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Abstract

Blind Source Separation (BSS) methods aim at restoring source signals from their
mixtures. For linear instantaneous mixtures of stationary random sources, a natural
and widely used approach consists in using some statistics associated to the tempo-
ral representation of the signals. On the contrary, we here consider non-stationary
real sources and we show that they have interesting frequency-domain properties
which motivate the introduction of two new frequency-domain BSS methods. The
first method works by diagonalizing a zero-lag, second-order statistics matrix, cre-
ated using both covariance and pseudo-covariance matrices of Fourier transforms of
real-valued observations. In practice, this method is specially suitable for separating
cyclo-stationary sources. The second method is particularly important because it
allows the existing time-domain algorithms developed for stationary, temporally cor-
related sources (like AMUSE or SOBI) to be extended to non-stationary, temporally
uncorrelated sources just by mapping the mixtures into the frequency domain. Both
methods set no constraint on the piecewise stationarity of the sources, unlike most
previously reported BSS methods exploiting source non-stationarity. The experi-
mental results using artificial and real-world sources confirm the good performance
of the proposed methods for non-stationary sources.
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1 Introduction

Linear instantaneous Blind Source Separation (BSS) consists in recovering un-
observed source signals from several observed signals which are supposed to
be linear instantaneous mixtures of these sources. It has been shown that this
goal can be achieved by exploiting non-gaussianity, time correlation or non-
stationarity [1], leading to numerous algorithms (see e.g. [2] and references
therein).

In this paper, our goal is to propose new approaches using the non-stationarity
of the sources. A few authors have studied this problem [3]-[8] using a statisti-
cal framework. In [3] and [4], separation of non-stationary signals is achieved
using a neural network by cancelling the zero-lag cross-correlation of its out-
puts at any time point. In [5], the observed signals are divided in two subinter-
vals. Then, the joint diagonalization of two covariance matrices, estimated on
the two subintervals, allows one to separate the sources. A somewhat similar
algorithm, considering several covariance matrices instead of two, is proposed
in [6]. Another approach, presented in [7], is based on the maximization of the
non-stationarity, measured by the cross-cumulant, of a linear combination of
the observed mixtures. In [8], the authors develop novel approaches based on
the principles of maximum likelihood and minimum mutual information.

All the statistical methods mentioned above are time-domain methods. More-
over, the estimation of the considered statistics requires that they do not
change within some intervals. This means that the non-stationary sources are
supposed to be piecewise stationary with respect to the considered statistics,
while this hypothesis may not be realistic for many real-world signals.

The statistical methods proposed in the present paper are frequency-domain
methods. They result from some interesting frequency-domain statistical prop-
erties of non-stationary random signals, and may be used for separating lin-
ear instantaneous mixtures of Gaussian or non-Gaussian non-stationary, mu-
tually uncorrelated real signals. The first method works by diagonalizing a
zero-lag second-order statistics matrix, created using both covariance and
pseudo-covariance matrices of Fourier transforms of real-valued observations.
In practice, this method is specially suitable for separating cyclo-stationary
sources. The second method is particularly important because it allows the ex-
isting time-domain algorithms developed for stationary, temporally correlated
sources (like AMUSE or SOBI) to be extended to non-stationary, temporally
uncorrelated sources just by mapping the mixtures into the frequency domain
while theoretically these methods cannot directly be applied to original non-



stationary temporal data, because of the stationarity assumption made by
these methods. The piecewise stationarity hypothesis is not required in our
proposed methods.

We should mention that statistical frequency-domain methods have been used
for separating convolutive mixtures of non-stationary sources (see for example
[9]), but in a totally different context which consists in transforming a convolu-
tive time-domain mixture into instantaneous frequency-domain mixtures with
frequency-dependent parameters. Moreover, there exist several methods ex-
ploiting the time-frequency diversity of non-stationary sources for separating
them [10]-[13]. Finally, the FSOBI algorithm proposed in [14] bears a resem-
blance to one of the algorithms which can be used with our second method,
but their algorithm is not motivated by the exploitation of non-stationarity so
that the mathematical framework developed in the present paper to achieve
our second method is not used by them.

The paper is organized as follows. Section 2 is devoted to problem statement.
In Sections 3 and 4, we derive and explain our first and second methods re-
spectively. Experimental results are reported in Section 5. Finally, Section 6
concludes this work. The appendices contain some proofs and other mathe-
matical derivations.

2 Problem statement

In a general framework (without noise and with the same number of mixtures
and sources), the blind separation of linear instantaneous mixtures can be
formulated as follows. Suppose N samples of K linear instantaneous mixtures
of K unknown discrete-time sources' are available. The mixing model is given
by

x(n) = As(n) (1)

where x(n) = [x,(n), x2(n), -+ , 25 (n)]F and s(n) = [s1(n), so(n),- -+, sx(n)]*
are, respectively, the observation and source vectors, and A is an unknown
mixing matrix. In this paper, we suppose the sources are zero-mean, real sig-
nals, and the mixing matrix A is real and nonsingular. The goal is to find
an estimate of the matrix A (or its inverse, the separating matrix) up to a
permutation and a diagonal matrix. In the following, we suppose also that
the components of the source vector s(n) in (1), i.e. the source signals s;(n),

! In this paper, we consider discrete-time signals because in practice one usually
deals with such signals. However, it must be emphasized that the methods proposed
hereafter can also be used for processing continuous-time signals.



are mutually uncorrelated. In other words, we suppose that E[s;(n)s;(ng)] =
0 Vi#j, Vny, ne. This hypothesis is weaker than the independence hypoth-
esis, used by many source separation methods.

Let us denote the Fourier transforms? of s;(n) and z;(n) by S;(w) and X;(w),
and define S(w) = [S)(w), Sa(w), < -+, Sk (w)]" and X(w) = [X; (), Xa(w), - -
, X (w)]. Taking the Fourier transform of (1), we obtain

X(w) = AS(w). (2)
The uncorrelatedness of the zero-mean sources implies that
E[Si(w1)Sj(w2)] = E[Si(w1)Sj(w2)] = 0 Vi # j, Vwr, Yo, (3)
where S*(w) is the complex conjugate of S(w). It follows that

Corollary 1: The matrices Qg(w) = E[S(w)ST(w)] and Pg(w, v) = E[S(w+
v)SH(w)] are diagonal for any frequencies w and v. Here, ST and S¥ denote,
respectively, the transpose and the Hermitian transpose of S. For simplifying

the notations, we denote Rg(w) = Pg(w,0) = E[S(w)S" (w)].

According to the terminology used in [16], the matrices Rg(w) and Qg(w) are
respectively the covariance and pseudo-covariance matrices of the complex
vector S(w).

3 First method

Our first method is the direct result of the following theorem which makes
use of Corollary 1. A Similar version of this theorem has already been demon-
strated in [16]. Moreover, similar theorems concerning joint diagonalization
of two matrices are well-known and largely used in several source separation
algorithms (see for example [17] for AMUSE or [6] for SONS). However, the
approach that we use in the following demonstration is somewhat different
from that used in the above papers. That’s why the proof is provided in the
appendix.

2 The Fourier transform of a discrete-time stochastic process u(n) is a stochastic
process U(w) given by U(w) = >.,2 __ u(n)e 7*". The equality is interpreted in
the mean square sense. See Chapter 11 of [15] for more discussions about statistical

properties of this Fourier transform.



Theorem 1: Suppose s;(n) are K mutually uncorrelated, zero-mean, real
signals. Suppose also there is a frequency w such that E[|S;(w)]?] # 0 Vi and

B[S} (w)]
Ef[Si(w)[]

B[S} (w)]
B[I.S; ()]

7 Vi # j. (4)
Define Ry (w) = E[X(w)X?(w)] and Qx(w) = E[X(w)XT(w)]. If V is a
matrix whose columns are the eigenvectors of Ry (w)Qx (w), i.e. if

Ry (w)Qx(w) = VAV~ (5)

where A is a diagonal matrix , then V7' = PDA™! where D is a complex
diagonal matrix and P is a permutation matrix.

Conversely, if 3i # j such that gehy = gyt

then the eigenvalue decomposition (5) at w does not give the matrix A~! up
to a permutation and a diagonal matrix 3.

for a given frequency w,

Proof: See Appendix A.

According to Theorem 1, if the identifiability condition (4) is satisfied for
a given frequency wi, then the eigenvalue decomposition of R (w1)Qx (w:)
gives a matrix V such that its transpose, V7, is equal to the separating matrix
A~! up to a permutation and a complex diagonal matrix. Since A is supposed
to be real, we should take the real part of the matrix V7. In fact, writing
V' = PDA™! = P(Dg + jD;)A~" where D = Dy + jD; is a complex
diagonal matrix with real and imaginary parts Dg and Dy, it is clear that
R{VT} = PDRA ! ie. the separating matrix A ! is equal to the real part
of the matrix V¥ up to a permutation and a real diagonal matrix. Then, the
sources may be estimated, up to a permutation and a real scaling factor, using
the following equation

R{VTIx(n) = PDrA 'x(n) = PDgs(n). (6)

We now show that, as a specific consequence of Theorem 1, the proposed
method does not work if the mixtures contain more than one stationary source.
We begin by the following proposition.

Proposition 1: Let s(n) be a real stationary signal with Fourier transform
S(w). Then, E[S?*(w)] = 0 for w # k7 where k is an integer.

3 Note that if the Fourier transforms of the real signals s;(n) are circular, they do
not satisfy Condition (4). The BSS approach that we will derive from this theo-
rem therefore applies to signals whose frequency-domain representations are non-
circular.



Proof: This proposition may be easily proved using the materials provided in
Chapter 11 of [15] (see in particular Page 515).

It follows that:

Theorem 2: 1If s;(n) and s;(n) are two real stationary sources, then for any
frequency w

E[Sf(w)] _ E[S?(w)] (7)
E[|Si(w)?]  E[Sj(w)[*]

Proof: Considering Proposition 1, it is clear that for two real stationary sources
si(n) and s;j(n), (7) holds for w # k7 because its two sides are equal to zero.
Moreover, since the Fourier transform of a real signal is real at w = km (be-
cause e~F™ is real), we can write E[S?(km)] = E|[|S;(km)|?] so that the two
sides of (7) are equal to one for w = k.

Theorems 1 and 2 imply that if the mixtures contain at least two stationary
sources, they cannot be completely separated at any frequency w. Hence, a
necessary condition for applying the method is that at most one of the sources
be stationary.

Discussion: Considering (5) and the definitions of the matrices Ry (w) and
Qx (w), the implementation of the proposed BSS method requires one to esti-
mate the expected values of some frequency-domain functions. Three different
cases may be considered.

a) Several realizations of the mixtures z;(n) are available. In this case, the ex-
pected values may be approximated by averaging the frequency-domain func-
tions on these realizations (for a particular frequency). Unfortunately, this
case may rarely occur in practice.

b) Only one realization of the mixtures is available but the frequency-domain
functions are ergodic so that the expected values can be estimated by fre-
quency averages. A necessary condition for the ergodicity is the stationarity
of the frequency-domain functions, i.e., the expected values used in the defini-
tions of Ry (w) and Qx (w) must not depend on w. However, it seems difficult
to guarantee this condition for most real-world signals. For example, we will
show in Theorem 3 that if the sources are cyclo-stationary, Qx(w) is nonzero
only for certain values of w so that it is not stationary.

¢) Only one realization of the mixtures is available but the mixtures are cyclo-
stationary so that each cyclo-stationarity period may be considered itself as a



separate realization of the stochastic process x;(n). In this case, by splitting
the mixtures in several time frames, each one containing an integral number
of cyclo-stationarity periods, we obtain several realizations of the mixtures
which may be used for estimating the expected values. This case is more re-
alistic than the previous two, and will be considered in the following. For
example, in the radiocommunications context, the sources resulting from dig-
ital modulation are very often cyclo-stationary [19] and their blind separation
has already been considered in the literature [20]-[22].

Algorithm: For the case of cyclo-stationary sources, the proposed algorithm
may be summarized as follows.

(1) Split the mixed signals x;(n) in L frames z;;(n), [ = 1,---,L. The
choice of L will be discussed further.

(2) Take the Fourier transform of each frame z;,(n) to obtain X;;(w) [ =
1,---,L.

(3) For each frame [, form a matrix X;(w) = [X;(w), Xo (w), -+, X (w)]"
containing the Fourier transforms of all the observations in that frame.

(4) Compute the estimated matrices Ry (w) and Qx (w) by averaging X, (w) X}/ (w)

and X, (w)X[ (w) over all L frames: Rx(w) = + 3/, Xy(w)X/(w) ,
Qx (@) = L Th, Xi(w)XT ().

(5) Choose a frequency w; where the conditions of Theorem 1 are hoped to
be met. This issue will be discussed further.

(6) Find the eigenvectors of the matrix Ry (w;)Qx (w;). Form a matrix V
whose columns are these eigenvectors.

(7) Obtain an estimate of the separating matrix using A~ = R{V7}.

Steps 1 and 5 require some comments. If the source cyclo-stationarity periods
N,, are integers, then the observations are cyclo-stationary too and their com-
mon cyclo-stationary period is equal to the least common multiplier of N,.
Thus, one should preferably choose the frames such that each frame contains
an integral number of this common period. If N, are not known, the com-
mon cyclo-stationary period may be estimated from observations using some
preprocessing [22], [23]. If N,, are not integers, acceptable results may be ob-
tained by choosing the frames such that each of them contains a great number
of source cyclo-stationarity periods because the last incomplete periods have
a negligible influence on the parameter values obtained by time averaging. In
the following, we suppose the data are sampled such that N, are integers. The
choice of the frequency w; in Step 5 is another important issue. The following
theorem and its corollary provide necessary conditions for choosing this fre-
quency.

Theorem 3: If s(n) is a cyclo-stationary signal with cyclo-stationarity fre-



quency w, = 3=, where N, is the cyclo-stationarity period, then E[S?(w)] =0
everywhere except, possibly, at frequencies w = kw./2 where k is an integer.

Proof: See Appendix B.

Corollary 2: Given N cyclo-stationary sources s;(n) with cyclo-stationarity
frequencies w,, the identifiability condition (4) cannot be satisfied except,
possibly, at frequencies w = kw;/2, where k is an integer and w; is the least
common multiplier of N — 1 source cyclo-stationarity frequencies*. Moreover,
the identifiability condition is not satisfied at w = k.

Proof: Following Theorem 3, if w # kw;/2, then E[S?(w)] = 0 at least for
two different values of 4, such that the identifiability condition (4) is not sat-
isfied. Moreover, as mentioned in the proof of Theorem 2, the identifiability
condition does not hold at w = k7 because the two sides of (4) are equal to one.

Note that the above corollary proposes us a set of possible candidates for
choosing w; but does not specify which of them must be chosen. This problem
is not specific to our method. In fact, all the source separation algorithms
based on eigenvalue decomposition have similar difficulties to guarantee the
existence of distinct eigenvalues, required for satisfying some identifiability
conditions.

The analysis of the entries of the matrix Qx(w) may give us some indications
on the good choices for w;. Following the above discussion, the frequencies
at which the entries of this matrix are zero should be avoided because it is
possible that F[S?(w)] = 0 Vi at these frequencies. A good idea may be to
choose the (non-multiple of 7) frequencies at which the entries have great
absolute values.

As used in some classical time-domain source separation algorithms (see for
example [24]), it is also possible to choose some linear combinations Y; > v
Ry (kwi, /2)Qx (kw, /2) instead of only one frequency, or to jointly diagonalize
several matrices Ry (kw;, /2)Qx (kw;, /2) for different values of & and . Then,
it is sufficient that the identifiability condition (4) is satisfied for one of these
frequencies.

4 Tt can be verified that w; = 27/N; where N; is the greatest common divisor of
N — 1 source cyclo-stationarity periods. Since N different combinations of N — 1
sources among N may be considered, N different values for w; may be obtained.



4 Second method
Our second method is based on the following theorem.

Theorem 4:1f s(n) is a temporally uncorrelated, real, zero-mean signal with a
(possibly non-stationary) variance y(n), i.e. if E[s(n1)s(ng)] = v(n1)d(n;—ns),
where §(n) is the unit impulse, then its Fourier transform, S(w) is a wide-sense
stationary process with autocorrelation I'(v), which is the Fourier transform
of v(n), i.e.

o

E[S(w+v)S* ()] =T(v)= 3 y(n)e " (8)

n=—00
Moreover, if s(n) is non-stationary with respect to its variance y(n), i.e. if
v(n) is not constant, then the process S(w) is autocorrelated.

Proof: This theorem may be easily proved using the materials provided in
Chapter 11 of [15], and in particular Theorem 11-2 of this chapter.

Hence, if we suppose that the mutually uncorrelated sources s;(n) are real,
zero-mean, temporally uncorrelated and non-stationary with respect to their
variances, then Equations (2) and (3) and Theorem 4 entail that X;(w) are
linear mixtures of mutually uncorrelated, wide-sense stationary and autocor-
related processes S;(w). Many algorithms have been proposed for separating
such mixtures [17], [24]-[26]. Although these algorithms were originally devel-
oped for time-domain wide-sense stationary, time-correlated processes, noth-
ing prohibits us from applying them to frequency-domain wide-sense station-
ary, frequency-correlated processes. Thus, only by mapping the non-stationary
temporally uncorrelated observed signals in the frequency domain, source sep-
aration can be achieved using one of the numerous methods developed previ-
ously for time-correlated stationary sources® .

We here propose such an algorithm, which may be considered as a modified
frequency-domain version of the time-domain AMUSE algorithm [17]° . Tt con-
sists in diagonalizing the matrix Ry (w) '"Px(w,v;) for some frequency shift

5 Note that our method is based on second-order statistical properties of the Fourier
transform of random processes, and not based on the Fourier transform of second-
order statistical properties of temporal signals (like Power Spectral Density).

6 We emphasize that this algorithm is just an example, chosen for its simplicity of
implementation. The principal advantage of our second method is that it can be
used to “adapt” ewvery algorithm developed for time-correlated stationary sources
to non-stationary temporally uncorrelated sources.

10



vy, where Ry (w) = E[X(w)X#(w)] and Px(w,v;) = E[X(w + v1) X7 (w)].
The diagonalization may be achieved using eigenvalue decomposition as the
following theorem suggests.

Theorem 5: Suppose s;(n) are K mutually uncorrelated zero-mean real sig-

nals. Suppose also there exists a frequency w and a frequency shift v; such
that E[|S;(w)[?] # 0 Vi and

E[Sz(w + ’Ul)S (CU)]

: B1Sj(w + v1) 5] (w)]
Ef[Si(w)[?]

s 77 ©)

.

If V is a matrix whose columns are the eigenvectors of Rx(w)™'Px(w,v1),
i.e. if

Rx(w) 'Px(w,v;) = VAV (10)
where A is a diagonal matrix, then V7' = PDA !, where D is a complex
diagonal matrix and P is a permutation matrix. It follows that R{VT} =

PDzA ! where Dy is a real diagonal matrix.
Conversely, if 3i # j such that

E[Si(w +v1)Sp(@)] _ ELS; (@ +01)S; ()] (11)
B[[S:(w)P Bl1S;(w)P]

for a given frequency w and a frequency shift v;, then the eigenvalue decom-
position (10) at w and v; does not give the matrix A~ up to a permutation
and a diagonal matrix.

Proof: The proof is similar to that of Theorem 1 by replacing the appropriate
matrices, and noting from Corollary 1 that the matrices Rg(w) and Pg(w, v1)
are diagonal.

Following Theorem 4, if two sources s;(n) and s;j(n) are temporally uncorre-
lated, real, zero-mean signals with variances v;(n) and v;(n), then the numera-
tors and the denominators in (9) are the Fourier transforms of these variances
(I';(v) and T'j(v)) at the frequencies v = v; and v = 0. Thus, Theorem 5
shows that the K sources may be separated if and only if they have different
normalized variance profiles.

We now show that the proposed method is not able to separate two stationary
sources. Since the variance profile of a stationary source s;(n) is constant (i.e.
vi(n) = 7;), its Fourier transform (which is equal to I'(v) = E[S;(w+v)S](w)],

T This theorem is similar to that used in the AMUSE algorithm [17].

11



due to Theorem 4) is zero everywhere except at® v = 2km. Moreover, at
v = 2km, we have E[S;(w + v)S}(w)] = E[|Si(w)[*]. Hence, if s;(n) and s;(n)
are two stationary sources, we can write

E[Si(w+v)Sfw)] _ ElSj(w+v)Sj(w)] )1 if vi=2kn (12)
E[]Si(w)l] E[]Sj(w)[?] 0 if v # 2k

Theorem 5 then implies that two stationary sources cannot be separated.
Therefore, a necessary condition for applying the method is that at most one
of the sources is stationary.

Since the processes S;(w) and therefore X;(w) are wide-sense stationary in
the considered conditions, we can hope they are also wide-sense ergodic,
so that the expected values involved in Rx(w) and Px(w,v;) can be esti-
mated by frequency averages. Thus, if X;(w) are evaluated for N frequen-
cies w,, = %, we can write? Ry = ~ 3 X (wy) X (w,,) and Px(vy) =
L 3 X(wn + v1) X7 (wy). In this case, the proposed BSS algorithm reduces
to the eigenvalue decomposition of the sample matrix R3'Px (v1).

Note also that, as in the time-domain algorithms, the estimation algorithm
may be split in two steps, i.e. by first whitening data which is equivalent to
diagonalizing Ry (w) and then by computing P x(w, v;) on the whitened data
and diagonalizing it using a unitary matrix.

Like with our first method and the other source separation algorithms based
on eigenvalue decomposition, it is difficult to guarantee identifiability. Here,
there is no way to choose the frequency shift vy so that identifiability is en-
sured. In practice, v; may be chosen by examining the entries of the matrix
P (w,v1). The frequency shifts at which the entries of this matrix are zero
should be avoided because it is possible that E[S;(w + v1)S}(w)] = 0 Vi at
these frequency shifts so that (9) is not satisfied. A good idea to avoid these
frequencies may be to choose a value of v; for which the entries of Py (w, vy)
have great absolute values. A better solution, which can be considered as a
frequency-domain counterpart of the SOBI algorithm [24], is to simultane-
ously diagonalize several matrices Ry (w) 'Px(w,v) corresponding to several
frequency shifts v. Then, it is enough that the identifiability condition (9) is
satisfied for one of these frequency shifts. Thus, the choice of v is a somewhat
less serious problem.

8 The discrete-time Fourier transform of a constant -; is equal to

27T Y pe o O(v — 2kT).
9 Note that since X;(w) are stationary, the covariance matrices Ry (w) and
P x(w,v1) do not depend on w.

12



Case of autocorrelated sources

The second method proposed in this section supposes that the considered
sources are temporally uncorrelated. In fact, following Theorem 4, the un-
correlatedness of sources is a necessary condition in order that their Fourier
transforms be stationary and autocorrelated. This assumption may seem too
restrictive because a great number of real-world sources are autocorrelated.
We here propose an approach to cope with this problem. This approach is
based on the following theorem.

Theorem 6: Let s;(n) i = 1,---, K be K autocorrelated, real, zero-mean,
mutually uncorrelated random signals. Suppose z(n) is a temporally uncorre-
lated, stationary random signal, independent from s;(n) Vi. Then, the signals
§i(n) = z(n)s;(n) i =1,---, K are temporally and mutually uncorrelated.
Moreover, each new source §;(n) has the same normalized variance profile as
the original source s;(n).

Proof: See Appendix C.

Our approach for autocorrelated sources consists in multiplying all the ob-

served signals z;(n) 4 = 1,--- K by an arbitrary stationary, temporally
uncorrelated random signal z(n) which is independent from all the source sig-
nals s;(n) i = 1,---, K. Then, we can form a new observation vector X(n)

whose components are the resulting signals z;(n) = z(n)xz;(n). It is clear that

x(n) = z(n)x(n) = z(n)As(n) = AS(n) (13)

where §(n) = [5,(n), -+, 3x(n)]’ and 5;(n) = z(n)s;(n) i=1,---,K. Fol-
lowing Equation (13), the new observations ;(n) are linear instantaneous
mixtures of the new sources §;(n). Since the new sources are temporally un-
correlated, they verify the condition of Theorem 4. Thus, we can apply the
second method to the new observations to estimate the inverse of the mixing
matrix A and then the original sources s;(n) by inverting Equation (1). Note
that if the original sources satisfy the identifiability condition (9), the new
sources §;(n) satisfy it too because, following Theorem 6, they preserve their
normalized variance profiles after multiplication by z(n).

13



5 Experimental results

In this section, we present our experimental results using artificial and real-
world sources.

5.1 Results using two artificial sources

In the first experiment, we consider the following non-stationary signals: s;(n) =
i (m)gr(n), 52(n) = ia(n)ga(n). where g,(n) and go(n) are mutually inde-
pendent Gaussian i.i.d. signals with zero mean and unit variance, ui(n) =

1 0.9
0.8 1

2 cos(won), and py(n) = 2sin(wyn). The mixing matrix is A =

which corresponds to a highly-mixed model.

5.1.1 Results using the first method

In the first step, we want to separate these sources using the method proposed
in Section 3. It can be easily shown (see Appendix D) that for these sources

E[S{(w)]=27r Y 2§(2w —2Im) + (2w — 2wy — 2I7) + (2w + 2wo — 2I7)

[=—00

E[Si(w)]=2r Y 20(2w — 2Ir) — (2w — 2wy — 2l7) — §(2w + 2wo — 2Im),
[=—00

(14)
which is consistent with Theorem 3, as shown in Appendix D.

Since E[S?(w)] and E[S3(w)] highly depend on w, they cannot be estimated
by frequency averages. However, as s;(n) and sy(n) are cyclo-stationary, we
can estimate the expected values using the method proposed in part (c) of the
discussion of Section 3.

The experiment was done using 1 second of the sources s;(n) and sq(n) con-
taining 8192 samples. The frequency wy = 7/8 was chosen so that each period
of pi(n) and po(n) contains 16 points. Hence, the signals s;(n) and sq(n)
include 512 periods of u1(n) and pa(n). Then, the 16-point Discrete Fourier
Transforms of the mixtures z;(n) and zy(n) were computed on each of 512
frames of 1 period. The spectral expected values were estimated by averaging
the spectral functions on these 512 frames. Figure 1 shows the estimates of
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E[S?(w)] and E[S%(w)], which are in agreement with the theoretical values of
Equations (14). From this figure, it is clear that E[S?(w)] = E[S%(w)] = 0
everywhere except at w = [r and w = [m £+ wy. Moreover, considering the

argument used in the proof of Theorem 2, at w = Ir we have % =
% = 1. Hence, the only frequencies at which condition (4) of Theorem

may hold are w = Im + wy. Choosing w; = wy, we can now apply the algo-
rithm described in Section 3.

The experiment was repeated 100 times corresponding to 100 different seed
values of the random variable generator. For each experiment, the output Sig-
nal to Interference Ratio (in dB), averaged on K = 2 channels, was computed
by
1 & Els;]
SIR = I ; 10logy FlG = 58"
after normalizing the estimated sources, §;(n), so that they have the same
variances as the source signals, s;(n). The mean and the standard deviation
of SIR on the 100 experiments were 35.4 dB and 7.2 dB.

(15)

Other experiments in the same conditions but using other mixing matrices led

1 0.4
to similar results. For example, using the mixing matrix A = , the

03 1
mean and the standard deviation of SIR were 35.4 dB and 7.1 dB. Therefore,
the algorithm is robust to the variations of the mixing matrix.
The running time of the algorithm implemented in the Matlab language on a
Pentium 4 PC was 0.019 sec for each experiment.

5.1.2  Results using the second method

In the second step, we want to separate the same sources using the method
proposed in Section 4. This time, we compute the Fourier transforms of x;(n)
and xo(n) on the whole signals. The theoretical autocorrelation functions of
Si(w) and Sy(w) are equal to (see Appendix E)

E[S)(w+v)S](w)] =27 i 20(v —2lm) + 6(v — 2wy — 2IT) + 6 (v + 2wy — 2U7)

[=—

E[Sy(w + v)S5(w)] = 27 i 26(v —2IT) — §(v — 2wy — 2Im) — 6 (v + 2wy — 2lT)

[=—00
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An experimental estimate of the autocorrelation function of S;(w) with the
parameters used in the first step is shown in Figure 2 which confirms the
theoretical result (16). In our experiment, a biased estimator (whose variance
is smaller than that of an unbiased estimator) was used for estimating the
autocorrelation function. The biased estimator has a tendency to attenuate
far lags because less amount of data is available for estimating these lags. That
is why the peaks at 2w + 2w are smaller than the peaks at +2wy.

Note that E[S;(w + v)S](w)] = E[Sa(w + v)S5(w)] = 0 everywhere except at

E[Si1(wtv)ST(w)] _
E[|S1(w)[?]

= = 1. Hence, the only frequency shifts at which condition (9)

of ’ﬂieorem 5 may hold are v = 2lm + 2wy. The separating matrix may be

estimated by applying the method defined in Section 4 choosing v; = 2w.

v = 2lm and v = 2lm + 2wy. Moreover, at v = 2lm we have
E[S2(w+v)S5(w)] __

We used the modified frequency-domain version of the AMUSE algorithm
mentioned in Section 4 for this purpose. Using the same signals as in the first

0.9
step and A = , the mean and the standard deviation of SIR were

0.8 1
49.4 dB and 5.9 dB.

Other experiments in the same conditions but using other mixing matrices

1 04
led to similar results. For example, using the mixing matrix A = ,

0.3 1
the mean and the standard deviation of SIR were also 49.4 dB and 5.9 dB.
Therefore, the algorithm is robust to the variations of the mixing matrix.
The running time of the algorithm implemented in the Matlab language on a
Pentium 4 PC was 0.062 sec for each experiment.

5.1.3 Results using other source separation algorithms

Now, we want to separate the same sources as above using the 19 classical al-
gorithms provided by the Matlab toolbox ICALAB 2.2 available at [27]. One
can find links towards references concerning the considered algorithms in the
Help included in this package. Our second method outperforms all 19 algo-
rithms. Our first method is outperformed only by two algorithms: ThinICA
(mean of SIR=47.3 dB, standard deviation=>5.8 dB) and FPICA (mean of
SIR=37.0 dB, standard deviation=16.8 dB).

Other experiments with different profiles of non-stationary variance for the
sources s1(n) and sy(n) led to similar results.
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5.2 Results using more than 2 artificial sources

In the following, we want to evaluate the performance of our methods as a
function of the number K of sources and mixtures. The considered sources
are the signals s;(n) and sy(n) presented in the previous subsection and two
other sources s3(n) and s4(n) obtained by multiplying mutually independent,
Gaussian i.i.d. signals respectively by a sawtooth signal and a symmetrical
triangular signal with the same frequency as pq(n) and pa(n).

At first, we consider the 3 sources s1(n), sa(n) and s3(n), mixed by the matrix

1 090.8
A= 1081 09 |. Afterwards, we consider all 4 sources, mixed by the
0.708 1
1 0.90.80.7
) 0.7 1 090.8 ) ) )
matrix A = . The parameters involved in the algorithms
0.809 1 0.7
0.70809 1

are chosen as in the previous subsection for the two methods. In the second
method, we use a modified algorithm aiming at jointly diagonalizing several
correlation matrices corresponding to several frequency shifts (which may be
considered as a frequency equivalent of the SOBI algorithm). Figure 3 shows
the mean and the standard deviation of SIR on 100 simulations using these
two methods. It can be seen that the performance degrades when the number
of sources increases, but it remains acceptable even with 4 sources.

5.3  Real-world sources

5.3.1 Results using the first method and telecom sources

Two real-world cyclo-stationary telecommunication signals were used for this
experiment. The first signal is a recorded GMSK-modulated burst signal, used
in the European digital cellular communication system, called GSM. The sec-
ond signal is a very noisy QAM16-modulated signal. Both signals have been
shifted to the central frequency 20 MHz and resampled at 80 million samples
per second. The shifted signals and their power spectra are shown in Fig. 4.

9984 samples of these signals were artificially mixed using the mixing matrix

17



1 0.9
A = . Then, the algorithm of Section 3 was used for separating

0.8 1
them. Note that each cyclo-stationarity period contains 4 samples of the mix-
tures. Thus, the 32-point Discrete Fourier Transforms were computed on each
of 312 frames of 8 periods. The spectral expected values were estimated by
averaging the spectral functions on these 312 frames. Following Theorem 3,
the frequency w; in the algorithm was chosen as half of the cyclo-stationarity
frequency. The experiment led to a 41.8-dB SIR.

5.3.2  Results using the second method and speech sources

In another experiment, the second method, presented in Section 4, based on
the frequency-version of the SOBI algorithm was used for separating mixtures

1 09
of speech signals with a mixing matrix A = . Five tests using five

0.8 1
couples of 100000-sample speech signals led to an average SIR of 43.8 dB.

This experiment shows that although Theorem 4 is derived for temporally
uncorrelated signals, the proposed method works well also for temporally cor-
related signals. Nevertheless, to satisfy rigorously the conditions of Theorem
4, we can use the approach for autocorrelated sources proposed at the end
of Section 4, which allows us to obtain temporally uncorrelated observations.
Applying a frequency-version of the SOBI algorithm to the abservations re-
sulting from this approach led to an average SIR of 48.1 dB.

Both versions of our method outperform all the 19 algorithms provided by
ICALAB 2.2. The best results obtained with these algorithms were 43.1 dB
(FPICA and PEARSON) and 43.0 dB (ERICA and UNICA).

5.8.83  Multi-tag radio-frequency identification

Many real-world situations require to identify people, animals or objects. This
can be done using an electronic system based on radio-frequency (RF) com-
munication [28]. It consists of a base station inductively coupled to portable
identifiers (called tags) which contain an LC resonator, a controller and a
non-volatile programmable memory (EEPROM). The memory contents are
specific to each tag and allow to identify the tag bearer (person or object).
The basic mode of operation of this system may be modeled as follows. The
base station emits an RF sine wave, which is received by a single tag. The tag
is thus powered and answers by emitting a sine wave at the same frequency
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(due to inductive coupling), modulated by its encoded memory contents. The
base station receives this signal, demodulates it, and decodes it so as to de-
termine the memory contents. The overall identification system then checks
these data and controls its actuators accordingly.

This type of system is attractive because it yields contactless operation be-
tween the base station and tags, and because it operates with battery-less
tags. However, when two tags are placed in the RF field of the base station,
both tags answer this station. The demodulated signal derived by this sta-
tion is then a mixture of two components, and cannot be decoded by this
basic station. This system is therefore unable to identify two simultaneously
present tag bearers. A few attempts to solve this type of problem have been
presented in the literature [29],[30]. In [28], we proposed to use an extension
of the standard system described above. For simultaneously handling two tag
signals, it relies on a base station containing two reception antennas and two
demodulators, which yield two mixed signals. These mixed signals are pro-
cessed by a BSS unit, which extracts the two components corresponding to
the two tags. Then, by decoding these separated signals, the memory contents
of the two tags are obtained independently. However, the methods considered
in [28] were not efficient for data lengths smaller than 1000 samples.

In [28], it has been demonstrated that the assumption of linear instantaneous
mixture is realistic. Since the sources are cyclo-stationary (as shown in [31]), we
can apply the two methods proposed in the current paper for separating them.
Evidently, the mixing matrix depends on the relative positions of the tag-
bearers with respect to the station. To compare our results to those reported
in [28], we consider the same following two mixing matrices corresponding

1 04
respectively to weakly mixed and highly mixed sources: A, = and
03 1
1 0.98 ) o o
A, = . In [28], instead of the SIR criterion (15), another criterion
098 1

called Signal to Interference Ratio Improvement (SIRI) has been used which
is defined by:
- El(wi — 5i)’]
SIRI =0.5) 101 —
; B0 B[ — 507
In the following, we report our experimental results using both criteria. Fig. 5
shows SIR of our two methods as a function of sample size for the two mixing
matrices mentioned above. Fig. 6 compares SIRI of our methods with those
reported in [28] 1. From these figures, it is clear that our methods outperform

(17)

101n [28], several nonlinear decorrelation-based algorithms are realized using neural
networks. Here, we consider the results obtained using a recurrent neural network,
called NWUTr in [28].
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those used in [28]. In particular, the algorithms used in [28] are not capable
to separate the sources containing less than 900 samples while our methods
provide quite good results even with 256 samples. The performance figures of
our two methods are rather similar. Note also that SIR is almost independent
from the mixing matrix so that the separation performance does not depend
on the positions of tag-bearers. On the other hand, SIRI is a function of the
mixing matrix because the numerator of the fraction in (17) is a function of
the mixing matrix.

6 Conclusion

A major objective of this paper was to demonstrate and exploit some theo-
retically interesting frequency-domain properties of random signals which are
non-stationary in the time domain. These properties provide sufficient second-
order constraints in the frequency domain for separating linear instantaneous
mixtures of non-stationary sources.

Two separating methods were proposed based on these properties. The first
method is theoretically interesting but its implementation is difficult unless
either many realizations of the mixtures are available or the sources are cyclo-
stationary. The second method is very simple and powerful because it al-
lows the second-order time-domain algorithms developed for stationary time-
correlated signals to be applied to temporally uncorrelated sources which are
non-stationary in the time domain, just by mapping them in the frequency
domain. It should be remarked that these algorithms do not require the vari-
ance of the sources to be constant over subintervals, while this hypothesis is
necessary in the majority of the source separation algorithms based on the
non-stationarity of variance which have been reported in the literature.

Various test results using artificial and real-world sources confirmed the good
performance of the proposed methods.
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A Proof of Theorem 1

From (2), we have
Qx (w) = AQg(w)A” (A-1)
and
Rx(w) = ARs(w)A" = ARg(w)A" (A-2)

because A is real. If Rg(w) is nonsingular, i.e. if E[|S;(w)[?] # 0 Vi, then left
multiplying (A-1) by the inverse of (A-2) yields

Ry (w)Qx(w) = AT Ry (w)Qs(w)A”. (A-3)

Since, according to Corollary 1, R5'(w)Qgs(w) is a diagonal matrix, the above
equation is nothing but an eigenvalue decomposition of the matrix Ry (w)Qx (w).
If the K eigenvalues are distinct (i.e. if the algebraic multiplicity of each eigen-
value equals one), then the dimension of the eigenspace corresponding to each
eigenvalue equals one (see [18]-page 58). In other words, if v and u are two
eigenvectors corresponding to the same eigenvalue A, then u = av where « is

a (complex) scalar. Moreover, it is clear that the eigenvalues may be arranged
as diagonal entries of a diagonal matrix in an arbitrary order.

Hence, if the matrix Ry (w)Qx(w) has K distinct eigenvalues (which are the
diagonal entries of Rg'(w)Qgs(w)), i.e. if E[|S 7é i \s 7 Vi # j, and if
VAV !is an eigenvalue decomposition of R%' (w )QX( ), then the columns of
V are equal to the columns of AT~ up to a scaling factor and a permutation,
so that V = AT_IDPl, where D is a diagonal matrix and P; is a permutation
matrix. It follows that V7' =P;"D”A~" = PDA™'. Note that P =P;" is a
permutation matrix too.

2 2(
[‘5(( )‘)]] = E]f'[;( i for i # j, then Ry '(w)Qx (w) has two
identical eigenvalues A. Since A is supposed nonsingular, the columns of AT
(which represent the eigenvectors of Ry (w)Qx (w)) are linearly independent.
Hence, the eigenspace corresponding to A, and spanned by two columns of
AT is of dimension 2. It is well known that every nonzero element of this
eigenspace is an eigenvector corresponding to A (see [18]-section 1.4). There-
fore, the two columns of AT~ corresponding to A cannot be identified up to

a permutation and a scaling factor using the eigenvalue decomposition (5).

Conversely, if A =
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B Proof of Theorem 3

From the definition of the discrete-time Fourier transform, it follows that

E[s(ny)s(ny)]e Jemtn), (B-1)

K
™8

E[S*(w)] =

ni

—00 N2=—00

Since s(n) is cyclo-stationary with period NV, its autocorrelation is periodic
on the diagonal of the (n, ny) plane with period N, (supposed integer) so that
we can write

E[S?*(w)] = i i E[s(ny + N,)s(ny + N,)]e dwmtnz), (B-2)

Using the new variables m; = ny + N, and ms = ny + N,, the above equation
can be rewritten as

E[S?*(w)] = i i E[s(ml)s(mQ)]e_j“’(ml_Nc+m2_NC). (B-3)
It follows that .
E[S*(w)] = E[S*(w)]e’*™ (B-4)

which can be rewritten as
E[SQ(w)](l — ejQ‘*’N”) =0. (B-5)

Hence, the only frequencies at which E[S?(w)] may be nonzero are the solu-
tions of e/*Ne =1, i.e. w = kw/N, = kw,./2 where k is an integer.

C Proof of Theorem 6

Consider the vector §(n) = [51(n), -+, 5x(n)]T. Since §(n) = 2(n)s(n), we
have

E[8(m)3" (n2)] = E[2(m1)z(ns)s(n1)s” (n2)]
Because z(n) is stationary, temporally uncorrelated and independent from all
the sources s;(n), we can write

E[8(n1)8" (n2)] = 070(n1 — na) E[s(m1)s” (n2)] (C-1)

where o2 is the power of z(n). Since E[s(ni)s”(ny)] is a diagonal matrix,
E[8(n1)sT (ny)] is diagonal too, so that the new sources 5;(n) are mutually

uncorrelated too.
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Equation (C-1) implies
B[3i(n1)3i(na)] = 026(n1 —n2) Elsi(n1)si(ns)] = 028(n1 —n2) E[s7 (n1)] (C-2)
Thus, the new sources §;(n) are temporally uncorrelated. Moreover, taking

n = n; = ny in (C-2), we obtain E[5?(n)] = 02E[s?(n)] so that the normalized
variance profiles of §;(n) and s;(n) are equal.

D  Derivation of Equations (14)

The autocorrelation functions of s;(n) and sy(n) are

E[s1(n1)s1(ng)] = 4 cos(wony) cos(wona)d(ng — ny) = 4 cos?(woni)d(ng — ng)
= (24 2cos(2wony))d(ny — noy)

E[s9(ny)s2(n2)] = 4sin(wony) sin(wons)d(ny — ny) = 4sin®(woni)d(ny — ng)
= (2 — 2cos(2wony))d(ny — na)

(D-1)

E[SIQ((U)]: Z Z 31 nl 31 nQ)]e—j(n1+n2)w

n1=—00 N2=—00

= Z Z (2 + 2 cos(2wony))d(ny — ng)e dmtn2w

n1=—00 N3=—00
)

= Y (24 2cos(2wyny))e M

np=-—00

=2 Y 262w — 2Im) + 6 (2w — 2wy — 2I7) 4 6(2w + 2wy — 2Im)
[=—00

(D-2)

The same approach may be used to compute E[S3(w)].

We now show that this result is consistent with Theorem 3. The cyclo-stationarity
frequency of the sources s1(n) and s3(n) is w. = 2wy because due to (D-1)

Elsi(n1)si(n2)] = (242 cos(2weny))d(ni—ng) = E[sl(n1+22ﬂo)sz(ng+22—c1)] 1=1,2.

Replacing k in Theorem 3 by I -, I7-+1, and [ J-—1 for integer values of [, we

obtain all the frequency components of (D 2). Note that the cyclo-stationarity
period N, = i—” = NLO is supposed to be integer for a discrete-time signal.
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E  Derivation of Equations (16)

Considering (D-1), we have for the real signal s;(n)

E[Si(w+v)S](w)] = i i El[s1(ny)s1(ny)]e I @HvIn giwn

n1=—00 Ny =—00

o0 o . .
= Y 3 (2+2c0s(2won))d(ny — ng)e @ TUIm gium

n1=—00 N3=—00
)

= Y (24 2cos(2wyny))e?"™

np=-—00

=21 Y 26(v—2lr) 4+ 6(v — 2w — 2m) + §(v + 2wy — 21T)

[=—00

The same approach may be used to compute E[Sy(w + v)S5(w)].
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Fig. 1. Estimates of E[S?(w)] and E[S3(w)] for the sources used in simulations.
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