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Abstract—A maximum likelihood (ML) approach is used to sep-
arate the instantaneous mixtures of temporally correlated, inde-
pendent sources with neither preliminary transformation nor a
priori assumption about the probability distribution of the sources.
A Markov model is used to represent the joint probability density
of successive samples of each source. The joint probability den-
sity functions are estimated from the observations using a kernel
method. For the special case of autoregressive models, the theoret-
ical performance of the algorithm is computed and compared with
the performance of second-order algorithms and i.i.d.-based sepa-
ration algorithms.

Index Terms—Independent component analysis, Markov
process, maximum likelihood, source separation, temporal corre-
lation.

I. INTRODUCTION

I N this work, the maximum likelihood (ML) approach
is used for blind separation of linear instantaneous

mixtures of independent sources. In a general framework
(without noise and with same number of sensors and
sources), this problem can be formulated as follows. Having

samples of instantaneous mixtures of sources,
, where and

are, respectively, the vectors
of the observations and of the sources, andis the mixing
matrix, one wants to find an estimation of the matrix (or
of its inverse, the separation matrix) up to a scaling and a
permutation. Many methods have been proposed [1]–[11];
most of them pay no attention to the time structure of data.

It is known that the time structure of data may be used for im-
proving the estimation of the model [12]–[15]. This additional
information can actually make the estimation of the model pos-
sible in cases where the basic independent component analysis
(ICA) methods can not estimate it, for example, if the sources
are Gaussian but correlated over time. Moreover, most of the
methods exploiting the time structure are second-order methods
that are basically simpler than higher order statistics methods.
These methods try to diagonalize the time-lagged covariance
matrix using one [12], [13] or several [14]–[17] time lags. A
good review can be found in [18, ch. 18]. The second-order ap-
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proaches provide generally the unbiased estimators, but as we
will see, the estimation is not efficient unless for the special case
of the Gaussian sources.

One of the separation approaches consists of maximizing the
likelihood function of the observations. This approach has the
advantage of providing an estimator asymptotically efficient
(minimum variance among unbiased estimators). For the i.i.d.
sources, this method has been used by Pham and Garat [9].
They show that the separation matrix can be estimated by
solving the system of equations ,
where represents the estimation of theth source, and

is the score function of theth source. In the same
paper, the authors propose another method, for temporally
correlated sources, that consists of computing the discrete
Fourier transform (DFT) of the sources and in applying the ML
approach on the results. In [19], the authors use also the ML
method, but they model the probability densities of the sources
using a fourth-order truncated Gram–Charlier development.
In [20], the ML method is used to separate the Gaussian
sources where the correlation of each source is modeled by an
autoregressive model. Finally, [21] studies a general theory of
estimating functions of independent component analysis when
the independent source signals are temporally correlated and
considers the ML method for estimating the separating matrix.

In this work, we study the problem in the case of temporally
correlated sources, and our objective is to maximize directly the
likelihood function without either any preliminary transforma-
tion or a priori assumption concerning the probability density
of the sources. In fact, these densities will be estimated during
the maximization procedure with a kernel approach.

The paper is organized as follows. In Section II, after the
problem statement, we derive the likelihood function to be max-
imized, and we show its equivalence with a conditional mutual
information minimizing algorithm. In Section III, we propose
an iterative equivariant algorithm for estimating the separation
matrix and discuss practical issues, especially a method for es-
timating the conditional score functions. In Section IV, the the-
oretical performance of the algorithm for the special case of au-
toregressive (AR) source models is computed, and some inter-
esting conclusions are derived. The simulation results with both
artificial and real-world data are presented in Section V. Finally,
in Section VI, we conclude and present the perspectives.

II. THEORY

Having samples of a -dimensional vector resulting
from a linear transformation , where is a vector
of independent signals, eventually correlated in the time (the
sources), and is a invertible matrix, our objective is
to estimate the separating matrix up to classical in-
determinacies, using an ML approach.

1053-587X/03$17.00 © 2003 IEEE
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A. ML Method

The ML method consists of maximizing the joint probability
density function (pdf) of all the samples of all the components of
the vector (all the observations), with respect to. We denote
this pdf as

(1)

Under the assumption of independence of the sources, this func-
tion is equal to

(2)
where represents the joint density of samples of the
source , and is the th column of the identity matrix. We
suppose now that the sources areth-order Markov sequences,
i.e.,

(3)

Using (3), (2) reduces to (4), shown at the bottom of the page.
Taking the logarithm of (4), one obtains the log-likelihood func-
tion that must be maximized to estimate the separating matrix

, as in (5), shown at the bottom of the page. Using the Bayes
formula, we can replace the conditional densities by the joint
densities. After the simplification, the function to be maximized
becomes (6), shown at the bottom of the page. Until now, we
supposed that the source density functions were known, but this

is not actually the case. Thus, the true maximum likelihood ap-
proach may consist of parametrizing these densities and in max-
imizing the parametrized likelihood function with respect to pa-
rameters. This approach is not, however, applicable because in
absence ofa priori knowledge on the sources, it is not possible
to parametrize their densities correctly. Therefore, the densities
must be estimated using a nonparametric approach. Since the
sources are not observable, their densities could be estimated
only via the reconstructed sources. Thus, the functions in
(6) must be replaced with the estimations of the density func-
tions of reconstructed sources .

B. Minimization of Conditional Mutual Information

We can also study the problem from another point of view:
minimization of the conditional mutual information of the es-
timated sources with respect to the separating matrix

. For the th-order Markov sequences, theth-order condi-
tional mutual information can be defined by (7), shown at the
bottom of the page, which is always non-negative, and zero if
and only if the processes are statistically independent for

[22]. Using the expectation operator , we can
write

(8)

which can be rewritten as

(9)

(4)

(5)

(6)

(7)
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Because the first term is independent of, the separation matrix
can be estimated by minimizing

(10)

In practice, under the ergodicity conditions, the mathematical
expected value could be replaced by a time averaging. Having

time samples, the above criterion is rewritten as

(11)

Comparing (11) with (5), it can be seen that is asymptoti-
cally equivalent to if the actual conditional pdf of the
sources are replaced by the conditional pdf of the estimated
sources . As we mentioned in the previous subsection, this is
the only practical way to use the ML method. Then, the equiva-
lence of the ML method with the mutual information minimiza-
tion method, which has already been shown for the i.i.d. signals
in [23] and [24], also holds for the Markovian sources.

C. Estimating Equations

To estimate the matrix , we need to compute the gradient of
the criterion (10) with respect to

(12)

Since depends only on theth row of
, i.e., on , , we have

(13)

Definition 1: Suppose are random variables
with joint pdf . The conditional score function of

given , which is denoted by , is
defined as the gradient of the function ,
where is the conditional pdf of given

.
Note that the conditional score function is a vector of size

. Its th component is denoted by

. Using this definition, (13) can
be rewritten as

(14)

Denote as the column vector of
size with general component

and

(15)

Thus

(16)

Note that if , we retrieve the classical result for i.i.d.
sources [9]. Solving with respect to yields

(17)
Post-multiplying the above equation by , we obtain

(18)
This yields the estimating equations

(19)

which determine up to a scaling and a permutation. The other
equations

are not important and can be replaced by any other scaling con-
vention.

The system of equations (19) may be solved using, for ex-
ample, the Newton–Raphson adaptive algorithm. However, in
the paper, we preferred to minimize directly the criterion (10)
using (16) in a gradient descent scheme because its realization
is more straightforward. The drawback of the gradient method
is that its performance depends on the choice of the learning
rate parameter. A bad choice of this parameter may lead to di-
vergence.
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III. A LGORITHM

In this section, we propose an iterative equivariant algorithm
to estimate the separating matrix using the method proposed
in the previous section. Since the realization of the algorithm
requires the estimation of the conditional score functions of the
estimated sources, we study this problem first.

A. Estimation of the Conditional Score Functions

For estimating the conditional score functions, we can first es-
timate the conditional densities and derive then the conditional
score functions by computing the gradient of their logarithms.
The estimation of the conditional densities may be done using
the estimation of the joint pdf of successive samples of
each source by a kernel method, which is very time consuming.
It must be also noticed that the distribution of the data in the
( )th dimensional space is not symmetric because of the tem-
poral correlation between the samples. Thus, one should either
use the nonsymmetrical kernels or apply a prewhitening trans-
formation on data. In the first versions of our work [25], we
only considered , and we used the Fukunaga formula [26]
to estimate the two-dimensional (2-D) joint densities. At first,
this approach prewhitens the data by linearly transforming them
to have a unit covariance matrix; next, it smoothes the data by
using a symmetrical kernel, and finally, it transforms back the
data. The method was highly time consuming even for 2-D data
in the case of first-order Markovian sources.

Recently, Pham [27] proposed another algorithm to compute
the conditional score functions. The method starts with a
prewhitening stage to obtain noncorrelated temporal data.
Pham also suggests that the time prewhitening can allow a
reduction of the dimension of the used kernels because a great
part of the independence between the variables is evacuated.
The influence of the prewhitening on the estimation of the score
functions is computed and will later be compensated using an
additive term. Afterwards, the joint entropies of whitened data
are estimated using a discrete Riemann sum and the third-order
cardinal spline kernels. The conditional entropies, which are
defined as

(20)

are computed by estimating the joint entropies

(21)

The estimator is a function
of the observations . The th component of the
conditional score function in a sample point is computed
as

(22)

The method is very powerful and provides quite a good estima-
tion of the conditional score functions.

B. Equivariant Iterative Algorithm

The estimation of the separating matrix is done using a
batch iterative approach. At each iteration, using the current
value of the matrix , the conditional score functions of the esti-
mated sources are estimated, and the gradient (16) is computed.
Afterwards, the matrix is updated to minimize the criterion
(10) using a relative gradient descent scheme to achieve an equi-
variant estimation [28]:

(23)

Using (16)

(24)

Because of the scaling indeterminacy, the diagonal entries of the
matrix have no importance. Thus, we can replaceby only
the second term on the right-hand side of (24), which is denoted

(25)
Hence, the update formula becomes

(26)

To remove the ambiguity due to the scaling indeterminacy, the
rows of the separating matrix are normalized at each iteration
so that the estimated sources have unit variance.

IV. STATISTICAL PROPERTIES OF THEML ESTIMATOR FOR THE

SPECIAL CASE OFAUTOREGRESSIVEMODELS

In this section, we compute the bias and the variance of the
ML estimator for a special case ofth-order Markovian sources,
i.e., when the sources are generated by theth-order autoregres-
sive models:

(27)

where are the i.i.d. sequences. In this case, the conditional
densities (3) become

(28)

where . At convergence, the estimated sourcesare
in the proximity of the actual sources. Thus, we can suppose that
each also matches the autoregressive model (27) so that

(29)
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Thus, the components of the conditional score functions are

(30)

and the estimating equations (19) become (by replacing the
mathematical expected value with the time average )

(31)

In the derivation of the estimating equations, we used the ML
approach. Thus, the above score functions are, in principle, the
score functions of the generating i.i.d. signals. However, it
may be noted that at this stage, it is possible to relax this starting
hypothesis and replace the score functions by any arbitrary func-
tion (denoted by in the following) in the estimating equa-
tions (31). In the following subsection, we are interested in the
separating equations for the functions, which are chosen ar-
bitrarily. We show that the estimator obtained by solving these
equations is unbiased for a large class of functions, and we
compute the asymptotic variance of the estimator in the gen-
eral case. It should, however, be noted that the optimal ML esti-
mator, asymptotically providing the minimum variance, can be
achieved only by using the actual score functions. We will study
the properties of this optimal estimator at the end of this section.

A. Case of Arbitrarily Chosen Estimating Functions

We consider now the estimating equations (31), in which the
score functions are replaced by the arbitrarily chosen

scalar functions . To compute the bias and the asymptotic
covariance matrix of the estimation error, we adapt the method
used by Pham and Garat [9] for i.i.d. sources. If the matrices
and are normalized with the same convention, one may expect
that is small and compute the first-order Taylor
expansion of the estimating equations (31) around. The rela-
tion implies

(32)

and therefore, we have (33), shown at the bottom of the
page, which can be rewritten, considering (27), as (34),
shown at the bottom of the page, in which the signal

can be interpreted as the source
filtered by the whitening filter of the source.1 The first-order
Taylor expansion of (34) gives (35), shown at the bottom of the
page, which yields, neglecting the second-order terms, (36),
shown at the bottom of the page. As , the temporal
means and
converge to the mathematical expectations
and , which vanishes unless
or respectively. Thus, (36) becomes

(37)

1In the sense that the filter applied tos (t) providesn (t).

(33)

(34)

(35)

(36)
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which can be rewritten as

(38)

Our objective is to compute the mean and the covariance matrix
of the off-diagonal entries of the error matrix.

Definition 2: The off-diagonal terms of the error matrix,
i.e., , are structured in
elementary vectors

(39)

which are concatenated in a vectorof size

In the same way, one defines

and

We now want to compute the mean and the variance of the
error vector . We can rewrite (38) in the following form:

(40)

in which is a bloc diagonal matrix with blocs

(41)

The covariance matrix of the vector is . To
compute this matrix, we must compute the terms of the form

for and
. If are zero mean,2 the only nonzero terms of are

those with . Thus, the covari-
ance matrix is bloc diagonal with blocs as in (42), shown at
the bottom of the page, which can be rewritten as (43), shown
at the bottom of the page. and are independent if

because is an i.i.d. signal. If ,
as mentioned above, then the two diagonal entries of the sum-
mand of (43) are zero unless . What about the off-diagonal
entries? Considering the definition of , this signal only de-
pends on the past and present values of the signal. There-
fore, if , then , and if , then

. Thus, the off-diagonal entries of the
summand are also zero unless . It follows that we have
(44), shown at the bottom of the page, or, after simplification,
we have (45), shown at the bottom of the page. If the matrix
is invertible,3 one can write, from (40) . The covari-
ance matrix of the error vectoris

(46)

The estimator is unbiased because

(47)

2This is the case, for example, ifn (t) have symmetric distributions and 
are odd functions.

3It is not true if s (t) ands (t) are two Gaussian sources, with the same

spectral densities, i.e.,� = � 8l. In this case,H =
� �

� �
.

(42)

(43)

(44)

(45)
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B. Optimal Separation

Although the estimator is unbiased for a large class of func-
tions , it is not optimal in the maximum likelihood sense, un-
less the separating functions are the score functions, which
are denoted . In that case, the estimator is asymptotically
efficient (the variance is minimum). In this subsection, we pro-
ceed to compute the covariance matrixfor this optimal case.
We will use the following property of the score function:

(48)

for any differentiable function such that vanished
at infinity ( represents the pdf of the variable). It follows
that

(49)

(50)

(51)

Hence, the diagonal blocs of the matrixcan be written in the
following form:

(52)

To simplify the matrix , we know that

(53)

because is independent of for . Thus

(54)
From (46) and after some computations, the covariance matrix
of the ML estimator error is obtained, which is a bloc diagonal
matrix with the diagonal blocs

(55)

C. Some Theoretical Results for First-Order AR Sources

We want now to evaluate the error covariance matrixin the
special case of first-order autoregressive sources ( ). We
suppose that all the i.i.d. signals have the same distribu-
tion taken from the family of the generalized Gaussian densities,
which are defined by

(56)

where is the standard deviation, andis a shape parameter.
For , one retrieves the Gaussian law, for , the
bilateral exponential law, and for , the uniform law. It
can be easily verified that

(57)

In the following, we suppose that , and the correlated
sources have unit variance so that . It can also
be easily shown that

(58)

Considering the relations (55), (57), and (58), the diagonal blocs
of the covariance matrix are

(59)
where

(60)

We call total variancethe sum of the diagonal entries of,
which writes using (39) and (46):

(61)

It can be remarked that the total variance is asymptotically in-
versely proportional to the number of samples,and that for the
particular case , it does not depend on. This means
that the optimal separation performance fori.i.d. sources (of
same densities) is equal to the performance forcorrelated
sources with the same spectral densities.

It should be also remarked that considering (32) and ne-
glecting in comparison with , we can write

(62)

If the sources have unit variances, it is clear that

(63)

Fig. 1 shows the total variance for the case of two first-order
autoregressive sources of same generalized Gaussian law as a
function of , for and taking three values 0, 0.5,
and 0.99. Considering the figure, the following remarks may be
noted.
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Fig. 1. Theoretical total variance of the estimator as a function of� for three
values of� : 0 (solid line), 0.5 (dashed line), and 0.99 (dotted line), where�

is fixed to zero.� = 2 corresponds to Gaussian distribution.

1) The optimal separation performance increases when
the spectral densities of the two sources become more
different. This effect exists whatever the nature of the
sources, but it is more remarkable for the nearly Gaussian
sources.

2) The performance decreases when the sources approach
the Gaussianity. The separation of two i.i.d. Gaussian
sources, or two correlated Gaussian sources, provided by
two i.i.d. Gaussian sources filtered by the same filter is
theoretically impossible because the variance of the esti-
mator approaches infinity.

For the particular case of two first-order autoregressive
Gaussian sources of unit variance, with the correlation coeffi-
cients and , the total variance is equal to

(64)

We now suppose that the score functions of the sources are not
known, and one does not want to estimate them. In this case,
it is possible to use the arbitrarily chosen functionsin the
estimating equations (31). The separation is no longer optimal
because the variance of the nonoptimal estimator is greater than
that obtained by using the score functions that are associated
with the ML estimator. A particular interesting case is when the
score functions of the Gaussian sources are used to separate the
non-Gaussian temporally correlated sources. This means that
one only considers the second-order statistics of the sources,
which brings us to the second-order algorithms, which have
been largely studied in ICA literature [12]–[14], [15]–[17].

Thus, we must normally replace by (the score func-
tion of a unit variance Gaussian source) in (41) and (45) and
compute the covariance matrix using the general relation (46).
It is, however, easy to see that in this case, the covariance matrix
will be equal to the optimal covariance matrix for the Gaussian
sources so that the total variance can be computed using (64).

Fig. 2. Comparison of the theoretical total variance of a second-order
estimator with an optimal estimator for� = 1 and� = 10 as a function of� ,
where� is fixed to 0. The second-order method is only optimal for� = 2,
i.e., for Gaussian sources.

The comparison of the total variance for with the other
values of in Fig. 1 can give a vision of the performance gain
of an optimal estimator with respect to a second-order method.

Fig. 2 compares the optimal total variance, computed by (59),
with the total variance of a second-order method, computed by
(64), as a function of , where is fixed to zero, for different
values of . It should be remarked that a second-order method
is not able to separate the sources having the same spectral den-
sities, even if they are non-Gaussians.

V. EXPERIMENTAL RESULTS

In this section, some experimental results with artificial and
real-world signals will be presented.

A. Does the Algorithm Work Well?

The first experiment consists of comparing the theoretical
end experimental separation performances for the special case
of two AR1 Gaussian sources with respective coefficients
and . Two experiments are done. In the first one, we sup-
pose that all the statistical properties of the sources are known.
Thus, we suppose an AR1 Gaussian model with known model
coefficients for the sources and solve the estimating equations
(31) with these hypotheses. In the second experiment, we sup-
pose that nothing is known about the sources, except that they
are the first-order Markov sequences, and the equivariant al-
gorithm of Section III-B is used for separating. Each of the
experiments is done using 100 Monte Carlo simulations with

. At each simulation, the nondiagonal entries of the

matrix are computed, where

is the mixing matrix, and is the estimation of the separating
matrix. Then, the total variance of the estimator,is computed
using (61).

Fig. 3 shows , for , as a
function of . The curve is the theoretical variance, which is
computed from (64). The asterisks and the circles represent the
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Fig. 3. Total variance of the estimator as a function of� , where� is fixed
to 0.5, for two Gaussian sources. Curve: Theoretical variance. Asterisks:
Empirical variance supposing that the statistical properties of the sources are
known. Circles: Empirical variance withouta priori hypotheses about the
sources.

values obtained using the first and second experiments, respec-
tively. As can be seen, the practical results are in agreement with
the theory.

B. Is Any Improvement Obtained by Taking Into Account the
Temporal Correlation?

In another experiment, we compare the performance of our
algorithm with the ML algorithm proposed by Pham and Garat
[9], which pays no attention to the temporal correlation of
data. Our objective is so to know how much improvement may
be obtained by taking into account the temporal correlation.
Two sources are generated by filtering two i.i.d. uniform
signals using two similar AR1 filters ( ). Each of the
experiments is done using 100 Monte Carlo simulations with

.
Fig. 4 shows as a function of
. The solid and dashed lines represent, respectively, our al-

gorithm and the Pham-Garat algorithm. The performance of
our algorithm is approximately insensitive to the coefficient of
AR1 filters. This is not surprising because, as we saw in Sec-
tion IV-C, it is not the temporal correlation itself that provides
the additional information but the difference between the spec-
tral densities of the sources. The separation performance of our
method for two i.i.d. sources is equal to the performance for two
highly correlated sources with the same spectral densities. On
the other hand, the performance of the Pham-Garat algorithm
decreases with because the filtered sources approach
Gaussianity so that the separation becomes more difficult. Our
algorithm works better for . For nearly uncorre-
lated sources, the error involved in the estimation of the condi-
tional score functions results in a lower performance of our al-
gorithm with respect to the Pham-Garat algorithm. Finally, note
that a second-order method could not separate the sources be-
cause they have the same spectral densities.

Fig. 4. Total variance of the two estimators as a function of� = � for two
correlated sources obtained by AR1 filtering of two uniform i.i.d. signals. Solid
line: Our algorithm. Dashed line: ML algorithm of Pham and Garat, which pays
no attention to the temporal correlation of data.

C. Does the Algorithm Work Better Than a Second-Order
Method?

In another experiment, we want to compare the performance
of our algorithm with a second order method i.e., the AMUSE
algorithm [12]. This simple and fast algorithm works as follows.

1) Whiten the (zero-mean) data to ob-
tain .
2) Compute the eigenvalue decomposition of

, where is
the first-lagged covariance matrix.
3) The rows of the separating matrix
are given by the eigenvectors.

The algorithm works well when the first lagged covariances
are different for all the sources. For a first-order autoregressive
model, which we use in our experiences, this condition is satis-
fied if the model coefficients are different.

Two sources are generated by passing two i.i.d. uniform sig-
nals into two AR1 filters. Each of the experiments is done using
100 Monte Carlo simulations with . Fig. 5 shows

, for , as a function of . The re-
sults confirm the theoretical curves of Fig. 2. The experiment is
also performed using the Pham-Garat algorithm, and the result
is shown in the same figure, which confirms the discussion of
the previous subsection.

D. Experiences Using Real-World Data

In the last experiment, we use the artificial instantaneous
linear mixtures of the speech signals. Our algorithm (supposing
a first- or a second-order Markov model for signals), the
Pham–Garat algorithm, and the AMUSE algorithm are used to
separate the mixtures.

Two 4-s independent speech signals are mixed by the mixing

matrix . The mixtures are divided into

220 frames of 200 samples. Thus, each frame (of length 18,2
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Fig. 5. Total variance of three estimators as a function of� , � being fixed
to 0. Two correlated sources are obtained by AR1 filtering of two uniform i.i.d.
signals. Solid line: Our algorithm. Dotted line: AMUSE algorithm. Dashed line:
ML algorithm of Pham and Garat, which pays no attention to the temporal
correlation of data.

TABLE I
NORMALIZED TOTAL VARIANCE AND THE

RESIDUAL CROSS-TALKS ON THE TWO CHANNELS (ALL IN DECIBELS) FOR OUR

ALGORITHM (USING FIRST-ORDER AND SECOND-ORDERMARKOV MODELING

OF THE SOURCES), THE PHAM-GARAT ALGORITHM, AND THE AMUSE
ALGORITHM IN THE EXPERIMENT WITH SPEECHSIGNALS

ms) can be considered as a stationary sequence. Note, however
that, contrary to the previous simulations, the first-order Markov
model is no longer an exact model for temporally correlation of
the sources.

For each method, is computed. We
also compute the residual cross-talks (in decibels) on the two
channels, which are defined as

(65)

where and have unit variance. The results are shown in
Table I. As can be seen, our algorithm works significantly better
than the two others. The second-order Markov modeling results
in a better performance with respect to the first-order model,
although the improvement is not considerable.

VI. CONCLUSION

In this paper, we used the maximum likelihood approach for
the blind separation of the instantaneous mixtures of the tempo-
rally correlated sources with no preliminary transformation nor

a priori assumption on the probability densities of the sources.
We suppose only that the sources are the Markov sequences.
The kernel estimators are used to estimate the conditional den-
sities of the sources from the observations using an iterative al-
gorithm. For the special case of autoregressive source models,
the theoretical performance of the algorithm is computed. The
experimental results confirm the relevance of the approach.

Several points could, however, be improved. The algorithm is
rather slow because estimating the probability densities is time
consuming. We are currently working on less expensive, faster,
and more efficient algorithms to estimate these densities. The
simple gradient algorithm used in this paper is sensitive to the
learning rate . A conjugate gradient algorithm, for example,
could solve this problem.

It must be noted that the computational complexity of the al-
gorithm is inherently much higher than the complexity of sub-
optimal algorithms that do not pay attention to time structure of
data or make somea priori assumptions about the probability
densities of the sources. Thus, its application seems to be lim-
ited to offline ICA problems where the separation performance
could be more important than computational complexity.

Other tests seem necessary to compare our algorithm with
other existing algorithms. One can test the algorithm on the cor-
relation generated by nonlinear filters. We mention that in the
problem formulation, no hypothesis about the nature of tem-
poral filters is made, except for a Markov model that simpli-
fies the realization. The idea may be also used to separate the
nonlinear and post nonlinear mixtures of temporally correlated
sources.
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