
especially in the blue and the green. Many narrow bands 
are needed to reduce the noise influencing each band on 
depth estimation. 

The reflectance spectrum of water affected by the optical 
properties of the upper meters provides information about 
water quality and composition. The algorithms used to 
extract these parameters need to be validated using in situ 
reflectance measurements and the specific inherent optical 
properties (absorption and scattering coefficients) of the 
hydrosols are required. The link between the reflectance 
and the absorption/scattering coefficients is carried out 
using radiative transfer models and/or empirical 
relationships. The concentration and composition of the 
hydrosols is then determined through bio-optical 
algorithms already published (Lee et al., 1998, 2002, 
Giardino  et al., 2014, Hedley et al., 2017, Vahtmäe et al., 
2020) or to be developed in the frame of the 
BIODIVERSITY mission. They will be able to retrieve the 
absorption coefficient of phytoplankton, the scattering and 
backscattering coefficients of particulate matter, the 
concentration of phytoplankton and mineral-like 
suspended matter, and an indicator of their composition 
through the bulk refractive index (derived from the 
backscattering ratio of the particles). 

These costal and inlands waters landscape are present all 
over the world and thus required an accessibility in the ± 
80° latitudes range. 

Table 3 details the geophysical variables of interest for the 
inland/water topic: species identification and spatial 
distribution of species assemblage. 

BIODIVERSITY as the ideal platform for these 
observations 

Efficient Earth observations require a new generation of 
satellite sensors with adequate specification related to 1) 
the spatial resolution, 2) the spectral resolution, 3) the 
radiometric quality in terms of signal to noise ratio (SNR) 
and absolute calibration stability, and 4) temporal 
resolution. 

For coastal and inland waters, current sensors do not 
provide appropriate information for water applications. 
MODIS spatial and spectral resolutions are too coarse with 

a 1 km spatial resolution and nine large wavebands 
respectively. The sea column parameters (chlorophyll, 
CDOM) can be accurately mapped but neither the seabed 
nor the bathymetry. Although the Visible Infrared Imaging 
Radiometer Suite (VIIRS) has the same spectral 
configuration as MODIS, its spatial resolution is slightly 
improved (750 m) but still limited for bathymetry and 
seabed mapping in coastal areas. The Ocean and Land 
Colour Instrument (OLCI) onboard Sentinel-3 has a better 
spatial resolution (300 m) and a better spectral resolution 
(21 bands) but is inadequate to map benthic habitat in 
coastal areas (Minghelli-Roman & Dupouy, 2013, 2014). 
The main advantages of MODIS, VIIRS and OLCI are their 
revisit times (one to three days) and their high signal-to-
noise ratios, adapted to low reflectance targets. 
Concerning the multispectral Instrument (MSI) onboard 
Sentinel-2, its spatial resolution is improved compared to 
MODIS, VIIRS and OLCI (10 to 60 m depending on the 
spectral bands) but the spectral richness remains too 
limited to catch spectral features of seawater reflectance. 
However, this sensor class lacks the spectral definition in 
the visible and near-infrared light (i.e., spectral resolution 
of about 10 nm between 380 and 900 nm, and about 10 to 
20 nm between 900 and 2500 nm) needed to estimate the 
biodiversity of the main coastal habitats. The future NASA 
SBG (Decadal survey, 2018) mission concept, the JAXA 
HISUI instrument, and the DLR Environmental Mapping 
and Analysis Program (EnMAP, Guanter et al., 2005) will 
also have at least 30 m spatial resolution (Turpie et al., 
2015). SBG is designed to sample nominally every 16 
days, and EnMAP and HISUI are designed to acquire 
targets of interest intermittently. Thus, they lack temporal 
details needed to observe changes over days. Devred et 
al. (2013) reviewed water resource applications that can 
benefit from HyspIRI mission. They noted that algal bloom 
dynamics and ecosystem responses analysis were more 
difficult to perform, partly due to the low revisit time (19 
days). Kudela et al. (2015) have reached the same 
conclusions. Sentinel-2 was also used to detect 
cyanobacterial blooms (Toming et al., 2016; Vanhellemont 
& Ruddick, 2016), to map water bodies (Du et al., 2016) 
and to estimate chlorophyll a content (Beck et al., 2016). 
However, a 30 m GSD is not sufficient to map 
cyanobacterial bloom spatial variability. Hedley et al. 
(2016) noted that Sentinel-2 was also able to discriminate 
reef benthic composition thanks to its fine spectral 
resolution, its 10 m GSD and its band at 443 nm, but not 
able to discriminate coral mortality of algal cover unlike 
HISHUI (Kakuta et al., 2013). 

Segl et al. (2012) and Thenkabail et al. (2013) 
recommended the 413-758 nm spectral range to study 
water quality retrieval. The band at 440 band is identified 
as useful to estimate dissolved organic matter (Giardino et 
al., 2007). Nevertheless, an accurate atmospheric 
correction is required for retrieving sea floor composition or 
the deepness requiring information in the SWIR (Jiang & 
Wang, 2014; Frouin & Pelletier, 2015; Pahlevan et al., 
2017). Atmospheric correction methods in coastal zones 
must be updated to address the radiative effect of aerosols 
(Pahlevan et al., 2017) at high spatial resolution, to 
incorporate a procedure to evaluate and correct the 
sunglint (Steinmetz et al., 2011; Devred et al., 2013; Botha 
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et al., 2016, Vanhellemont, 2020) and the radiance from 
the adjacency effect (Duan et al., 2015). 

Table 3: Coastal zones and inlands waters characteristics 
expected to be mapped with the BIODIVERSITY mission. 

BIODIVERSITY Spectral Spatial Temporal 

Species and 
seabed types 
identification 

Taxonomic 
diversity and 
composition 
(macrophyte 
and sediment 

types) 

Structure: spatial 
heterogeneity of 

sea floor 
composition and 

vegetation 
coverage 

Monitoring of 
taxonomic diversity, 

composition and 
function (habitats), 

dynamic trends 

Species, 
assemblages 
and functional 

types 

Species 
diversity and 

composition in 
shallow water 

Composition, 
structure (sea 

floor topography, 
canopy height of 

underwater 
plants and 

macrophytes), 
habitat 

fragmentation 

Monitoring of 
taxonomic diversity, 

composition, 
structure, function 

(sediment transport, 
growth of underwater 
vegetation),mapping 

change detection 

As for inland waters, Hestir et al. (2015) showed that with 
a 300 m GSD similar to Sentinel-3 OLCI, MERIS could 
sense more than 50% of inland waters areas in Europe but 
only a few percents in Australia, where less than 50% was 
resolved with a 30 m GSD due to differences in topography 
and water body geometry. Verpoorter et al. (2014) showed 
that a GSD < 15 m was necessary to characterize most of 
the 117,423,552 lakes on Earth with, size higher than 
0.002 km². With a 33 m GSD similar to EnMap, the number 
of lakes decreases down to 27,523,552. Turpie et al. 
(2015) illustrate the importance of a GSD < 10 m to resolve 
fine features, such as harmful algal blooms, or aquatic 
habitats formed from foundational species (e.g., 
submerged aquatic vegetation or emergent wetland 
vegetation). A 30 m GSD leads to significant degradation 
and, beyond 60 m, the loss is substantial. 

Coastal habitats exhibit a high spatial variability. The 
physical, biological, geological, and biogeochemical 
properties of coastal waters greatly change with distance 
from the coast (Bissett et al., 2004). Observing and 
monitoring these features and their variability require a 
GSD between 30 and 100 m (Moses et al., 2016) in the first 
5 km from the coastline. Wetland habitat variability occurs 
at smaller spatial scales. Turpie et al. (2015) studied the 
impact of the spatial resolution on mapping of coastal tidal 
wetland habitats and reported that 30 m or less was ideal 
to map wetlands. In fact, coarser spatial resolution sensors 
smear and confound spectral and spatial patterns 
necessary to identify biota and quantify habitat variability. 
Such a resolution seems to be a threshold to map 
submerged biologically structured habitats like coral reefs 
and seagrass beds (Andréfouët et al., 2005; Wabnitz et al., 
2010; Hedley et al., 2016). Indeed, some applications like 
the monitoring of coral bleaching events or invasive 
species require a much higher resolution (Andréfouët et al., 
2002; Dekker et al., 2017). Turpie et al. (2015) mentioned 
that a 30 m GSD was inadequate to study small patchy 
areas such as coastal wetlands. A spatial resolution of 
about 10 m would be optimal. 

The spatial extension of these areas is limited to the 
coastline (< 5 km) with an extension along the coastline 

around 10 km. In spite of its poor radiometric quality, 
Hyperion has demonstrated its potential to derive 
bathymetry, identify bottom types, and discriminate 
wetland species in various coastal areas (Brando & 
Dekker, 2003; Pengra et al., 2007). A 10 nm spectral 
resolution is enough to estimate these variables but a lower 
resolution (6-8 nm) is recommended to separate diagnostic 
accessory pigments of phytoplankton as well as 
fluorescence signals in the reflectance spectrum (Dekker 
et al., 2017) or to discriminate benthic cover types at higher 
depths (Botha et al., 2013). A 10 nm spectral resolution is 
recommended over the 410-800 nm range and SWIR 
bands are necessary to improve the atmospheric 
correction to retrieve the bottom-of-atmosphere 
reflectance. 

Airborne hyperspectral images (CASI, Phills, HyMap, 
MIVIS, etc.) also proved to characterize sea bottom types 
(Lee et al., 1999, 2001; Minghelli-Roman et al., 2002; 
Mobley et al., 2002). In clear water, several studies 
demonstrated the feasibility of mapping the coastal 
seabed: sand substrates, benthic communities such as 
microphytobenthos (Kazemipour et al., 2012), seagrass 
(Jaubert et al., 2003; Bargain, 2012) or coral reefs (Mumby 
et al., 1998; Mishra et al., 2007). 

The most difficult aspect of coastal and inland waters is the 
ambiguity of the reflectance spectrum (Defoin-Platel & 
Chami, 2007), i.e., the variations arising from changes in 
water depth, bottom type, and scattering and absorption in 
the water column may be indistinguishable. A number of 
models or assumptions have addressed this issue (Polcyn 
& Sattinger, 1969; Jerlov, 1976; Paredes & Spero, 1983; 
McKee et al., 2007) but methods to derive bathymetry, 
bottom type or water constituents in shallow waters from 
multispectral data generally fail when the bottom 
reflectance is too much variable (Jupp, 1988; Gege, 2014). 

Contrary to aerial images, satellite images give access to 
a global spatial coverage. However, the spatial resolution 
of these sensors does not permit detailed mapping of 
pollution plumes or small lakes. Similarly, the intertidal 
zone is a very sensitive area where changes occur at a 
small scale. The BIODIVERSITY mission will deliver 
images at a resolution that supports local scale 
applications determining water quality in coastal and inland 
waters through parameters like phytoplankton, suspended 
particulate matter, and sediment grain size. It will also 
provide the capability for multi-temporal monitoring of 
events such as algal blooms or green algae invasion. High 
spectral and spatial resolutions are also required to better 
estimate concentrations of hydrosols over oceans/lakes, 
such as mineral-like particles or biogenic particles 
(phytoplankton). Knowledge of hyperspectral remote 
sensing reflectance can also provide information about 
phytoplankton functional types (PFTs) that dominate the 
surface waters: diatoms, dinoflagellates (Gege, 1998; 
Alvain et al., 2008), cyanobacteria (Kudela et al., 2015). 
Techniques used to identify PFTs mostly rely on the 
spectral signature of phytoplankton pigments, which 
justifies the need for a spaceborne hyperspectral sensor.  
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The BIODIVERSITY mission will allow studying the 
biodiversity of aquatic ecosystems by identifying corals or 
benthic plankton species that are essential to monitor the 
anthropogenic impacts on coastal environments.  

It must be emphasized that imaging spectroscopy was 
mainly developed with airborne sensors. This limits the 
construction of multi-temporal datasets and generally 
reduces coverage to relatively restricted areas and to 
scientific studies. As mentioned by Lucas et al. (2004), 
Hyperion provided the first opportunity to explore the 
potential of multi-temporal hyperspectral data for Earth 
observation, but this sensor was experimental with a 
limited swath width and a low SNR. Dekker et al. (2001) 
review on imaging spectroscopy of water demonstrates its 
efficiency in managing complex coastal and lake systems 
at various scales on a sustainable development basis. 
High-spectral and high-spatial resolution measurements of 
inland and coastal waters are of great interest for 
determining the geophysical variables of primary 
importance for monitoring these ecosystems. 

The BIODIVERSITY mission will have many environmental 
applications for the community: 1) remote sensing of 
harmful algal blooms, which have an impact on tourism and 
aquaculture; 2) detection of phytoplankton filaments 
induced by ocean circulation and turbulence, which have 
an influence on fisheries activities; 3) quantification of 
suspended matter (mineral or biogenic) at land-ocean 
interfaces induced by river discharges, which will allow 
estimation of nutrient fluxes exported by rivers into 
coastal/inland waters; 4) measurement of dissolved 
organic matter for studying carbon fluxes and light 
attenuation affecting primary productivity; 5) estimation of 
bathymetry, which is of interest for coastal geomorphology 
evolution, military applications, and underwater vision; 6) 
identification of bottom-type for ocean/lakes (sand, corals, 
benthic habitats), which help to study the biodiversity of 
these ecosystems; and 7) detection of the optical 
properties of hydrosols, which provide information about 
water quality and aid the detection of pollution. To sum up 
the main user requirements are provided in Table 4. 

Table 4: User requirements for Coastal and inland 
waters. 

User requirement types 

Ground sampling distance (m) < 10 

Area size (km²) 100 

Spectral range (µm) 0.4 – 2.5 

Spectral resolution (nm) 10 - 15 

Revisit (days) 5 

Accessibility Worldwide 

4. Complementary Mission Objectives

4.1 SQ3 - What is the impact of management practices 
on environmental processes such as soil carbon 
storage, soil infiltration, surface retention, runoff and 
soil erosion? 

Bare surfaces are characterized by drylands, arable 
ecosystems (also named agroecosystems) and urban soil 

ecosystems. They deliver essential services such as 
provision of food, fiber and fuel, carbon storage, water 
purification and soil contaminant reduction, climate 
regulation, nutrient cycling, biological habitat and gene 
pool (Robinson et al., 2009; Baveye, 2017; Bünemann et 
al., 2018). However, demographic pressure and climate 
change can disrupt these services and affect bare 
continental surfaces because of desertification processes, 
environmental hazards, mining and industrial waste 
pollution, and diminishing soil quality (e.g., related to 
erosion, salinization and contamination) (Rodrigo-Comino 
et al., 2020). Soils are amongst the most diverse habitats 
on Earth, hosting billions of bacteria, fungi and 
invertebrates (Paul, 2015; Cameron et al., 2018). 
According to the Land Degradation Assessment in the 
Drylands project (LADA), land degradation undergoes 
such an irreversible change that soils may no longer come 
back to their original uses (Biancalani et al., 2013). 
Desertification occurring in arid, semi-arid, and dry sub-
humid areas, results from factors such as climatic 
variations and human activities (Article 1 of the United 
Nations Convention to Combat Desertification, UNCCD, 
Paris, 1994). As soil integrates a variety of important 
processes involving vegetation growth, overland flow of 
water, infiltration, land use and management, land 
degradation is closely related to soil degradation (Stocking 
& Murnaghan, 2001). Soil degradation is a change in soil 
quality resulting in a decreased capacity of the ecosystem 
to provide goods and services for its beneficiaries. It is also 
defined by IPCC as “a negative trend in land condition, 
caused by direct or indirect human-induced processes 
including anthropogenic climate change, expressed as 
long-term reduction or loss of at least one of the following: 
biological productivity, ecological integrity, or value to 
humans” (Hermans et al., 2019). Degraded soils do not 
provide services according to original potential in a given 
ecosystem. Soil loss, erosion, compaction, salinization, 
and pollution are some of the main processes leading to 
soil degradation, which occur over space and time. Soil 
degradation is likely to be mitigated or even countered by 
C stocking practices, which enhance soil carbon storage 
(Chenu et al., 2019) and hence restore soil structure and 
quality (Bünemann et al., 2018) as well as fertility (Tan et 
al., 2005). Soil erosion is a land degradation process that 
often occurs in cultivated environments due to natural 
processes (e.g., climate events) and that is accelerated by 
human activities (Le Bissonnais et al., 2007). Soil erosion 
may reduce crop production potential, lower surface water 
quality, and damage tile drainage systems (Toy et al., 
2002). Extensive tillage over extended time periods may 
cause soil compaction due to tillage operations and heavy 
machinery (Lagacherie et al., 2006) and may involve loss 
of soil nutrients and organic matter which are soil 
stabilizing factors (Ramos & Martinez-Casasnovas, 2006; 
Novara et al., 2011). Therefore, these cultivated soils are 
more sensitive to water and wind erosion over time. Soil 
salinization is a process occurring in arid and semi‐arid 
regions where low precipitation cannot maintain a regular 
percolation of rainwater through the soil (Szabolcs, 1989). 
Soil salinity is usually due to rising water tables, either 
induced by land clearing alone, referred to as dry land 

salinity, or by irrigation‐induced salinity. It is one of the 
major factors affecting biomass production as saline soils 
are highly erosive given a poor structure and they are less 
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fertile with reduced microbial activity and salt toxicity. 
Industrial waste pollution affects soils all over the world, 
especially in urban ecosystems and industrial areas 
(Science Communication Unit, University of the West of 
England, Bristol, 2013). It may originate from various 
sources such as refineries, cement, steel, fertilizers, and 
pesticides factories, coal and mineral industries, 
engineering and chemical industries, mining and 
transportation activities (e.g., Castagliola et al., 2008; Ettler 
et al., 2009; Ahmaruzzaman, 2010; Piatak & Seal, 2010; 
Gräfe et al., 2011; Paldyna et al., 2013). Depending on the 
process involved, solid waste can take different forms such 
as fly ash deposits, slags, red mud, heaps, mine tailings, 
etc. Soil and groundwater contamination may occur from 
massive quantities of industrial residues produced 
because of their temporary storage or neglectful disposal 
in various soil sites. Therefore, the management and 
possibly the remediation of these sites require 
characterizing and mapping the minerals associated with 
pollutions. 

Soil degradation processes are all variable in time and 
space and depend on the initial soil composition, climate 
(including rain events and temperature), and crop 
sequence and management practices for agroecosystems. 
In agroecosystems, site specific crop management 
(SSCM), also known as precision agriculture (PA), refers 
to technologies and concepts applied to agricultural 
management system that promotes variable management 
practices according to small scale (typically within field) 
crop and soil variations (Jian et al., 2020). Precision 
agriculture is based on innovative technologies and 
principles to identify and manage spatial and temporal 
variability in crop production. It may combine various 
benefits: increased resource use efficiency by producing 
more and better with less damages (so may ensure food 
security), reaching targeted product quality, improved 
sustainability of production, support product traceability 
and minimized environmental impact. 

Observations needs, linked to this objective 

There is a real need to provide soil characteristics to 1) 
support soil degradation processes model and crop 
production model parameterization, 2) monitor soil 
degradation processes and improve their understanding, 
3) monitor carbon storage and 4) support SSCM/PA and
industrial site remediation decisions. The characteristics to
be retrieved are topsoil primary properties (soil organic
carbon, mineralogy, texture, iron oxide and calcium
carbonate) and soil surface conditions (dry vegetation
residues, soil moisture).

BIODIVERSITY as the perfect platform for these 
observations 

Imaging spectroscopy proved to be a promising tool to map 
and monitor topsoil properties (e.g., Selige et al., 2006; 
Ben-Dor et al., 2009; Stevens et al., 2010; Gomez et al., 
2012; Lagacherie et al., 2012; Schmid et al., 2016; 
Vaudour et al., 2016; Hong et al., 2020), minerals (e.g., 
Clark et al., 1993; Resmini et al., 1997; Chabrillat et al., 

2002), soil surface conditions including crop residues 
(Daughtry et al., 2005), soil moisture (Finn et al., 2011; 
Bablet et al., 2018), and aggregate stability (Shi et al., 
2020). In the solar domain (400–2500 nm), soil reflectance 
spectra display spectral signatures that enable quantitative 
analysis of several soil features (Stenberg et al., 2010; 
Demattê et al., 2016). It is well established that the quality 
of hyperspectral data is crucial for quantitative assessment 
of soil properties (Ben-Dor et al., 2009). However, such 
data are not easily accessible. Airborne data are expensive 
and difficult to obtain at repeated periods, with limited flight 
prints. Operating hyperspectral satellites are at the end of 
their life span, their spatial resolution is coarse (30 m and 
17 m for Hyperion and Chris/Proba, respectively), and they 
have noisy or no SWIR information. Multispectral sensors 
like ASTER, Landsat-8 or Sentinel-2 have large swaths 
and several spectral bands, but with coarse spectral 
resolution. However, with a frequent revisit rate, and 
through its VSWIR range, Sentinel-2 exhibited promising 
capabilities at regional scales for key topsoil properties, 
such as soil organic carbon, in temperate agroecosystems 
with annual crops (Castaldi et al., 2019a, 2019b; Vaudour 
et al., 2019a, 2019b). Yet due to insufficient spectral 
resolution and spectral richness in the SWIR range, it has 
some limitations concerning clay content (Vaudour et al., 
2019a) and clay mineral prediction in particular. Altogether, 
current sensors are not able to fulfill all the requirements 
related to the above described processes and 
characteristics. 

A number of topsoil compounds necessary to evaluate the 
soil quality have specific features located in the SWIR: 
calcite, dolomite, quartzite, and clays minerals, such as 
kaolinite (Hunt, 1977; Kruse et al., 2002; Mielke et al., 
2014; Boesche, 2015; Boesche et al., 2016), metallic ions 
or soil moisture. Most terrestrial materials are 
characterized by spectral absorption features typically 20 
to 40 nm in width (Hunt, 1977). According to Goetz (1987), 
a 10 nm sampling interval is sufficient for describing salient 
features in the reflectance spectra of rocks, minerals, 
organic matter plants, and suspended matter in water 
bodies across the 0.4-2.5 μm spectral region. Swayze et 
al. (2003) selected the optimum sampling interval to 
discriminate seven rocks taking the sensor noise into 
account. They recommended a 14 nm (respectively 10 nm) 
sampling interval in the VisNIR (respectively SWIR) range. 

To reduce the percentage of mixed pixels in an image, a 
spatial resolution better than 10 m is recommended. A 
global accessibility is required to access the large variety 
of bare soils along the year at different latitudes. For land 
use, a revisit of 15 days might be sufficient but for other 
events such as cultural operations or a pollution, 5 days or 
less are necessary. To sum up the main user requirements 
are provided in Table 5.  
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Table 5: User requirements for soil quality. 

User requirement types 

Ground sampling distance (m) < 10 

Area size (km²) 100 

Spectral range (µm) 0.4 – 2.5 

Spectral resolution (nm) 10 

Revisit (days) ≤ 5 

Accessibility Worldwide 

4.2 SQ4 - How do urban materials and industrial 
pollution impact on vulnerable surrounding? 

Rapid urbanization and accelerated urban sprawl have a 
significant impact on urban climate (Bechtel et al., 2015) 
and on conditions of urban biophysical processes and 
physical environment, thus they influence the quality of 
human life. Timely and accurate information on the status 
and trends of urban ecosystems and biophysical 
parameters is critical to develop strategies for sustainable 
development and for improving urban residential 
environment and living quality (Yang et al., 2003; Song, 
2005). Therefore, developing techniques and enhancing 
ability for monitoring urban land use and land cover (LULC) 
changes are important for city modeling and planning. 

Challenges for urbanized areas 

Urban area detailed mapping is mandatory to model the 
interactions within the city extent or with the surrounding 
areas. Besides the simple monitoring of urban environment 
expansion, imaging spectrometers enable to collect 
valuable information on materials and landscape in order 
to detect changes in materials (wear or damage), density, 
surface permeability ratio, and physical characteristics of 
urban elements. They enable to assess their impact on 
local climate/hazardous events. They also ease the 
monitoring of urban vegetation that is crucial to temper 
urban heat island (Degerickx et al., 2017; Aval et al., 2018) 
and mitigates atmospheric pollution. These data offer the 
possibility to track urban area changes within the overall 
human environment and to feed 2D or 3D interaction 
models. Urban environments actually have their own 
features: 

● A large spatial heterogeneity, the scale of which
depends on the city type, geographical, economic,
social and environmental factors;

● An extensive number of different materials, extremely
variable with respect to their spectral characteristics;

● Important artefacts for remote sensing from air and
space as shadowing and superposition effects, due to
inherent 3D structure of the urban landscape.

That is why land cover mapping in urban areas, and 
consequently land use mapping, relies on VHR sensors (< 
5 m) that provide details required by most of urban 
planners. Imaging spectroscopy is thus very useful to 
characterize urban and peri-urban elements, improving the 
identification and therefore the mapping of soils, material 
or vegetation types, as well as atmospheric water vapour 
content and aerosols. Moreover, buildings are prominent 
objects needed for a variety of applications like 3D city 
visualisation, microclimate forecast or real estate 

databases for which imagery is one of the most consistent 
information in modelling at various scales. Indeed, roof 
material identification leads to an accurate extraction of 
building models (Avbelj, 2016) or innovative application like 
solar panels (Karoui et al., 2018). Digital elevation models 
provide information about the vertical dimension of urban 
areas. Independently of the spatial resolution, higher 
spectral resolution and continuous acquisition increase the 
number of classes to identify and map (Le Bris et al., 2017). 
Helden et al. (2011) listed the applications that benefit from 
a spatial resolution ranging between 2 and 20 m: local 
mapping of build-up area, imperviousness, material and 
biotope mapping, change detection at building/material 
level and identification of hazardous materials (Le Bris et 
al., 2016; HYEP, 2018). Nevertheless, a large spectral 
range at different wavelengths allows better separation 
between artificial and natural materials (mainly in the 
VisNIR from 450 to 950 nm) and better identification of the 
surface contents (e.g., mineral contents in the SWIR) 
(McDowell & Kruse, 2015). 

Therefore, urban vegetation monitoring, ranging from 
highly cultivated lawns to street trees and from horticultural 
plantings to remnant patches of original or regenerated 
native vegetation, is feasible using imaging spectroscopy 
at fine spatial resolution (Mc Kinney, 2002). This is also 
true for urban soil, including exposed soil and/or dry 
vegetation (Hung & Ridd, 2002). They have a distinct 
function from vegetation and impervious surface in an 
urban ecosystem, e.g., increasing aerosol concentration 
above urban area. Similarly, monitoring anthropogenic 
impervious surfaces, such as rooftops, roads, and parking 
lots, is a key indicator of intensity of urbanization and urban 
sprawl (Xian & Crane, 2006), as well as a major contributor 
to the environmental impacts of urbanization associated 
with increased surface runoff, erosion and impaired stream 
biodiversity (Lee & Lathrop, 2005). 

However, very high spatial resolution hyperspectral data 
can be only obtained from airborne platforms so far. 
Although they help to improve the understanding of urban 
environments, airborne campaigns are limited in time and 
rather expensive, leading to compromises, such as 
combinations of VHR multispectral images with moderate 
resolution hyperspectral data sets (Moeller et al., 2009; 
Yokoya et al., 2012; Grohnfeldt et al., 2013). As a 
consequence, the BIODIVERSITY mission, with its 
combined very fine spectral characterization of urban 
surfaces and fine spatial resolution, can tremendously 
contribute to these tasks and be considered as a quantum 
leap with respect to urban area monitoring. 

Observations needs 

More specifically, the fine spectral characterization of 
urban surfaces by BIODIVERSITY, coupled with a spatial 
resolution of comparable size to most objects in a human 
settlement, will lead to more accurate maps of natural and 
artificial materials and structures. Information about the 
age/status of roofs and roads (Herold et al., 2004), urban 
vegetation health (Wania & Weber, 2007), and the degree 
of surface imperviousness (Van der Linden & Hostert, 
2009) provided by the BIODIVERSITY mission will become 
available as standard products. They will be routinely used 
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as inputs to urban environmental models, urban risk and 
building/population vulnerability analyses, as well as for the 
computation of more reliable urban quality of life indexes.  

The solid scientific basis of these products is based on 
algorithms that have been tested by the scientific 
community over a decade. The scientific soundness of 
these products will be coupled with their availability locally 
(i.e., for the urban area of choice) but with a global 
coverage (i.e., for any geographical area) with an 
unprecedented spatial resolution. In turn, this will allow an 
up-to-date and geographically uniform characterization of 
many parameters required to address challenges like the 
interactions between natural and human components of 
the Earth system, as well as conflicts between urbanization 
and ecosystem services. Additionally, gas (Marion et al., 
2004; Popp et al., 2012; Dennison et al., 2013; Thorpe et 
al., 2013, 2014, 2016) and aerosols (Deschamps et al., 
2013) concentrations in the lower layers of the atmosphere 
will be an invaluable input to air quality and urban pollution 
models. One can couple them with meteorological models, 
the effectiveness of which is connected to the availability 
of accurate maps of urban climate zones (Bechtel et al., 
2015).  BIODIVERSITY will make such data available as a 
standard product in urban areas. 

BIODIVERSITY as the perfect platform for these 
observations 

Several authors pointed out the interest of using the full 
spectral range between 0.4 – 2.5 µm to identify 
manufactured materials (Swayze et al., 2003). Moreover, 
Roussel et al. (2018) have demonstrated the benefits of 
using the SWIR in comparison with a multispectral sensor 
at the same spatial resolution to improve the land cover 
classification performances. The requirement on the 
spectral resolution is similar to that recommended in the 
previous section. The size of a city is typically 20 km x 20 
km and can reach 100 km x 100 km for the largest. The 
temporal evolution of the city structure remains slow but 
the monitoring of its vegetation requires frequent revisits: a 
5 days revisit time is required to follow it during the 
greenness period or a heat wave event. Table 6 
summarizes the main user requirements. 

Table 6: User requirements for urban area studies. 

User requirement types 

Ground sampling distance (m) < 5 

Area size (km²) 100-200

Spectral range (µm) 0.4 – 2.5 

Spectral resolution (nm) 10 

Revisit (days) Monthly 

Accessibility Worldwide 

5. Conclusion

The BIODIVERSITY mission aims at 1) improving our 
knowledge on heterogeneous habitats characterized by a 
high biodiversity like terrestrial ecosystems and coastal 
and inlands water, and their resilience to anthropogenic 
activities; 2) providing an unprecedented information for 
analysing soil surface characteristics in relationship with 
soil fertility and crop management, soil restoration and 
remediation, managing urban land cover and industrial 

pollution; 3) providing key knowledge that improves 
understanding of coastal and inland water ecosystem 
functioning as well as their status assessment. Its limited 
swath balanced by its high spatial and temporal revisit 
allows focusing on small hotspots serving as reference for 
several habitats present around the Earth. A summary of 
the main user requirements driven by SQ1 and SQ2 is 
provided in Table 7.  
They are also compared to more recent missions (Ustin & 
Middleton, 2021). As shown, no existing or planned 
mission can fulfil the requested GSD around 10 m, all of 
them are around 30 m. However, EnMap and Chime 
coverage are global with a high revisit. They can sense 
large area even though BIODIVERSITY can answer to its 
user mission group. Finally, these two mission classes 
could be considered as complementary. Indeed, the 30 m 
GSD mission family can cover large area with a small 
heterogeneity and BIODIVERSITY can sense some 
specific hot spot where the 30 m intrapixel biodiversity 
variability is not sufficient (Mariotto et al., 2013).  

The area size is in the 100-200 km². Thus BIODIVERSITY 
swath could be limited across track to 10-20 km depending 
on the concerned regions of interest, with an along track 
length of at least 10-20 km. This corresponds to a large 
hotspot area covered by on ground station, allowing 
bridging the gap between the two levels of measurements. 
As it could be noted, the recommended spatial resolution 
< 10 m fulfils SQ1, SQ2 and SQ3 GSD requirements but 
not SQ4. To overcome this limitation, a panchromatic band 
with a 2 m GSD, co-registered to the hyperspectral 
instrument could be added. Existing works on the fusion of 
two images by pan-sharpening (Constans et al., 2020) or 
unmixing methods (Rebeyrol et al., 2020) will allow to 
answer to SQ4 challenge. 

The future works will be focused on the demonstration of 
the benefits of such a mission based on an airborne 
acquisitions database simulated at top of atmosphere. In 
particular, these top-of-atmosphere synthetic images will 
help to define the tradeoff between our scientific 
requirements and the technological expected 
performances of the sensor. Indeed, first studies (CNES 
SPS (Séminaire de Prospective Scientifique, 2019 at 
Caen, France) of the sensor design related to 
BIODIVERSITY show the expected radiometric 
performances are better than Hyperion ones, allowing to 
fulfill most of the mission requirements. Thus, 2021-2022 
years will precise the sensor performances to confirm our 
mission objectives and expected products 
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Table 7: User requirements for the BIODIVERSITY 
(Biodiv.) mission compared to recent developed ones or 

in preparation. (*: depointing capabilities) 

User 
requirement 

PRISM
A 

EnMap 
Chim
e 

SB
G 

Biodi
v. 

Ground 
sampling 
distance (m) 
at nadir (HIS 
/ Pan) 

30 / 5 30 / No 
20-30
/ No

30-
45 / 
No 

< 10 / 
2 

Swath (km) 30 30 290 n/a 10-20

Spectral 
range (µm) 

0.4 – 2.5 

Spectral 
resolution 
(nm) 

< 12 

VNIR:6.
5 

SWIR:1
0 

10 n/a 10 

Revisit rate 
(day) 

7 Up to 4* 
10-
12.5 

n/a 5 

Accessibility Worldwide 

Launched 
date 

2019 2021 2025 
202
6 

2025 

Global 
coverage 

Yes Yes Yes Yes No 
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