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Abstract: This paper presents a new approach for optimizing the non-normalized kurtosis under unit power 

constraint. It is inspired from the famous FastICA algorithm which uses a fixed-point algorithm and computes 

fourth-order statistics at each step of the optimization, which is very demanding in terms of both computation 

time and memory space, especially when the number of samples is high. Our method avoids this by using a 

polynomial identification at the beginning of the algorithm, which lets us perform the optimization in a more 

efficient computation space. Our so-called O-FICA algorithm is particularly interesting in blind image 

separation because of the present size increase of light sensors. 

 

I.  INTRODUCTION 

 

This paper deals with fast blind separation of linear instantaneous mixtures [1] when the mixture recordings 

contain a high number of samples. This configuration is frequent, especially in image separation because of the 

great number of pixels in CCD and CMOS-type light sensors. We here present a fixed-point algorithm inspired 

from FastICA which avoids the computation of statistics at each step of the optimization algorithm of the 

kurtosis, thanks to a first step based on polynomial identification. 

A linear instantaneous mixture can be written in matrix form as 

 

 ( ) ( )n n=x As  (0.1) 

 

where A  is an N×N mixing matrix and ( )ns  and ( )nx are respectively the source and observation N-size 

vectors. Besides the classical assumptions used by Independent Component Analysis (independence and non-

Gaussianity of the sources, full-column rank matrix A ), we here suppose that the observations contain a great 

number of samples (typically more than 100000, which is often the case for images). We also suppose that the 

number of sources is not too high (up to 7 typically), which is often the case except in some biomedical 

applications which imply a great number of recorded channels. 

 

 

II.    THE FASTICA ALGORITHM 

 

 

Let us summarize the kurtosis-based FastICA algorithm from which our method is inspired. It is composed of a 

first step, called sphering, which is realized by the following operation 

 

 
1/ 2( ) ( )n n

−=
x

z R x  (0.2) 

 

where 
x

R  is the correlation matrix of the observation vector and ( )nz  is the sphered observation vector which 

meets the condition =
z

R I . 

   After this sphering process, the FastICA algorithm maximizes the absolute value of the kurtosis of ( )t nw z , 

( ( ))tkurt nw z , with respect to an extraction vector w  under the constraint 1=w . To this end, the parallel 

version of FastICA developed by Hyvärinen and Oja [2] adapts at the same time all the extraction vectors 
i

w  

associated with the N sources, thus providing output signals ( ) ( )t

i i
y n n= w z , and orthogonalizes these vectors 

(1) 

(2) 
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i
w  to prevent them from converging towards identical points (up to sign). This orthogonalization can be made 

by the symmetrical operation 
1/ 2( )t −=W W W W  where [ ]1,..., N=W w w  contains the N extraction vectors 

arranged column-wise. 

 

The symmetrical FastICA algorithm can then be summarized by the following procedure: 

 

• Sphere the observation vector by using (2). 

• Initialize W  with N vectors of size N arranged column-wise (one can choose 
N

=W I ). 

• Repeat the following steps 1) and 2) until convergence: 

 

( ){ }

( )

3

1/ 2

( ( ))
1)  1... ,  ( ) ( ) 3

2)  

t
t k

k k k

k

t

kurt n
k N E n n

−

∂
∀ = ← − ∝

∂

←

w z
w z w z w

w

W W W W

 (0.3) 

 

    This algorithm is very popular in the BSS community because it is fast and has no tunable parameter. 

Besides, its convergence has been rigorously proved by Oja and Yuan [3]. This explains its great success in 

many domains, such as astrophysical image separation for instance [4]. 

Nevertheless, we can note that one iteration of the fixed-point algorithm is very consuming in terms of 

computation time and requested memory space, especially when the number of samples T is high (this is often 

the case in astronomy for instance). Indeed, in the FastICA Matlab package [5], the fixed-point update is 

realized by the following matrix operation 

 

 W = (Z*((Z'*W).^3)) / T - 3*W  (0.4) 

 

where Z is an N×T-size matrix containing the T samples of the sphered observations and W is an N×N matrix 

containing the extraction vectors. As operation (4) requests to store Z and (Z'*W).^3, it needs 2TN memory 

words. Furthermore one can show that (4) needs the computation of T(4N²+N)+2N² elementary operations 

(additions and multiplications), which is very demanding if the number of samples T is high. 

 

III.     PROPOSED METHOD 

 

We here propose a method which avoids this important request in memory and computation during the kurtosis 

optimization. Our method is based on a multivariate polynomial identification which makes it possible to 

perform the fixed-point optimization in a simpler computation space. We also avoid the computation and the 

storage of the sphered observation vector ( )nz defined by (2). 

   Let us denote by ( ) ( )ty n n= w z a linear combination of the sphered observations in ( )nz  computed as in 

the FastICA algorithm (the computation of ( )nz  will be avoided in our approach as explained further). We 

suppose that all the signals are centered, so that the non-normalized kurtosis of ( )y n  reads: 

 

 
( ){ } ( ){ }

2
4 2

( ( )) ( ( ))

( ) 3 ( ) .

t

t t

kurt y n kurt n

E n E n

=

= −

w z

w z w z
 (0.5) 

As we have 

 ( ){ } { } { }
2 2

( ) ( ) ( ) ( ) ( )t t t t t tE n E n n E n n= = = =w z w z z w w z z w w Iw w , (0.6) 

 

(5) becomes 

  

(3) 

(4) 

(5) 

(6) 
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 (0.7) 

 

 

Since the result of (7) is a fourth-order polynomial of the variables (1) ( )w ,...,w N , we can define a set of 

coefficients ( )
D

α
∈d d

 with { }
1

0,..., 4 \ ( ) 4
N

N

k

D d k
=

 
= ∈ = 
 

∑d  so that 

 
( )

1

( ( )) ( )
N

d k

D k

kurt y n w kα
∈ =

=∑ ∏d

d

 (0.8) 

 

which corresponds to the canonical development of the non-normalized kurtosis. Let us denote by R the 

cardinality of D, its elements as 1,..., R
d d  and the values of ( )

D
α

∈d d
 as 1,..., R

α α . 

We have then 

 
( )

1 1

( ( )) ( ) .r

NR
d k

r

r k

kurt y n w kα
= =

=∑ ∏  (0.9) 

It may be shown that the cardinality R of D is equal to 
3 ( 1) ( 1)( 2) ( 1)( 2)( 3)

2 2 24

N N N N N N N N N
N

− − − − − −
+ + + . 

It would be possible to compute directly the coefficients 
r

α which depend on fourth-order cross- moments of 

the signals ( ) . ( )
1 N

z n ,. .,z n . We here propose a more efficient method based on the following observation. Let 

us denote by ( )
1..i i R=

v  a family of R vectors of size N. Replacing w  by 
i

v  in (9), we have 

 
( )

1 1

1... ,   ( ( )) ( ) j

NR
d kt

i j i

j k

i R kurt n v kα
= =

∀ = =∑ ∏v z  (0.10) 

 

which can be written as 

 

 =Mα k  (0.11) 

 

where α  is the column vector of coefficients R..1rr )( =α and where the matrix ( )
, 1..ij i j R

m
=

=M and the column 

vector ( )
1..i i R

k
=

=k  are defined by 

 

( )

1

, 1... , ( )

1... , ( ( ))

j

N
d k

ij i

k

t

i i

i j R m v k

i R k kurt n

=


∀ = =

∀ = =

∏

v z

 (0.12) 

 

By choosing R extraction vectors 
i

v  of size N which imply a non-singular matrix M  and by computing the 

kurtoses 
i

k  of the R signals ( )t

i
nv z , we can thus identify the R coefficients ( )

R..1rr =
α  with the inverse of (11), 

i.e. 
1−=α M k . Thanks to the properties of the sphered vector ( )nz  which imply { } 22

( ( ))
t

i iE n =v z v  as 

proved by (6), the kurtosis of ( )t

i
nv z  is equal to { } 44( ( )) ( ( )) 3t t

i i i
kurt n E n= −v z v z v  so that we only need 

to estimate one fourth-order auto-moment for each of the R extraction vectors. Moreover, the relation 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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1/ 2( ) ( ) ( )t t t

i i i
n n n

−= =
x

v z v R x u x  (0.13) 

 

with 
1/ 2t t

i i

−=
x

u v R  allows us to avoid the computation of ( )nz . In the following, V and U denote the matrices 

containing respectively the sets of vectors ( )
1..i i R=

v and ( )
1..i i R=

u  arranged column-wise. 

Let us notice that M  is independent from the sources and from the mixing process. One can thus compute its 

inverse once for all for each considered value of N (up to 7 in our case) and store them. We propose in the 

Appendix to choose some particular vectors ( )
1..i i R=

v  which yield a well-conditioned matrix M . 

   After we have identified the set of coefficients ( )
R..1rr =

α , we want to maximize the absolute value of 

( )

1 1

( ( )) ( ) r

NR
d kt

r

r k

kurt n w kα
= =

=∑ ∏w z  with respect to w  under the constraint 1=w , as in the FastICA 

criterion. This is here realized in a similar way as in the FastICA algorithm, by means of a fixed-point 

algorithm, but this time in a different computation space. The gradient of ( ( ))tkurt nw z  with respect to w  in 

our space reads 

 

( )

1

1

( )
( ( ))

r

N
d k

t R
k

r

r

w k
kurt n

α =

=

∂
∂

=
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∏
∑

w z

w w
 (0.14) 

with 

 

 

( ) ( ) 1 ( )

1

 

( ) ( ) ( ) ( )  ,  if   ( ) 0

( )
0                                          ,   if   ( ) 0 
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r r
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d k d j d k

r r
k k j

r

w k d j w j w k d j

w j
d j

−

= ≠

∂  >


= 
∂  =

∏ ∏
 (0.15) 

 

 

   Let us now summarize our parallel fixed-point algorithm, optimized for long mixture recordings, that we call 

O-FICA: 

 

• Estimate the correlation matrix 
x

R  of the observation vector ( )nx . 

• Compute 
1/ 2−=

x
U R V  where V is composed of R extraction vectors arranged column-wise (we propose a 

particular set of vectors in the Appendix). 

• Compute the kurtoses ( )
R..1iik

=
 of the R signals ( ),  1...t

i
n i R=u x  and then determine the set of 

coefficients ( )
1..r r R

α
=

=α  thanks to the relation 
1−=α M k  (by means of the pre-computed inverse of M ). 

• Initialize W  with N independent N-size vectors arranged column-wise and then repeat 1) and 2) below 

until convergence: 

  

max( ( ) 1,0) ( )

1

1)  , 1... ,   ( ) r r

R
d j d k

ji r r ji ki

r k j

i j N w d j w wα −

= ≠

∀ = ←∑ ∏  (0.16) 

which is equivalent to setting 
( ( ))

1... ,   
t

i
i

i

kurt n
i N

∂
∀ = ←

∂

w z
w

w
. 

 
1/ 22)  ( )t −←W W W W  (0.17) 

    

 

(13) 

(14) 

(15) 

(16) 

(17) 
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   Contrary to the FastICA algorithm, our method does not compute statistics at each iteration of the fixed-point 

optimization. Here, we only manipulate some polynomial coefficients 
r

α , which is faster for a large value of 

T, as their number is independent from T (these coefficients must not be too numerous yet, which is the case 

for 7N ≤ ). Furthermore, we avoid to store Z and (Z'*W).^3 which represent 2TN memory words in the 

FastICA algorithm. In our case, it may be shown that we only use R+RN+R²+N² memory words, which is 

independent from the number of samples T. 

Our algorithm doing the same update operation as FastICA (in another computation space), it reaches at each 

iteration the same point for each of the extraction vectors and thus gives the same separation performance with 

a smaller processing time.  

 

 

IV.   EXPERIMENTAL RESULTS 

 

In this section, we present experimental results which compare the speeds of our O-FICA and of the standard 

FastICA algorithm. We measured the computation times of the algorithms until they reach the stopping 

criterion that is used in the Matlab FastICA package. To put it briefly, this criterion compares the directions of 

the extraction vectors after the last two updates and the optimization stops if these directions do not vary more 

than a certain threshold (we took a threshold parameter of 
410−
 which is the default value in the package). 

   Fig. 1 represents the mean value of '/t t depending on the number of samples T, with 't  and t  being 

respectively the computation times of the O-FICA and FastICA algorithms. For each configuration, we made 

100 Monte-Carlo simulations and averaged the values of '/t t . We can see on Fig. 1 that for a number of 

sources up to 7, the ratio '/t t  is notably lower than 1 when the number of samples T is high enough and 

decreases (down to 1/15 in some cases) when T increases. 

 

 

 

Fig. 1: Ratio of processing times depending on the number T of samples for various numbers N of 

sources. 
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V. CONCLUSION 

 

   We have presented a new method for the optimization of the non-normalized kurtosis under unit power 

constraint. We base our approach on a polynomial identification step that allows us to use a fixed-point 

algorithm in a more efficient computation space. Our O-FICA algorithm is especially interesting when the 

recorded signals contain a high number of samples, which is often the case in blind image separation. 

Compared to the FastICA algorithm, our algorithm is up to 15 times faster for certain configurations. 

 

 

APPENDIX: CHOICE OF THE R-SIZE FAMILY OF EXTRACTION VECTORS 

 

 

Let us define the five sets: 

 

{ }{ }
{ }{ }
{ }{ }
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= ∈ ∃ = = ∀ ≠ =

= ∈ ∃ = =

w

w

w
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1 2 3

5 1 2 3 4 1 4 1 4

2,   , ,  ( ) 0

0,1  \   , , ,  ,   ( ) ... ( ) 1,   ,...,  ( ) 0 .
N

i i i i w i
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= ∀ ≠ =

= ∈ ∃ = = = ∀ ≠ =w

 (0.18) 

The cardinalities of 51 E,...,E  are  
1 2 3

( 1)
( ) ,  ( ) ,  ( ) ( 1),

2

N N
C ard E N C ard E C ard E N N

−
= = = −  

4 5

( 1)( 2) ( 1)( 2)( 3)
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2 24
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− − − − −
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5

1

i

i

E E
=
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5

1

( 1) ( 1)( 2) ( 1)( 2)( 3)
( ) ( ) ( 1) ( ) .

2 2 24
i

i

N N N N N N N N N
Card E Card E N N N Card D R

=

− − − − − −
= = + + − + + = =∑

   We numerically verified that using this family as the vectors 
i

v  gives a non-singular matrix M as defined in 

(12) for a number of sources 7N ≤ . The respective conditioning numbers of M  (defined as the ratio of the 

greatest and lowest eigenvalues of M ) for 2,...,7N =  are indeed 182, 414, 844, 1605, 2758, 4344 which is 

rather low given the associated values of R (respectively 5, 15, 35, 70, 126, 210). For instance, the mean 

conditioning number of 210-dimensional matrices with coefficients uniformly distributed between 0 and 1 is 

greater than 50000. Then we have a family of vectors 
i

v  that may be used to identify the set of coefficients 

( )
1..r r R

α
=

 as defined by (9). 
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