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Markovian Source Separation

Shahram Hosseini, Christian Jutié&ssociate Member, IEERNnd Dinh Tuan PhanMember, IEEE

Abstract—A maximum likelihood (ML) approach is used to sep- proaches provide generally the unbiased estimators, but as we
arate the instantaneous mixtures of temporally correlated, inde- ill see, the estimation is not efficient unless for the special case
pendent sources with neither preliminary transformation nor a of the Gaussian sources

priori assumption about the probability distribution of the sources. . . oo
A Markov model is used to represent the joint probability density O.ne of the sgparatlon approachgs conS|§ts of maximizing the
of successive samp|es of each source. The joint probab|||ty den_“ke“hood fUnCtlon Of the Observat|0ns. Th|S approach haS the
sity functions are estimated from the observations using a kernel advantage of providing an estimator asymptotically efficient
method. For the special case of autoregressive models, the theoret{minimum variance among unbiased estimators). For the i.i.d.
ical performance of the algorithm is computed and compared with sources, this method has been used by Pham and Garat [9].
the performance of second-order algorithms and i.i.d.-based sepa- The h that th fi i b timated b
ration algorithms. y show that the separation matrix can be estimated by
. solving the system of equatiorB[y;v,(y;)] = 0,Vi # j,
Index Terms—ndependent component analysis, Markov | hare y: represents the estimation of théh source, and
process, maximum likelihood, source separation, temporal corre- Tt . K '
lation. 1;(.) is the score function of thgth source. In the same
paper, the authors propose another method, for temporally
correlated sources, that consists of computing the discrete
. INTRODUCTION Fourier transform (DFT) of the sources and in applying the ML

N this work, the maximum likelihood (ML) approachapproaCh on the results. In [19], the authors use also the ML

is used for blind separation of linear instantaneou®éthod, but they model the probability densities of the sources
mixtures of independent sources. In a general framewdfRiNg @ fourth-order truncated Gram—Charlier development.
(without noise and with same number of sensors ah@ [20], the ML method is used to separate the Gaussian
sources), this problem can be formulated as follows. Havi§§urces where the correlation of each source is modeled by an
N samples of K instantaneous mixtures ok sources, aut_oreg_ressive model. I_:inally, [21] studies a general th_eory of
x(t) = As(t), wherex(t) = [z1(t), (1), ..., vx(t)]T and €stimating functions of md_ependent component analysis when
s(t) = [s1(t), s2(t). ..., sx(t)]T are, respectively, the vectorsthe |r_1dependent source S|gnals_ are_temporally cor_related _and
of the observations and of the sources, ands the mixing considers the ML method for estimating the separating matrix.
matrix, one wants to find an estimation of the matdx (or In this work, we study the problem in the case of temporally
of its inverse, the separation matrix) up to a scaling andCRrrelated sources, and our objective is to maximize directly the
permutation. Many methods have been proposed [1]_[1j_ij<,elihood function without either any preliminary transforma-
most of them pay no attention to the time structure of data. tion or a priori assumption concerning the probability density

Itis known that the time structure of data may be used for mQ_f the sources. In fact, these densities will be estimated dUring
proving the estimation of the model [12]-[15]. This additiond"® maximization procedure with a kernel approach.
information can actually make the estimation of the model pos- The paper is organized as follows. In Section Il, after the
sible in cases where the basic independent component analpsPlem statement, we derive the likelihood function to be max-
(ICA) methods can not estimate it, for example, if the sourcé®ized, and we show its equivalence with a conditional mutual
are Gaussian but correlated over time. Moreover, most of tigormation minimizing algorithm. In Section Ill, we propose
methods exploiting the time structure are second-order methédsiterative equivariant algorithm for estimating the separation
that are basically simpler than higher order statistics metho#aatrix and discuss practical issues, especially a method for es-
These methods try to diagonalize the time-lagged covariarf#gating the conditional score functions. In Section IV, the the-
matrix using one [12], [13] or several [14]-[17] time lags. poretical performance of the algorithm for the special case of au-

good review can be found in [18, ch. 18]. The second-order dgfegressive (AR) source models is computed, and some inter-
esting conclusions are derived. The simulation results with both

artificial and real-world data are presented in Section V. Finally,
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A. ML Method is not actually the case. Thus, the true maximum likelihood ap-
The ML method consists of maximizing the joint probabilit)PrQaCh may consist of parametrizing these densities and in max-

density function (pdf) of all the samples of all the components Hfuzing the parametrized likelihood function with respect to pa-

the vectorx (all the observations), with respectlBo We denote rameters. This approach is not, however, applicable because in
this pdf as absence o priori knowledge on the sources, it is not possible

to parametrize their densities correctly. Therefore, the densities
must be estimated using a nonparametric approach. Since the
fl@i(L), . zr (1), ;71(N),...,vx(N)). (1) sources are not observable, their densities could be estimated
only via the reconstructed sourcgs Thus, the functiongs, in
Under the assumption of independence of the sources, this fuf@- must be replaced with the estimations of the density func-
tion is equal to tions of reconstructed sourcgs .

B. Minimization of Conditional Mutual Information

N K
(%) Hfsz (eBx(1),e] Bx(2)....,e]Bx(N)) We can also study the problem from another point of view:
| det(B~1)] i=1 minimization of the conditional mutual information of the es-
. . @) timated sourceg = Bx with respect to the separating matrix
where f,;(.) represents the joint density f samples of the B. For thegth-order Markov sequences, thth-order condi-

sources;, ande; is the4th column of the identity matrix. We tional mutual information can be defined by (7), shown at the
suppose now that the sources atie-order Markov seqUences,,om of the page, which is always non-negative, and zero if

Le., and only if the processeg(t) are statistically independent for
i =1,...,K[22]. Using the expectation operatsy.], we can
fai(si(@)]si(t = 1),...,5i(1)) write
= fau(si@®lsa(t=1),-- st =) B) 1= Ellog f,(y(®)ly(t —1),...,y(t — )]
K
Using (3), (2) reduces to (4), shown at the bottom of the page. _ ZE[log Fo eyt = 1), .yt — )] (8)

Taking the logarithm of (4), one obtains the log-likelihood func-
tion that must be maximized to estimate the separating matrix . h b )
B, as in (5), shown at the bottom of the page. Using the Bay@gich can be rewritten as

forml.JI.a, we can replacg .the 'condltlonal dpnsmes by the'jOIIj\E E[log fx(x(t)x(t — 1),...,x(t — q))] — log | det(B)|
densities. After the simplification, the function to be maximized K

becomes (6), shown at the bottom of the page. Until now, we ~N"EBllog o (yi()|yi(t — 1), ...yt — ). (9
supposed that the source density functions were known, but this LE; o fy. (i ()l o0l - @)

i=1

1 N T T a T T T
(a7 [ [f( Bx(1),....e”Bx(q)) [] fo(e!Bx(®)leTBx(t—1),....¢ Bx(t—q»]. @

=1 t=q+1

K N
Li=Nlog(] det(B)|)—|—Z log(fs, (el Bx(1),...,elBx(q)))+ Z log(fs, (el Bx(t)|e! Bx(t—1),..., e Bx(t — q)))]
=1 t=q+1
' ©
K [ N N
L= Nlog(|detB))+S" | 3 los(fu. (€ Bx(t). .. e Bx(i—g))— 3 log(fu. (P Bx(i 1), . ,e?Bx<t—q>>>] )
i=1 [t=g+l t=q+2

SOyt =1),....y(t—q))
TTSs fo welyit = 1), wilt = 0))

I= / (Dt = 1), y(t — q)) log dy @)
JREK
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Because the first term is independenBafthe separation matrix —(9/09z;) log f.(zolz1, - . ., z4). Using this definition, (13) can
can be estimated by minimizing be rewritten as
9 K
K 8bjk 1
= Ellog fy, (wi(B)lyi(t = 1),...,yi(t — q))].  (10) a
i=1 == POyt = 1)yt = @)zt = D). (14)
1=0
In practice, under the ergodicity conditions, the mathematical
expected value could be replaced by a time averaging. Havﬂﬁ@“()te'/’ Ny (t)y(t-1),. -~,Y(f) q)) as the column vector of
N time samples, the above criterion is rewritten as size K with general componemJ] (v (Oly;(E=1), ... y;(t—
q)) andx(t — 1) = [x1(t = 1),...,ox(t = D]
= —logldet( )|
K Z _ _
og fy, (yi(O)|yi(t = 1), ..., i(t = q))
IR N Z log fy, (wi(Dlyi(t = 1), ilt — q). (11) 9B
=1 t=q+1

=- Z«b(y”(y(t)l.V(t —1),..,y(t—q)-x"(t=1). (15)

Comparing (11) with (5), it can be seen that is asymptoti- =0
cally equivalent to- L, /N if the actual conditional pdf of the
sourcesf,, are replaced by the conditional pdf of the estimated
sourcesf,, . As we mentioned in the previous subsection, this i L, - _BT

the only practical way to use the ML method. Then, the equwﬁB

lence of the ML method with the mutual information mlnlmlza ) T

tion method, which has already been shown for the i.i.d. S|gnals [Z ¢( Oy (E=1),- y(t=q)) - x7(t = l)] - (18)
in [23] and [24], also holds for the Markovian sources.

hus

Note that if¢ = 0, we retrieve the classical result for i.i.d.

C. Estimating Equations sources [9]. Solvingd L, /0B) = 0 with respect tdB yields

To estimate the matriB, we need to compute the gradient of
the criterion (10) with respect 1B

Z'/’ Dy®)ly(t—1),...,y(t—q)x"(t - l)] =B .

7
% =_B T Post-multiplying the above equation B/, we obtain
K
—F a%zlogfyi(yi(t)lyi(t— 1), yi(t — q))] . (12 Z¢ Dy@)ly(t=1),....y(t—a)y"(t - l)] =
=t (18)
Sincey; (t) = Zf _bira(f) depends only on thgth row of This yields theK (K — 1) estimating equations
B,ie.,onbj,, k=1,...,K, we have 4 o
EY ¢ wilyilt = 1), .yt — @)y (k= 1) | =
9 K =0
=— Y _1og fy, (ui(D)lyi(t = 1),...,y:(t — q)) i£j=1,...,K (19
ik i
9 which determindB up to a scaling and a permutation. The other
=gp. 108 Jui (WiO)ly; (¢ = 1), 95t = 0)) K equations
Ik
1 9log f,. t—1),..., t—q)) dy;(t—1
_ 0g fy, (45 ()|y;( ),y (t—q)) Dy (t—1) Zq/} l) (s (D) ys (E—=1), ..., ys(t—q))ys(t—=1) | =
=0 8yj (t — l) 8b]k 1=0
_yn 2omy iV t=0) g =he K
— y,(t—1) ’ are not important and can be replaced by any other scaling con-
vention.

Definition 1: Supposey, ..., z, areg+ 1 random variables  The system of equations (19) may be solved using, for ex-
with joint pdf f.(zo, . .., z,). The conditional score function of ample, the Newton—-Raphson adaptive algorithm. However, in
zo givenzi, ..., zq, Wh|ch is denoted by). (2|21, - - -, z4), is the paper, we preferred to minimize directly the criterion (10)
defined as the gradient of the functienlog jz(zo|71, ...,2¢), using (16) in a gradient descent scheme because its realization
where f.(zo|z1,...,2,) is the conditional pdf ofz, given is more straightforward. The drawback of the gradient method
Zls.-esZqe is that its performance depends on the choice of the learning

Note that the conditional score function is a vector of sizate parameter. A bad choice of this parameter may lead to di-
q + 1. Its [th component is denoted by( (20]21,-..,24) = vergence.
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[ll. ALGORITHM B. Equivariant Iterative Algorithm

In this section, we propose an iterative equivariant algorithm The estimation of the separating matiix is done using a
to estimate the separating matrix using the method propodsich iterative approach. At each iteration, using the current
in the previous section. Since the realization of the algorithwalue of the matrixB, the conditional score functions of the esti-
requires the estimation of the conditional score functions of ttigated sources are estimated, and the gradient (16) is computed.
estimated sources, we study this problem first. Afterwards, the matribXB is updated to minimize the criterion
(10) using arelative gradient descent scheme to achieve an equi-
A. Estimation of the Conditional Score Functions variant estimation [28]:

For estimating the conditional score functions, we can first es- B — (I
new — -

timate the conditional densities and derive then the conditional
score functions by computing the gradient of their Iogarithm@sm 16

- . o Using (16)
The estimation of the conditional densities may be done using
the estimation of the joint pdf of + 1 successive samples of g :aL2(B)BTld
each source by a kernel method, which is very time consuming. B (;
It must be also noticed that the distribution of the data in the

- _ O] _ —o)) - vI(t—
(¢+1)th dimensional space is not symmetric because of the tem-— I+E Z¢y (y®ly(t=1),....y(t=q)) -y (¢ l)]'
. . 1=0

poral correlation between the samples. Thus, one should either (24)
use the nonsymmetrical kernels or apply a prewhitening trans-
formation on data. In the first versions of our work [25], wéBecause of the scaling indeterminacy, the diagonal entries of the
only considered = 1, and we used the Fukunaga formula [26inatrix H have no importance. Thus, we can repl&Edy only
to estimate the two-dimensional (2-D) joint densities. At firsthe second term on the right-hand side of (24), which is denoted
this approach prewhitens the data by linearly transforming them
to have a unit covariance matrix; next, it smoothes the data Ity = F
using a symmetrical kernel, and finally, it transforms back the

9Ly(B)
B

BOTM) Boua. (23)

PPyt = 1)yt =)y (- l)] :

1=0

data. The method was highly time consuming even for 2-D data (25)
in the case of first-order Markovian sources. Hence, the update formula becomes
Recently, Pham [27] proposed another algorithm to compute Boew = (I — 4G)Bo. (26)

the conditional score functions. The method starts with a o o )
prewhitening stage to obtain noncorrelated temporal daf remove the ambiguity due to the scaling indeterminacy, the
Pham also suggests that the time prewhitening can alloW/ Vs of the separatlng matrR are normgllzeq at each iteration
reduction of the dimension of the used kernels because a giéthat the estimated sources have unit variance.

part of the independence between the variables is evacuated.

The influence of the prewhitening on the estimation of the scol¥. STATISTICAL PROPERTIES OF THEML ESTIMATOR FOR THE
functions is computed and will later be compensated using an SPECIAL CASE OF AUTOREGRESSIVEMODELS

additive term. Afterwards, the jOint entropies of whitened data In this section, we compute the bias and the variance of the

are estimated USing a discrete Riemann sum and the third'ormrestimator fora Specia| case @h_order Markovian sources,
CarQinaI Spline kernels. The conditional entropies, which ar_%', when the sources are generated byltha)rder autoregres-
defined as sive models:
H(yi(®)|y:s(t = 1),....v:(t — q))

= —Ellog fy, (yi()lyi(t = 1),...,yi(t — q))] (20)

are computed by estimating the joint entropies wheren;(t) are the i.i.d. sequences. In this case, the conditional
densities (3) become

H(yi()lyi(t —1),...,5i(t = q))

= H(i(0), 5:(t=1), -, v (=) = H(ui(t=1), .., it — q)). Sl Olsi(t=1) ., silt=a))

(21) =fn, (Si(t) —Z Pkisi(t_k))
k=1

The estimator (y; (t)|y:(t — 1),...,5:(t — ¢)) is a function .
of the observationg;(1), ..., y:(IV). Thelth component of the _ [0 e

conditional score function in a sample poiptn) is computed =fn. Z prisi(t = k) (28)
as

k=0
A wherepy; = —1. At convergence, the estimated sourggare
DD (i) yi(t — 1), yi(t — @) e=n in the proximity of the actual sources. Thus, we can suppose that
B Naffl(yi(t)lyi(t 1), .yt —q) eachy; also matches the autoregressive model (27) so that

(22)
0 i\ —1 1 q
=t ) Soi (Wi(O)|yi(t=1),...,yi(t=q)) = fn, <_Zpkiyi(t_k))-
k=0

The method is very powerful and provides quite a good estima-’
tion of the conditional score functions. (29)
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Thus, the components of the conditional score functions are scalar functions);(.). To compute the bias and the asymptotic
y (,)( (Ot — 1) (t—q) covariance matrix of the estimat_iqn error, we adapt the r_nethod
Yy i)Y . oo Ui q used by Pham and Garat [9] for i.i.d. sources. If the matrikes

. andB are normalized with the same convention, one may expect
= = Puithn, <_Z pkiyi(t_k)) i=1...K0<l<q B0 are — [_ BA is small and compute the first-order Taylor

k=0 expansion of the estimating equations (31) aroAnd he rela-

and the estimating equations (19) become (by replacing #igh B = A—! — £A—! implies
mathematical expected valdg.] with the time averag&y|[.])

q q
Pn, (- Z Priyi(t — k)) (- Zpliyj(t - l))] =0
k=0 1=0 and therefore, we have (33), shown at the bottom of the

i#j=1,...,K. (31) page, which can be rewritten, considering (27), as (34),

In the derivation of the estimating equations, we used the Mi1OWn at the bottom of the page, in which the signal
approach. Thus, the above score functions are, in principle, thét) = = >i—o p1:5;(t — 1) can be interpreted as the sousce
score functions of the generating i.i.d. signals However, it filtered by the 'wh|ten|ng fll'ter of the sourcet The first-order
may be noted that at this stage, itis possible to relax this startifigy/0" €xpansion of (34) gives (35), shown at the bottom of the
hypothesis and replace the score functions by any arbitrary fuR@9€, Which yields, neglecting the second-order terms, (36),
tion (denoted byp;(.) in the following) in the estimating equa- Shown at the bottom of the page. A8 — oo, the temporal
tions (31). In the following subsection, we are interested in tHBEANSEN [vi(ni(?)) sk (t =] andEn [¢)' (ni(t) )v;(¢)s1(t —1)]
separating equations for the functions which are chosen ar- COnverge to the mathematical expectatiéiie; (1 ()) sk (t-1)]
bitrarily. We show that the estimator obtained by solving the§®d £ (i(1))v;()sk(t — 1)], which vanishes unless =
equations is unbiased for a large class of functions, and Rk = J respectively. Thus, (36) becomes
compute the asymptotic variance of the estimator in the gen-  Ex[v;(ni(t))v;(t)]
eral case. It should, however, be noted that the optimal ML esti- q

Pi(ni(t)) (— Z piisi(t — l))]

=0

mator, asymptotically providing the minimum variance, can be S
achieved only by using the actual score functions. We will study
q
Pi(ni(t))v;(t) (— > puisj(t - l))]
=0
We consider now the estimating equations (31), in which the iFj=1. K (37)

the properties of this optimal estimator at the end of this section.
score functiong),,,(.) are replaced by the arbitrarily chosen 1in the sense that the filter applied ¢g(t) providesn. (t).

K
yi(t) = si(t) = > einsi(t) (32)
EN k=1

+ e B

A. Case of Arbitrarily Chosen Estimating Functions

q K q K
EN 1/11‘ <—Zpli [Si(t—l) _Zgiksk(t_l)]> <—Zpu‘ [Sj(t—l) —ZEijk(t—l)‘|>‘| =0 275] = ,...,K
=0 k=1 =0 k=1
(33)
En |1 (nz(t) +) oY cinsult - l)) (v]-(t) +) o Y st - l))] =0 i#j=1,....K  (34)
=0 k=1 1=0 k=1
En <¢Z(nz(t)) + l/J;(nz(t)) Zpli Zfiksk(t — l)) (Uj(t) + Zpli ZEijk(t — l))] =0 1£25=1,...,K (35)
=0 k=1 =0 k=1

K

En[i(ni())o;(0] = =Y pii p_{einEnlhi(ni(t))su(t — D] + e En i (ni(®))oj()si(t =]} i#j=1,....K. (36)

k=1
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which can be rewritten as The covariance matrix of the vectgris G = FElgg?]. To
compute this matrix, we must compute the terms of the form
Ei'i it t%zEZ it it . .
VO] = el 0)ni(t) BB [ ()0, (DL BN () (0] or i £  andls £
+ei Elgi(ni(®)vi(®)] i#j=1,...,K. (38) [ If 4;(n;(t)) are zero meahthe only nonzero terms & are
Our objective is to compute the mean and the covariance matfiese With{i, j} = {k,1} i #j=1,..., K.Thus, the covari-
of the off-diagonal entries of the error matéx ance matrixG is bloc diagonal with blocs as in (42), shown at

Definition 2: The off-diagonal terms of the error matd the bottom of the page, which can be rewritten as (43), shown
ie.e; i#j=1,... K,are structured ik (K — 1)/2 at the bottom of the page.;(t) andn;(r) are independent if

elementary vectors t # r becausen;(t) is an i.i.d. signal. IfE[;(n;(t))] = 0,
as mentioned above, then the two diagonal entries of the sum-
8¢ij) = [%} i#£j=1,....K (39) mand of (43) are zero unless= r. What about the off-diagonal
Eji entries? Considering the definition f(t), this signal only de-
which are concatenated in a vectoof size K (K — 1) pends on the past and present values of the sigi&). There-

fore, if t > r, thenE[y;(n;(t))v;(r)] = 0, and ift < r, then

§:=1[--86, 1" (s , — —di [
(i) E[i(n;(r))v;(t)] = 0. Thus, the off-diagonal entries of the

In the same way, one defines summand are also zero unldss= r. It follows that we have
B[t (ns(1))0;(1)] (44), shown at the bottom of the page, or, after simplificat_ion,
g(ij) = [EN e . 7 : ] iZj=1,...,.K we have (45), shown at the bottom of the page. If the madrix
s (i (1)vi(t) is invertible? one can write, from (40§ = H~'g. The covari-
and ance matrix of the error vectdris
g:=[-gl 1" A=E[66"] =H 'Elgg”|H T =H'GH". (46)

We now want to compute the mean and the variance of tt}ﬁe estimator is unbiased because
error vector. We can rewrite (38) in the following form:

g =HS§ (40) E§] =H'E[g] = 0. (47)
in which H is a bloc diagonal matrix with blocs ar:'Toh(ijfj ifsutnhcetigﬁze, for example sif; () have symmetric distributions angl
H.oo — (E[I/J;(m(t))]E[vJZ(t)] En;(t)i(ni(t))] > 3It is not true iflsj(t) ands;(t) are two Gaussian sources, with the same
(i) Eln;(t);(n;(t))] E[‘/’;(W EW; )] ) spectral densities, i.eu;; = pi; V1. In this caseH, ;) = Z’;J‘ Z;
G = E < En[i(ni(6)vi(O1EN [$i(ni(8)o;(D)] - En[i(ni(8))vi (01 EN [ (n;(1))vi(?)] ) (42)
@ =B i (g ()0 (OB [ (mi D)y (D)] - B[t (g (002 ()] B 15 (£ (8)]

N N

1 Blpi(ni(0)s(ni(r D Elog (g ()] Eltbs(ma()oi (1) Bl (m (r)o (1)
G = =g t;r;ﬂ(sz(m(r)m(t)]E[%(nj(t))vj(r)] ij(nj<t))wj<nj(r>>1E[w<t>vi(r>1) (43)
R a E[7 (ni(t)] B3 (1)] BElpi(ni(t))vi(0)]E[; (n;(t))v;(t)]
G = W=y t§1<Ewl<m<t»m DIE[;(n;(8))v; (1) B2 (n; ()| B[ ()] ) 5
o B2 (ns(0)) E[3(1) Blpi(ni(8))os (D) B[ (5 (1)) (1)
G“”‘N—q(E[z/n(m:(t))m:(t)]EWq(nj<t>>vj<t>1 BL2(ny ()] 103 (1) ) (45)
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B. Optimal Separation whereo is the standard deviation, aritlis a shape parameter.

Although the estimator is unbiased for a large class of funfo # = 2, one retrieves the Gaussian law, for= 1, the
tions;, it is not optimal in the maximum likelihood sense, unPilateral exponential law, and fgf — oo, the uniform law. It
less the separating function’s are the score functions, which¢@n be easily verified that
are denoted),,,. In that case, the estimator is asymptotically 2 T (A) 08 _ 1
efficient (the variance is minimum). In this subsection, we pro- E[2 (ni(t))] = B fi) p pi - .

b Bi

ceed to compute the covariance matkixor this optimal case.

(67)

We will use the following property of the score function:

Elg(u)y(u)] = Elg'(u)] (48)

for any differentiable functiory such thatg(u)f(u) vanished

at infinity (f(u) represents the pdf of the variahlg It follows
that

Ely(u)] =0 (49)
Elp(u)u] =1 (50)
E[y (u)] =E[4*(u)]. (51)

Hence, the diagonal blocs of the matkkcan be written in the

following form:
H(ij) = <0—12}JE[1/}727'1 (nl(t))] ) 1
1 o3 E[r, (n;(1))]
To simplify the matrixG, we know that

) . (52)

Bl (1)) 05(0)] = | g () S gt~ l)]

= Bl (s )si(0)]
Y (O (me(0) 3 prisi(t — l))]
B (D] =1 (53)

because;(t) is independent of; (¢t — [) for [ > 0. Thus

1 (E[wm(t))]ozj 1

N-q 1 E[3(n;(8)]oy, >(é4)

=F

Gij) =

2
()
In the following, we suppose thg = 3, Vi, and the correlated

sources;(t) have unit variance so thaf. = 1—p?. Itcan also
be easily shown that

g2 L4 =20

v1 1— p% ny
L+ p? = 2pap1
To =12 P3 - )

Considering the relations (55), (57), and (58), the diagonal blocs
of the covariance matriA are

1-p?
A= 1 ~CAiT '
(i) (N—1)(1-C24;4;) 1 —C’A];:—Z’z
(59)
where
3
oo (26-1\ T (5)
C =0T (=5 -
r2(5)
2
1—p;
L+ pf —2pip;
A == PP T Ll (60)

We call total variancethe sum of the diagonal entries 4f,
which writes using (39) and (46):

K(K-1)
Ay = Z E[E%J]

V=
z; 04,

(61)

From (46) and after some computations, the covariance malfixan be remarked that the total variance is asymptotically in-
of the ML estimator erroA is obtained, which is a bloc diagonalyersely proportional to the number of samples,and that for the

matrix with the diagonal blocs

AL 1
) = N g B (i (ONEW2 (ny (D)o 0, — 1

(02 B2, (n5(0)] 1

< il aijE[wzi(mt))])' (53)

C. Some Theoretical Results for First-Order AR Sources

We want now to evaluate the error covariance makrir the
special case of first-order autoregressive sourges (1). We

suppose that all the i.i.d. signals(¢) have the same distribu-
tion taken from the family of the generalized Gaussian densities,

which are defined by

5 072 (3) s
1
B

g

-t

p(n’i(t)) = %I‘i”/? ( )

>ﬂ/2

@ | @l

(56)

particular case; = p, Vi, it does not depend om This means
that the optimal separation performance foi.i.d. sources (of
same densities) is equal to the performanceKocorrelated
sources with the same spectral densities.

It should be also remarked that considering (32) and ne-
glectinge;; s; in comparison withs;, we can write

yi(t) ~ 8,(t) — Z&:i]-sj(t). (62)
i
If the sources have unit variances, it is clear that
K
V> E[(yit) — silt)?]: (63)
1=1

Fig. 1 shows the total variance for the case of two first-order
autoregressive sources of same generalized Gaussian law as a
function of 3, for p; = 0 andp, taking three values 0, 0.5,

and 0.99. Considering the figure, the following remarks may be
noted.



3016 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 12, DECEMBER 2003

non optimal separation (second order method)

8

]
T

S optimal separation (B=1)

(N-1)* total variance (dB)

L " L L ' L 1 i s
0.1 0.2 03 04 05 06 07 08 [:X:] 1

Fig. 1. Theoretical total variance of the estimator as a functioh fafr three  Fig. 2. Comparison of the theoretical total variance of a second-order
values ofp,: 0 (solid line), 0.5 (dashed line), and 0.99 (dotted line), whgre estimator with an optimal estimator fér= 1 and3 = 10 as a function op,
is fixed to zero,3 = 2 corresponds to Gaussian distribution. wherep- is fixed to 0. The second-order method is only optimal foe= 2,

i.e., for Gaussian sources.

1) The optimal separation performance increases when _ _ _
the spectral densities of the two sources become mdrB€ comparison of the total variance fér= 2 with the other

different. This effect exists whatever the nature of th¥2lues offf in Fig. 1 can give a vision of the performance gain
sources, but it is more remarkable for the nearly Gaussig@han optimal estimator with respect to a second-order method.
SOUICeS. Fig. 2 compares the optimal total variance, computed by (59),

2) The performance decreases when the sources approdfi the total variance of a second-order method, computed by
the Gaussianity. The separation of two i.i.d. Gaussidf4): @s a function op,, wherep, is fixed to zero, for different

sources, or two correlated Gaussian sources, provided‘{?}ues ofg. It should be remarked that a second-order method
two i.i.d. Gaussian sources filtered by the same filter js not able to separate the sources having the same spectral den-
theoretically impossible because the variance of the estities, even if they are non-Gaussians.

mator approaches infinity.

For the particular case of two first-order autoregressive V. EXPERIMENTAL RESULTS
Gaussian sources of unit variance, with the correlation coeffi-

cientsp, andp,, the total variance is equal to In this section, some experimental results with artificial and

real-world signals will be presented.

1
V= <N— 1) A. Does the Algorithm Work Well?

(14 p3—2p1p2)(1—p3)+(1+p3 —2p1p2)(1—p3) The first experiment consists of comparing the theoretical
(1+p3—2p1p2)(1+p7—2p1p2)— (L= p})(1—p3) (64) end experimental separation performances for the special case
of two AR1 Gaussian sources with respective coefficignts
We now suppose that the score functions of the sources are ot p,. Two experiments are done. In the first one, we sup-
known, and one does not want to estimate them. In this capese that all the statistical properties of the sources are known.
it is possible to use the arbitrarily chosen functiafisin the Thus, we suppose an AR1 Gaussian model with known model
estimating equations (31). The separation is no longer optimalefficients for the sources and solve the estimating equations
because the variance of the nonoptimal estimator is greater tiiah) with these hypotheses. In the second experiment, we sup-
that obtained by using the score functions that are associagede that nothing is known about the sources, except that they
with the ML estimator. A particular interesting case is when thare the first-order Markov sequences, and the equivariant al-
score functions of the Gaussian sources are used to separatgthighm of Section IlI-B is used for separating. Each of the
non-Gaussian temporally correlated sources. This means tagberiments is done using 100 Monte Carlo simulations with
one only considers the second-order statistics of the sourc&s= 1000. At each simulation, the nondiagonal entries of the
which brings us to the second-order algorithms, which ha e B _ 1 099
been largely studied in ICA literature [12]—{14], [15]-[17]. Watrixg = T-BA are computed, whet = ( (o )
Thus, we must normally replaag (z) by « (the score func- is the mixing matrix, and3 is the estimation of the separating
tion of a unit variance Gaussian source) in (41) and (45) anghtrix. Then, the total variance of the estimaitois computed
compute the covariance matrix using the general relation (4@xing (61).
Itis, however, easy to see that in this case, the covariance matri¥ig. 3 showsl10log,,(V * (N — 1)), for p; = 0.5, as a
will be equal to the optimal covariance matrix for the Gaussidnnction of p,. The curve is the theoretical variance, which is
sources so that the total variance can be computed using (&)mputed from (64). The asterisks and the circles represent the
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Fig. 4. Total variance of the two estimators as a functiop.0f& p- for two
Fig. 3. Total variance of the estimator as a functiopef wherep, is fixed correlated sources obtained by AR1 filtering of two uniform i.i.d. signals. Solid
to 0.5, for two Gaussian sources. Curve: Theoretical variance. Asteriskse: Our algorithm. Dashed line: ML algorithm of Pham and Garat, which pays
Empirical variance supposing that the statistical properties of the sources moeattention to the temporal correlation of data.
known. Circles: Empirical variance withow priori hypotheses about the

sources. .
C. Does the Algorithm Work Better Than a Second-Order

_ _ _ _ Method?
values obtained using the first and second experiments, respe‘j-

i : X .- In another experiment, we want to compare the performance
tively. As can be seen, the practical results are in agreement wi . . ! .
Y P 9 of our algorithm with a second order method i.e., the AMUSE

the theory. algorithm [12]. This simple and fast algorithm works as follows.
B. Is Any Improvement Obtained by Taking Into Account thel) Whiten the (zero-mean) data x(t) to ob-
Temporal Correlation? tain  z(t).

2) Compute the eigenvalue decomposition of

In another experiment, we compare the performance of ot = (1/2)[C1 + C{], where = Cy = E[(t)z(t —1)] is

algorithm with the ML algorithm proposed by Pham and Gardg€_firstlagged covariance matrix.

[9], which pays no attention to the temporal correlation of) 1€ rows of the separating matrix B

data. Our objective is so to know how much improvement m%ye given by the eigenvectors.

be obtained by taking into account the temporal correlation.

Two sources are generated by filtering two i.i.d. uniform The algorithm works well when the first lagged covariances
signals using two similar AR1 filtersp{ = p2). Each of the are different for all the sources. For a first-order autoregressive
experiments is done using 100 Monte Carlo simulations withodel, which we use in our experiences, this condition is satis-
N = 1000. fied if the model coefficient; are different.

Fig. 4 showsl0log,,(V * (N — 1)) as a function ofp; = Two sources are generated by passing two i.i.d. uniform sig-
p2. The solid and dashed lines represent, respectively, our aéls into two ARL filters. Each of the experiments is done using
gorithm and the Pham-Garat algorithm. The performance ®®0 Monte Carlo simulations witltv' = 1000. Fig. 5 shows
our algorithm is approximately insensitive to the coefficient of0 log,,(V * (N — 1)), for p» = 0, as a function of;. The re-
AR1 filters. This is not surprising because, as we saw in Sesults confirm the theoretical curves of Fig. 2. The experiment is
tion IV-C, it is not the temporal correlation itself that provideslso performed using the Pham-Garat algorithm, and the result
the additional information but the difference between the spas-shown in the same figure, which confirms the discussion of
tral densities of the sources. The separation performance of the previous subsection.
method for two i.i.d. sources is equal to the performance for two
highly correlated sources with the same spectral densities. Dn Experiences Using Real-World Data

the other hand, the performance of the Pham-Garat algorithmp the Jast experiment, we use the artificial instantaneous
decreases with, = p» because the filtered sources approagthear mixtures of the speech signals. Our algorithm (supposing
Gaussianity so that the separation becomes more difficult. Qurfirst- or a second-order Markov model for signals), the
algorithm works better fop; = p2 > 0.1. For nearly uncorre- pham-Garat algorithm, and the AMUSE algorithm are used to
lated sources, the error involved in the estimation of the condieparate the mixtures.

tional score functions results in a lower performance of our al- Ty 4-s independent speech signals are mixed by the mixing
gorithm with respect to the Pham-Garat algorithm. Finally, note 1 0.99
that a second-order method could not separate the sources B&X A = ( 199 1
cause they have the same spectral densities. 220 frames of 200 samples. Thus, each frame (of length 18,2

. The mixtures are divided into
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a priori assumption on the probability densities of the sources.
We suppose only that the sources are the Markov sequences.
The kernel estimators are used to estimate the conditional den-
sities of the sources from the observations using an iterative al-
gorithm. For the special case of autoregressive source models,
the theoretical performance of the algorithm is computed. The
experimental results confirm the relevance of the approach.

Several points could, however, be improved. The algorithm is
rather slow because estimating the probability densities is time

consuming. We are currently working on less expensive, faster,
Pham-Garat S and more efficient algorithms to estimate these densities. The
ol e--mTTTTTTTTTTTTT ] simple gradient algorithm used in this paper is sensitive to the
learning rateu. A conjugate gradient algorithm, for example,
could solve this problem.

It must be noted that the computational complexity of the al-
gorithm is inherently much higher than the complexity of sub-
Fig. 5. Total \;arie:jnce of three estt)im'ato(;sbas a fufr'llctiqplof/icg being,ffixed_ _optimal algorithms that do not pay attention to time structure of
e o O b AL e of o o™ i Hata or make soma priori assumptions about the probabilty
ML algorithm of Pham and Garat, which pays no attention to the tempordensities of the sources. Thus, its application seems to be lim-
correlation of data. ited to offline ICA problems where the separation performance
could be more important than computational complexity.

Other tests seem necessary to compare our algorithm with
other existing algorithms. One can test the algorithm on the cor-
relation generated by nonlinear filters. We mention that in the
problem formulation, no hypothesis about the nature of tem-
poral filters is made, except for a Markov model that simpli-
fies the realization. The idea may be also used to separate the

. AMUSE

3 a 8
Y T T
) )

(N-1)*total variance (dB)

o
T
)

L 1
0.2 03

TABLE |
NORMALIZED TOTAL VARIANCE AND THE
ReESIDUAL CROSSTALKS ON THE TWO CHANNELS (ALL IN DECIBELS) FOR OUR
ALGORITHM (USING FIRST-ORDER AND SECOND-ORDER MARKOV MODELING
OF THE SOURCES, THE PHAM-GARAT ALGORITHM, AND THE AMUSE
ALGORITHM IN THE EXPERIMENT WITH SPEECHSIGNALS

Method 10log;o(V * (N — 1)) C1 C2 nonlinear and post nonlinear mixtures of temporally correlated
sources.
2nd order Markov 5.5171 -37.9169 | -31.0492
1st order Markov 6.8624 -36.7051 | -30.4426 REFERENCES
Pham-Garat 9.4721 -28.0380 | -25.7875 [1] J. Hérault, C. Jutten, and B. Ans, “Détection de grandeurs primitives
dans un message composite par une architecture de calcul neuromimé-
AMUSE 11.0436 -29.2890 | -25.3705 tique en apprentissage non supervisé,Pinc. GRETSINice, France,
Mai 1985, pp. 1017-1022.

[2] J.-L. Lacoume and P. Ruiz, “Sources identification: A solution based
on cumulants,” irProc. IEEE ASSP WorkshpMineapolis, MN, Aug.

ms) can be considered as a stationary sequence. Note, however 1988.

. . . . J.-F. Cardoso, “Source separation using higher order momen®dmn
that, contrary to the previous simulations, the first-order Markov EH ICASSP Glasgow, U.K., ,\,‘,)ay 1089, pp_gzj_gg_zzj_z_ :

model is no longer an exact model for temporally correlation of [4] C. Jutten and J. Hérault, “Blind separation of sources, Part I: An adaptive
the sources. algorithm based on a neuromimetic architectui®ignal Processing

. vol. 24, pp. 1-10, 1991.

For each methOdLO_IOglo(V * (N — 1)) IS Cc_)mpUted- We (5] p. comon, “Independent component analysis, a new conceigal
also compute the residual cross-talks (in decibels) on the two  Process.vol. 36, no. 3, pp. 287-314, Apr. 1994.
channels, which are defined as [6] A.' Bell and T_. Sejnows_ki, “An informqtion—maximization approach to
blind separation and blind deconvolutio™Neural Comput.vol. 7, no.
6, 1995.
N. Delfosse and P. Loubaton, “Adaptive blind separation of indepen-
dent sources: A deflation approacignal Processvol. 45, pp. 59-83,
. . . 1995.
wherey; ands; have unit variance. The results are shown in [g] 3. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutsensalo, “A class

C; =10log E[(yi — s:)°] i=1,2 (65) I

Table I. As can be seen, our algorithm works significantly better
than the two others. The second-order Markov modeling resultﬁg]
in a better performance with respect to the first-order model,

although the improvement is not considerable. 110]
10

VI. CONCLUSION 1]
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