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Abstract This paper presents a new approach to the problem of blind separation of independent components in the case of
MA convolutive mixtures of MA processes. It consists of an extension of the well-known Fast-ICA algorithm developed by Hyvärinen
and Oja for instantaneous mixtures. We introduce a new type of sphering (convolutive sphering) that allows the use of non-gaussianity
criteria and associated parameter-free fast �xed-point algorithms for the estimation of the source innovation processes. We prove
the relevance of these criteria by reformulating the mixtures as linear instantaneous ones. We then describe associated kurtotic and
negentropic time-domain algorithms. Test results are presented for arti�cial coloured signals and for speech signals.

Résumé Cet article présente une nouvelle approche pour la séparation aveugle de composantes indépendantes dans le cas
des mélanges convolutifs MA de processus MA. Cette méthode peut être considérée comme une extension de l'algorithme Fast-ICA
développé par Hyvärinen et Oja pour les mélanges instantanés. Nous introduisons un nouveau type de blanchiment (�sphering�
convolutif) qui permet l'utilisation de critères de non gaussianité associés à des algorithmes rapides de type point �xe sans paramètre
à ajuster, a�n d'estimer les processus d'innovation des sources. Nous prouvons la pertinence de ces critères en reformulant le mélange
sous forme instantanée. Nous dérivons ensuite les algorithmes à base de kurtosis et de négentropie qui en découlent. Des résultats de
test sont présentés pour des signaux colorés arti�ciels et pour des signaux de parole.

1 Introduction
Blind source separation (BSS) consists in estimating a set of N unobserved source signals from P observed mixtures
of these sources where the mixture parameters are unknown. Let us denote by s(n) = [s1(n), · · · , sN (n)]T the
vector of sources and by x(n) = [x1(n), · · · , xP (n)]T the observations. In this paper, we suppose that the sources
are zero mean and mutually statistically independent. We consider convolutive mixtures de�ned by a set of P ×N
unknown causal FIR �lters which form a supposedly non-singular matrix H(z) = [Hij(z)]. The overall relationship
between the sources and the observations then reads in the Z domain

X(z) = H(z).S(z) (1)

In this paper, each source sj(n) is assumed to be expressed in the Z domain as

Sj(z) = Fj(z).Uj(z) (2)
where Fj(z) corresponds to a causal FIR �lter and Uj(z) is the Z transform of an i.i.d. process uj(n), which is
the innovation process of sj(n).

We can then express the mixing equation (1) in another way

X(z) = G(z).U(z) (3)

where G(z) = H(z).
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The goal of convolutive BSS is typically to estimate the contributions of all sources in each observation, i.e.
Hij(z).Sj(z). In de�ation-based methods such as [1], this is achieved by using the following procedure

1. estimate the innovation process uj(n) of a source sj(n) from the observations.

2. identify and apply P coloring �lters to uj(n) to recover the contributions of sj(n) in each observation.

3. subtract these contributions from all the observations.

4. set N ← N − 1 and go back to step(1) if N 6= 1, in order to extract another source.

We here consider BSS methods which use non-gaussianity as a criterion to realize the �rst step of the above
procedure. In the next section, we analyze the principles and limitations of the existing methods and we propose
an approach to extend them so as to obtain the currently missing fast-converging kurtotic and negentropic methods
for convolutive mixtures. The experimental performance of the proposed methods is presented in Section 3 and
conclusions are drawn from this investigation in Section 4.

2 Analysis and extension of BSS methods based on non-gaussianity
2.1 Previously reported approaches
Delfosse and Loubaton [2] proposed the �rst de�ation-based kurtotic BSS method for linear instantaneous mixtures,
where the �lters Hij(z) are replaced by simple scalar coe�cients. This method �rst consists in deriving a sphered
version of the observations at time n, i.e. a set of linear combinations of these observations composed of signals
which are mutually uncorrelated at time n and which have unit variances. A �rst output signal is then derived as a
linear combination y of the sphered observations, with a normalized coe�cient vector w selected so as to maximize
the square (or the absolute value) of the non-normalized kurtosis of y de�ned by kurt(y) = E

{
y4

}−3
(
E

{
y2

})2for
a zero-mean signal. Delfosse and Loubaton proved in [2] that the local maxima of this criterion correspond to the
separation points. They used a gradient-like method to maximize the above-mentioned kurtotic criterion. This
requires one to select an adequate adaptation gain and anyway yields slow convergence. Hyvärinen and Oja solved
this problem by introducing a �xed-point algorithm for optimizing the above criterion [3]. To put it brie�y, this
algorithm takes advantage of the fact that a constrained optimization of the considered criterion is to be performed
and iteratively sets the adaptive vector w of combination coe�cients to a normalized version of the gradient of
the kurtotic criterion on the constraint surface. This algorithm does not require one to tune any parameter (such
as the above adaptation gain in gradient-like methods) and was shown to converge very rapidly.

A di�erent approach was proposed by Tugnait for convolutive mixtures [1]. It directly operates on the ob-
servations, i.e. without �rst sphering them, but then uses the absolute value of the normalized kurtosis of the
output signal y, i.e. kurtN (y) = kurt(y)

(E{y2})2 , as the separation criterion. Tugnait proved that the separation points
correspond to local maxima of this criterion. He proposed to optimize this criterion by using a gradient-based
approach, which again yields slow convergence. The tests performed in our team [4] showed that, even when using
Newton's optimization scheme, convergence remains slow, especially for high-order mixing �lters.

This paper therefore aims at �lling the gap which results from the above approaches, i.e. at introducing fast-
converging kurtotic or negentropic methods for convolutive mixtures. To this end, we investigate how to extend
to convolutive mixtures the approach based on sphering and �xed-point optimization of non-normalized kurtosis
which has been proposed for instantaneous mixtures. Note that one could think of using the alternative approach,
i.e. trying to introduce a fast �xed-point algorithm in the method without sphering and with normalized kurtosis
which was proposed by Tugnait. However, this approach is not applicable because, unlike Hyvärinen's solution,
Tugnait's method is not based on constrained optimization.1

2.2 A new method for estimating an innovation process
All above methods require a normalization, as the non-normalized kurtosis of y tends to in�nity when the power of
y tends to in�nity. In Tugnait's approach, the criterion itself is normalized. Instead, the other two approaches use
non-normalized kurtosis and are based on a normalization of the power of y. This results from the sphering stage
of these linear instantaneous approaches, which yields E

{
y2

}
= ‖w‖2, so that by selecting w with ‖w‖2 = 1, we

1As explained in [1], the �lters in the BSS system are only normalized for practical reasons, but the criterion kurtN (y) does not
depend on the overall scale.
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guarantee that E
{
y2

}
= 1. We here aim at extending this method to convolutive mixtures. As the �rst step of

our approach, we therefore introduce a �convolutive sphering� of the observations, de�ned as follows. At any time
n, we consider the column vector

v(n) = [x1(n + R), · · · , x1(n−R), · · · , xP (n + R), · · · , xP (n−R)]T (4)
which contains M = (2R+1)P entries. We derive the M -entry column vector x′(n) = [x′1(n), · · · , x′M (n)]T de�ned
as

x′(n) = Bv(n) (5)
where the M ×M matrix B is chosen so that





E
{

(x′i(n))2
}

= 1 , ∀i ∈ {1, · · · ,M}
E

{
x′i(n)x′j(n)

}
= 0 , ∀i 6= j ∈ {1, · · · ,M}

(6)

With respect to v(n), the operation (5) may therefore be considered as conventional sphering, e.g. performed
by a classical Principal Component Analysis and normalization. Now, with respect to the original observations
xi(n), this may be interpreted di�erently. Indeed, Eq. (4) and (5) show that the signals x′i(n) are convolutive
mixtures of the xi(n). Eq. (6) and (7) then mean that the signals x′i(n) are created so as to have unit variances
and to be mutually uncorrelated, which may be seen as a spatio-temporal whitening and normalization of the
observations xi(n).

With this pre-processing stage, Appendix A proves the equivalence

E(y2) = 1⇐⇒ ‖w‖ = 1 (7)
where

y(n) =
M∑

m=1

wm.x′m(n) (8)

and w is an extended vector of extraction coe�cients which, together with (5), yields a convolutive combination
y of the observations.

Our method then consists in maximizing the absolute value of the kurtosis of y de�ned by (9) under the
constraint

‖w‖2 =
M∑

m=1

w2
m = 1. (9)

Appendix B shows that this criterion lets us extract an estimate ej(n) of a delayed and scaled source innovation
process αjuj(n− r), under some conditions.

Moreover, powerful algorithms for optimizing that criterion may then be straightforwardly derived from those
previously reported for linear instantaneous mixtures, because Appendix B shows that the convolutive mixtures
v(n) studied in this paper may be reformulated as instantaneous mixtures in the considered conditions. Especially,
the convolutive kurtotic �xed-point Fast-ICA algorithm that we propose as an extension of [3] based on our modi�ed
vector w then uses the iterations
1) w = E

{
x′(wT x′)3

}− 3w

2) w = w
‖w‖

Similarly, for instantaneous mixtures, instead of using the kurtosis, another contrast function based on negen-
tropy was proposed by Hyvärinen to estimate non-gaussianity [6]. It has been shown to yield better robustness
and lower variance than the kurtotic approach. In particular, it is more robust to extreme values than the kurtosis
criterion which involves a fourth-order moment, whose estimation is very sensitive to outliers. Furthermore, a fast
and reliable algorithm was also developed by Hyvärinen for this type of function. It is based on Newton's method
and is closely connected to the above �xed-point algorithm. We extend this negentropic algorithm to convolutive
mixtures in the same way as the above kurtotic approach
1) w = E

{
x′g(wT x′)

}− E
{
g′(wT x′)

}
w

2) w = w
‖w‖

where g and g′ are the �rst and second derivatives of the contrast function G.
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2.3 Overall proposed BSS methods
The above extraction stage provides an estimate ej(n) of a source innovation process up to a delay and a scale
factor, that we can colour to obtain the contributions of the jth source in each observation. This can be done by
seeking the non-causal coloration �lters Ck(z) =

∑R′

i=−R′ γiz
−i which make the signals ck(n) ∗ ej(n) be the closest

to xk(n) in the mean square sense [4]. One might use Newton's algorithm, which converges in one iteration for
the criterion E

{
(ck(n) ∗ ej(n)− xk(n))2

}
since this criterion can be expressed as cT

k Hck + bTck + d.
After subtracting these contributions from all observations, we obtain another mixture con�guration with N−1

sources. The �rst step must then be iterated as explained in Section 1.

3 Experimental results
In this section, we illustrate the performance of our methods on several examples. These algorithms are �rst
tested for P = 2 convolutive mixtures of N = 2 arti�cial coloured signals containing 100000 samples. The
innovation processes uj(n) have uniform distributions. For this type of signals, the kurtosis appeared to be the
best optimization criterion, as compared to negentropy.

Figure 1 shows the resulting output Signal to Interference Ratio (SIR) depending on the model order K that
we de�ne as the sum of the mixture and innovation coloration �lter orders. For each source, this SIR is averaged
over the two estimated source contributions. For each value of K, 100 experiments were made by varying the
mixture and coloration �lter coe�cients with a uniform distribution. The order value R used to estimate the
source innovation processes was set to R = K, since our tests showed that this yields a good trade-o� between
performance (SIR) and computational cost. Similarly, the order of the non-causal �lters used to color the esti-
mated innovation processes was set to R′ = 2K. Fig. 1 shows that the means of SIRs are about 13 dB for the
�rst source and a little lower for the second source. Comparisons showed that this performance is slightly better
than with Tugnait's algorithm [4] and the processing time is much smaller (about 20 times smaller in some cases).
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In the next series of experiments, we �xed the model order to K = 20 to analyze the in�uence of the value of
R on performance. Fig. 2 shows that a good compromize is reached between the mean and the standard deviation
of SIR for the value R = 20. This con�rms that R = K is a good choice.
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Fig 2. SIR of the kurtotic algorithm as a function of R.

Circles : mean SIR
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Another set of experiments was then made, still with arti�cial sources, by testing the case when the relationship
(14) is satis�ed. To this end, we used P = 3 observed mixtures of the above 2 sources and we set R1 = K − 1
non causal lags and R2 = K causal lags in the vector v de�ned in (4). Fig. 3 shows that the mean SIR is about
5 dB higher than with P = 2 but so is the standard deviation. This high standard deviation may result from the
higher number of parameters to be estimated here.
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The last series of experiments was carried out with 2 English speech sources sampled at 20 kHz during 5 sec-
onds. As in the �rst set of experiments, we varied the order of the mixing �lters Hij(z) and we again performed 100
experiments for each �lter order. For these audio signals, the negentropic optimization criterion with G(x) = e−

x2
2

turned out to yield better performance. In this case, the performance (Fig. 4) is more dependent on the mixture
order and lower than in Fig. 1. The performance is also rather limited for the second extracted source. This could
result from the MA process model (2) which is only approximately relevant for speech sources and involves higher
�lter orders.
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4 Conclusion
In this paper, we have introduced new methods for Blind Source Separation in the convolutive case. These
methods are based on a new type of sphering (convolutive sphering) which allows the use of �xed-point algorithms
to maximize non-gaussianity criteria. Several test series have been performed for arti�cial coloured signals and
for speech signals. The performance in terms of Signal to Interference Ratio appears slightly better than with
Tugnait's method, whereas the processing time is much smaller.
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Appendix A. Power normalization
The power of the output signal y(n) de�ned by (9), reads

E
{
y2

}
= E





(
M∑

m=1

wm.x′m(n)

)2


 (10)

=
M∑

m=1

w2
mE

{
(x′m(n))2

}
+

∑

m1 6=m2

wm1 .wm2E
{
x′m1

.(n).x′m2
(n)

}
(11)

By constraining x′(n) so as to meet (6) and (7), we get E
{
y2

}
=

∑M
m=1 w2

m = ‖w‖2.
Therefore

E
{
y2

}
= 1⇐⇒ ‖w‖ = 1 (12)

Appendix B. Relevance of considered criterion
The P considered observations xi(n) are expressed with respect to the N innovation processes uj(n) according to
(3). They are therefore causal Kth-order FIR mixtures of these processes. Now consider the vector v(n) de�ned
in (4) and composed of delayed observations. The analysis e.g. provided in [5] implies that if

PL ≥ N(K + L) (13)

where L = (2R + 1) is the number of lags, then v(n) may also be interpreted as a set of linear instantaneous
mixtures of corresponding sources, which are here delayed and scaled versions of the innovation processes uj(n).

Therefore, if (14) is met, the investigation for instantaneous mixtures provided in [2] proves rigorously that,
by maximizing the absolute value of the non-normalized kurtosis of the signal y(n) de�ned in (9), we extract a
delayed and scaled innovation process αjuj(n− r), whose practical estimate is denoted ej(n) hereafter.

If (14) is not met, the reformulated instantaneous BSS problem is underdetermined, i.e. it involves less
observations than sources (note that this is especially the case when P = N). This underdetermination is related
to the �nite order of the extraction �lters applied to the observations by the processing stages de�ned by (5)
and (9). Some approximations are necessary in this underdeterminated case. However, when the ratio PL

N(K+L)

tends to 1 (which is the case when P = N and L is high), a delayed and scaled innovation process may still
be approximately estimated as a linear combination of the available observations whose absolute non-normalized
kurtosis is maximum.
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