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On the Separability of Nonlinear Mixtures of
Temporally Correlated Sources

Shahram Hosseini and Christian Jutten, Member, IEEE

Abstract—It is well known that the source separation in non-
linear case is, in general, impossible: there exist many mappings
with nondiagonal Jacobian matrices preserving the independence.
In this letter, we suggest that using the time structure of the sources
(if it exists), this indeterminacy may be reduced. In particular, we
show that the classical examples used in the literature for demon-
strating the nontrivial nonseparability of the nonlinear mixtures
can be rejected by taking into account the temporal correlation of
the sources.

Index Terms—Independent component analysis (ICA), non-
linear mixtures, separability, source separation.

I. INTRODUCTION

A NONLINEAR source separation problem can be formu-
lated as follows. Consider a -sensor array providing the

signal which is a nonlinear
instantaneous mixture of unknown statistically independent
sources : ,
where the mapping is an unknown differentiable bijective
mapping. Is it possible, using only the statistical independence
assumption, to recover the sourcesfrom the nonlinear mix-
ture? The answer is clearly no: if and are two independent
variables and and two arbitrary functions, and

are independent too. Hence, the sources may be recov-
ered only up to any nonlinear distortion. This indeterminacy is
characterized by the mappings with diagonal Jacobian and is
called trivial indeterminacy. If it was the only indeterminacy,
it could be tolerable because the sources would be separated.
The problem is however more serious becauseand can
be mixed together and still be independent. There exist many
separating mappings , providing a random vector with
independent components

(1)

so that the overall mapping has a nondiagonal Jacobian.
A simple example derived from [1] is the following. Suppose

is a Rayleigh distributed variable with probability
density function (pdf) and
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is uniform and independent of . Consider
the nonlinear mapping

(2)

which has a nondiagonal Jacobian matrix

The joint pdf of and is

(3)

Relation (3) shows that the two random variables and
are independent and Gaussian. We show now if the sources are
temporally correlated, another test may allow to reject this map-
ping. It consists in verifying the equality

(4)

on the recovered independent components. It is evident that if
and are the actual sources (or a trivial mapping of

them), the above equality is true. On the other hand, if the in-
dependent components are obtained from (2), the right side of
(4) is equal to zero because and are zero mean Gaussian
variables. The left side of (4) is equal to

(5)

If and are temporally correlated, it is highly prob-
able that (5) is not zero (it depends evidently on the nature of the
temporal correlation between two successive samples of the two
sources) so that the equality (4) is false, and the solution can be
rejected. In fact, the twostochastic processes and ob-
tained from (2), are not statistically independent although their
samples at each time instant (which are tworandom variables)
are independent. This simple example shows how using the tem-
poral correlation, we can distinguish the trivial and nontrivial
mappings preserving the independence. Note that here we used
only the first lag cross correlation of the signals. A more rig-
orous approach consists in testing the independence of
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and , which may be even generalized to other time lags. In
the following section, we study another classical example using
this test.

II. DARMOIS DECOMPOSITION

Another example used in [1] and [2] for illustrating the non-
trivial nonseparability of the nonlinear mixtures is the Darmois
decomposition procedure. This constructive method permits to
decompose a given vector into independent factors. For the case
of two sources, it is enough to choose

(6)

where and are, respectively, the marginal and
conditional cumulative distribution functions. It can be easily
verified that the two random variables and are
independent [2]. This construction also clearly shows that the
decomposition in independent components is by no means
unique. For example, we could first apply a linear transfor-
mation on the observation vectorto obtain another random
vector , and then compute with being
defined using the above procedure, whereis replaced by .
Thus, we obtain another decomposition ofinto independent
components. The resulting decomposition is in
general different from , and cannot be reduced toby any
simple transformation. A more rigorous justification of the
nonuniqueness property has been given in [2].

We show now if the sources and are temporally corre-
lated, the independent componentsend obtained from the
above procedure do not generally satisfy the following equality
where and are the marginal pdfs and is the joint
pdf:

(7)

while the trivial transformations of the real sources, in the forms
of and , satisfy obviously the above
equality because of the independence of the two sources. Thus,
the above test can be used to reject the nontrivial independent
component analysis (ICA) solutions obtained from the Darmois
decomposition. For the sake of clarity, we study only the case
of two sources, two observations.

A. General Case

Supposing the Darmois transformation (6), we want to prove
that (7) is not generally true if

and . In
other words, we want to show that

(8)

The right side of the above relation is equal to

(9)

Denoting and using the auxiliary
variable , we can write

(10)

Thus, we have

The right side of (8) is so equal to 1. To compute the
left side of (8), denoting and

, and using the auxiliary vari-
able , we can write

(11)

Hence, the left side of (8) is equal to

Denoting , , and
and using (11), the left side of (8) can be written

as

(12)
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In order that the two sides of (8) are not equal, the last expression
must not be equal to one, or in the other words, the following
inequality must be true:

(13)

In the general case where, , and are mutually dependent
(which is our case1 ), it is evident that the left side of (13) is, in
general, a function of both and , and so different to the right
side of (13). In Section II-B, we verify this fact in a special case
of Gaussian sources with first-order autoregressive correlation
structure.

B. Special Case of Gaussian Distribution

In this section, we verify (13) for a simple example. Sup-
pose and are generated using the linear procedure2

, , where
, and are zero-mean independent

and identically distributed Gaussian sequences with unit vari-
ance. Using the above model, we can write

and

We want at present to verify the following inequality:

(14)

The right side of (14) is equal to

(15)

To compute the left side, we write

(16)

1In fact, we suppose also that the observationsx (t) andx (t) are not inde-
pendent, i.e., the mixture transformationF is not trivial.

2Note that the separation procedure using (6) stays, however, a nonlinear pro-
cedure.

We know also that

Using these relations, the left side of (14) can be written in the
following manner:

(17)

where

Comparing with the Gaussian density formula

and denoting

(17) can be rewritten as

(18)

Replacing the constants in this last expression, we obtain

(19)

Thus, the left side of (14) is a function ofand cannot be equal
to the right side of (14), unless . If , (19) be-
comes , which
is equal to (15) for . We may conclude that the test (14)
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excludes the nonlinear Darmois transformation as a separating
function unless the two correlated sources have the same spec-
tral densities. This result is analogous to those obtained in linear
ICA for the Gaussian correlated sources [3].

III. D ISCUSSION ANDPERSPECTIVES

The results of preceding sections show that the two classical
examples presented in the literature for illustrating that non-
linear mixtures are not separable up to a trivial indeterminacy
can be rejected using the first-lag temporal dependence tests
for the mixtures of temporally correlated sources. We must em-
phasize that this does not give any proof for the separability of
these mixtures. There can be other forms of nontrivial map-
pings giving the independent factors. The question hence re-
mains open until either a counterexample is presented to prove
the nonseparability or a real proof of separability is proposed.
A possible attempt to achieve such a proof is to consider that
the two random variables and

, obtained by a nontrivial mapping of the inde-
pendent and temporally correlated sources and , are
also independent, i.e.,

and to show that in the general case

at least for the known pdf and known temporal correlation
structure of the sources. Nevertheless, the result encourages the
use of criteria involving temporal structure of the sources in
nonlinear mixtures. For improving the separation algorithms, a
simplification using second-order statistics, could be sufficient,
although this hypothesis requires further investigation. An
attempt to use the temporal correlation for separating the
nonlinear mixtures can be found in [4].
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