
BLIND IDENTIFICATION AND SEPARATION METHODS FOR LINEAR-QUADRATIC
MIXTURES AND/OR LINEARLY INDEPENDENT NON-STATIONARY SIGNALS

Yannick Deville and Shahram Hosseini
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ABSTRACT

This paper concerns blind mixture identification (BMI)
and blind source separation (BSS). We consider non-stati-
onary stochastic sources, more specifically sources with
slight time-domain sparsity. We first propose a correlation-
based BMI/BSS method for Linear-Quadratic mixtures,
called LQ-TEMPCORR. We also investigate the applica-
bility of this type of method to possibly statistically depen-
dent (e.g. correlated) but linearly independent signals. We
thus extend the scope of our linear instantaneous method
LI-TEMPCORR as a spin-off of this new investigation.

1. INTRODUCTION

Many blind mixture identification (BMI) and blind source
separation (BSS) methods have been reported in the liter-
ature during the last two decades. Most of them concern
linear instantaneous (LI) mixtures and assume the sources
to be stochastic, stationary and statistically independent,
thus leading to Independent Component Analysis (ICA)
approaches. Several LI-BSS methods have also been in-
troduced in order to request less restrictive source prop-
erties than statistical independence, at the expense of ad-
ditional constraints. They especially assume uncorrelated
sources, which are e.g. non-stationary in addition. A spe-
cific form of non-stationarity is achieved by sources which
are sparse in the time domain, i.e. sources whose vari-
ances are zero at some times and non-zero at others. This
class of approaches e.g. includes our LI-TEMPCORR
method [1],[2]. As for nonlinear mixtures, a few methods
have been proposed in the literature, only for statistically
independent sources to our knowledge.

In this paper, we address configurations which are be-
yond the above-defined cases. This includes two direc-
tions, where we use the above-defined type of source non-
stationarity, i.e. time-domain sparsity. We mainly develop
methods for linear-quadratic (LQ) mixtures, which have
been considered in a few papers (see e.g. [3] and refer-
ences therein). We also aim at decreasing the constraints
on source dependence, especially in order to only request
linearly independent signals. We investigate in which as-
pects of the proposed BMI and BSS methods we can com-
bine the above two directions.

2. LINEAR-QUADRATIC MIXTURE MODEL

In this paper, we consider the following configuration.
The available P signals xi(t) are mixtures of N source
signals sj(t), with P = N(N + 1)/2 in the most general
case as explained below. The source signals are unknown,
stochastic and real-valued. The mixing model consists of
linear terms, proportional to sj(t), and quadratic cross-
terms, proportional to s̃jk(t) = sj(t)sk(t). Each observed
signal then reads

xi(t) =
∑

j=1,...,N

aijsj(t) +
∑

1≤j<k≤N

qijks̃jk(t),

∀i = 1, . . . , P (1)

where aij and qijk are resp. linear and quadratic unknown
real-valued mixing coefficients. This yields in matrix form

x(t) = As(t) + Qs̃(t) (2)

with x(t) = [x1(t), . . . , xP (t)]T , s(t) = [s1(t), . . . , sN (t)]T ,
where T denotes transposition. The column vector s̃(t)
consists of the signals s̃jk(t) in a given arbitrary order.
A = [aij ] and Q = [qijk], where i is the row index of Q
and the columns of Q are indexed by (j, k) and arranged
in the same order as the signals s̃jk(t) in s̃(t). We also
consider the centered version of the observations, i.e.

x′
i(t) = xi(t) − E{xi(t)} ∀i = 1, . . . , P. (3)

Eq. (1) and (3) then yield

x′
i(t) =

∑

j=1,...,N

aijs
′
j(t) +

∑

1≤j<k≤N

qijks̃′jk(t),

∀i = 1, . . . , P, (4)

where s′j(t) and s̃′jk(t) are resp. the centered versions of
sj(t) and s̃jk(t). This yields in matrix form

x′(t) = As′(t) + Qs̃′(t) (5)

where the vectors x′(t), s′(t) and s̃′(t) are the centered
versions of those involved in (2).

3. PROPOSED BMI AND BSS METHODS

3.1. Identification of linear part of mixture

The first step of our method consists in identifiying the
”linear part” of the mixing model, i.e. the matrix A, or



more precisely the matrix A = [aij ], where

aij =
ai,σ(j)

a1,σ(j)
∀i = 1 . . . P, ∀j = 1, . . . , N (6)

and σ(.) is a permutation. A is therefore a modified ver-
sion of A, where the columns are permuted and each col-
umn is rescaled with respect to the value in its first row, i.e.
to its linear contribution in observation x1(t) (the columns
of A could be rescaled with respect to another observation
instead). This corresponds to the classical indeterminacies
of the LI-BSS problem. To ensure that all parameters in
(6) are defined, we set the following constraint:

Assumption 1 All entries of the first row of A are non-
zero.

We now introduce the other assumptions that we use to
identify the linear part of the mixture.

Assumption 2 A is a full-column-rank matrix.

Definition 1 A signal is said to be ”active” at time t if
it has non-zero variance at that time1. It is said to be
”inactive” at time t if it has zero variance at that time and
may then be considered as a deterministic constant.

Definition 2 A source sj(t) is said to be ”isolated” at
time t if only this source, among all sources s1(t), . . . , sN (t),
is active at that time.

Definition 3 A source sj(t) is said to be ”visible” in the
time domain if there exist as least one time t when it is
isolated.

Assumption 3 Each source sj(t) is visible in the time do-
main.

The considered sources are therefore non-stationary2, since
their variances are zero at some times and non-zero at oth-
ers. Moreover, they are only requested to have slight spar-
sity in the time domain, in the sense that they are allowed
to overlap almost everywhere: for each source, we only
request the existence of a time t (i.e. a short time window
for practical estimation) when only this source is active.

Assumption 4 For any considered time t, the signals which
are contained by s′(t) and s̃′(t) and which are active at
that time are linearly independent.

We recall (see [4], Ed. 2002, p. 251) that the real-valued
random variables wi are linearly independent if E{(c1w1+
· · ·+cnwn)2} > 0 for any C �= 0, where C = [c1, . . . , cn]
and E{.} stands for expectation. It should be noted that if
the active signals in s′(t) and s̃′(t) are uncorrelated, then
Assumption 4 is met. However, there also exist cases with

1Each considered time area is restricted to a single time t in this the-
oretical statistical framework. However, in practice, all signal moments
are estimated over time windows and each considered time area then
consists of such a window.

2More precisely, they are long-term non-stationary, but they should
be short-term stationary in practice in order to make it possible to esti-
mate the above-mentioned signal moments over short time windows.

active signals in s′(t) and s̃′(t) such that Assumption 4
is still met, although these signals are partly correlated.
This shows the attractiveness of our approach, even when
we restrict ourselves to LI mixtures: there exist signals
which cannot be separated by ICA approaches and clas-
sical second-order-statistic BSS methods because they are
correlated, while our method still applies to them.

Assumption 5 All sources s1(t), . . . , sN (t) are zero-mean
at any time t. 3

The identification of A is performed by mainly taking ad-
vantage of Assumption 3, i.e. of the existence of times
when each source is isolated. Such times should first be
detected, so as to operate at those times. The method that
we use to this end may be intuitively introduced as fol-
lows: at a time t when a source is isolated, say sl(t), the
observed signals (1) become restricted to

xi(t) = ailsl(t) ∀i = 1 . . . P. (7)

All observed signals are therefore proportional at any such
time. So, an appealing approach for detecting these times
consists in checking the cross-correlation coefficients be-
tween the observed signals x1(t) and xi(t), defined as

ρx1xi
(t) =

E{x′
1(t)x

′
i(t)}√

E{[x′
1(t)]2}E{[x′

i(t)]2}
. (8)

We indeed prove in the Appendix that a necessary and suf-
ficient condition for a source to be isolated at time t is

|ρx1xi
(t)| = 1 ∀i = 2 . . . P. (9)

Again using correlation parameters associated to the ob-
served signals then makes it possible to identify part of
the matrix A at each time when a source is isolated. More
precisely, when only sl(t) is active, (21) entails

E{x′
i(t)x

′
1(t)}

E{[x′
1(t)]2}

=
ail

a1l
∀i = 2 . . . P. (10)

The set of values thus obtained for all observations in-
dexed by i identifies one of the columns of A, as shown by
(6), which also indicates that all values in the first row of
A are equal to 1. By repeatedly performing such column
identifications for times associated to all sources, we even-
tually identify the overall matrix A. The details of this
procedure are the same as in our previous LI-TEMPCORR
method and may be found in [1],[2].

We thus succeeded in achieving the BMI task for the
linear part of the mixture model (2), despite the presence
of its quadratic part. We now proceed to the other aspects
of the BMI and BSS tasks for this model. It should first
be noted that they are straightforward in the specific case
when the model (2) is restricted to a linear one, i.e. when
Q = 0. Indeed, we then have completely identified the
model, up to its indeterminacies. BSS is then achieved just
by computing the signal vector A†x(t), where † denotes

3The observations may then be non-zero-mean, due to the nonlinear
nature of the mixture and the possible source correlation. We therefore
consider the centered version x′

i(t) of the observations hereafter.



the pseudo-inverse (or we compute the vector A−1x(t)
when using P = N for LI mixtures). This vector is
equal to the source vector s(t), up to the scale and per-
mutation BSS indeterminacies (and, of course, up to esti-
mation errors). This LI-BSS method itself is nothing but
the above-mentioned LI-TEMPCORR approach. How-
ever, this paper provides new results concerning its ap-
plicability: while the demonstration provided in [1],[2]
only guaranteed that it applies to uncorrelated sources, we
here extended that result by proving that it is relevant for
a wider class of signals, i.e. linearly independent sources.

3.2. Cancellation of linear part of mixture

We then aim at deriving a set of L signals zl(t) from the
observations xi(t), in such a way that these signals zl(t)
only contain quadratic cross-terms, i.e. terms proportional
to s̃jk(t). To this end, we consider signals defined as

zl(t) = x1(t) −
P∑

i=2

clixi(t) ∀l = 1, . . . , L. (11)

Combining this expression with (1) and (6) yields

zl(t) =
∑

j=1,...,N

a1,σ(j)sσ(j)(t)[1 −
P∑

i=2

aijcli] (12)

+
∑

1≤j<k≤N

rljks̃jk(t) ∀l = 1, . . . , L.

To obtain a signal zl(t) which contains no linear terms
associated to sj(t), we select the coefficients cli so that

P∑

i=2

aijcli = 1 ∀j = 1, . . . , N. (13)

For a given index l, this yields a set of N equations, where
the unknowns are the P − 1 values of cli, while the (esti-
mated) coefficients aij are available from Section 3.1. If
P − 1 = N , this set of linear equations has a single solu-
tion, i.e. we can only create one such signal zl(t). More
generally speaking, whatever M ≥ 0, if P −1 = N +M ,
we can create M + 1 linearly independent signals zl(t).
Besides, (12) then reduces to

zl(t) =
∑

1≤j<k≤N

rljks̃jk(t) ∀l = 1, . . . , L (14)

i.e. these signals zl(t) are then only mixtures of the quadr-
atic signals s̃jk(t). Moreover, there exist N(N − 1)/2
signals4 s̃jk(t) in the observations (1). We want the set of
mixtures zl(t) of the signals s̃jk(t) to be invertible. We
therefore set the numbers L and P of recombined signals
zl(t) and observations xi(t) to L = M +1 = N(N−1)/2
and therefore P = N + M + 1 = N(N + 1)/2.

So, we thus obtained the following result: by solving
Eq. (13) and deriving the resulting signals according to
(11), we obtain the set of LI mixtures zl(t) of the signals
s̃jk(t) defined by (14), which is invertible when [rljk] is
assumed to be invertible. These mixed signals may then
be used in various ways, as will now be shown.

4Or less if all coefficients for at least one signal s̃jk(t) are zero.

3.3. Remaining BMI and BSS tasks

One may then proceed in different ways, depending on
which parts of the BMI and BSS tasks should be per-
formed in the considered application and which constraints
on the sources are acceptable. We now explore these al-
ternatives.

3.3.1. A method based on non-stationarity conditions

We first again focus on methods for signals which are
time-domain sparse, and therefore non-stationary. One
may then process the LI mixtures zl(t) of the signals s̃jk(t),
defined in (14), by adapting the approach of Section 3.1 to
this new context. This achieves both BMI for the mixing
matrix in (14) (but not yet for the original matrix Q in (2))
and BSS for the signals s̃jk(t) (but not yet for the signals
sj(t)). This adaptation of the approach of Section 3.1 re-
quires to extend the assumptions accordingly. Especially,
we then need times when a single signal s̃jk(t) is active,
i.e. essentially times when only the two corresponding
sources sj(t) and sk(t) are simultaneously active.

It should also be noted that in the basic configuration
with N = 2 sources, only a single signal s̃jk(t) exists,
i.e. s1(t)s2(t). This signal is then directly provided by
the method described in Section 3.2, so that the stage de-
scribed in the current section then disappears.

3.3.2. A method also using other correlation parameters

The method defined in Section 3.3.1 yields scaled per-
muted versions of the signals s̃jk(t), i.e. it provides a set
of signals

yl(t) = λjks̃jk(t) ∀l = 1, . . . , L. (15)

We now propose a simple method which may then be ap-
plied to these signals when one also wants to identify the
matrix Q and/or to separate the signals sj(t). Considering
the signals which are contained by s′(t) and s̃′(t) at times
when they are active, we request them to be uncorrelated,
unlike in the previous stages of our approach. Denoting
y′

l(t) the centered version of yl(t), we then have if s̃jk(t)
is active

αil =
E{y′

l(t)x
′
i(t)}

E{[y′
l(t)]2}

=
qijk

λjk
∀i = 1 . . . P,

∀l = 1, . . . , L. (16)

This may be interpreted as in Section 3.1, i.e. one may
build the matrix [αil], where each column l corresponds a
one signal s̃jk(t). Eq. (16) then shows that this matrix is
equal to Q, up to the scale and permutation indetermina-
cies. This completes all BMI tasks. Moreover, consider
the signals

ui(t) = xi(t) −
L∑

l=1

αilyl(t) ∀i = 1, . . . , P. (17)

Denoting u(t) the column vector of signals ui(t), Eq. (1),
(15), (16) and (17) then yield in matrix form

u(t) = As(t). (18)



BSS is then straightforwardly achieved for the original
sources sj(t) by computing the vector A†u(t).

3.3.3. A method only using variance parameters

Eventually, if one is mainly interested in the BSS of the
sources sj(t), the method of Section 3.3.1 and its con-
straints may be avoided, again at the expense of request-
ing the uncorrelation of the signals which are contained by
s′(t) and s̃′(t) (considered at times when they are active).
To this end, we introduce the signals

vi(t) = xi(t) −
L∑

l=1

dilzl(t) ∀i = 1, . . . , P. (19)

It may be shown that, by adapting all coefficients dil so as
to minimize the variances of all signals vi(t), the vector
v(t) consisting of these signals becomes equal to As(t).
BSS is then achieved for the original sources sj(t) by
computing the vector A†v(t).

4. SIMULATION RESULTS

We generated two statistically independent, uniformly dis-
tributed, 10000-sample sources. The first 1000 samples
of the first source and the last 1000 samples of the second
source were then replaced by zeros to create two windows
where each source is resp. isolated. The two sources were
then mixed using model (1) with random parameters to
generate 3 mixed signals. The approach proposed in Sec-
tion 3.1 was used to detect the above single-source win-
dows and to identify the entries of A. Then, the proce-
dures described in Sections 3.2 and 3.3.2 were applied to
cancel the linear part of the mixture, to identify the coef-
ficients αil in (16) and to estimate the sources. The ex-
periment was repeated 100 times, for 100 different seed
values of the random variable generator and 100 different
values of the mixing model coefficients. For each experi-
ment, the output Signal to Interference Ratio (in dB) was
computed by

SIR = 0.5
2∑

i=1

10 log10

E[s2
i ]

E[(ŝi − si)2]
, (20)

after normalizing the estimated sources, ŝi(t), so that they
have the same variances as the source signals, si(t). The
mean and standard deviation of SIR on the 100 experi-
ments were 46.8 dB and 7.0 dB. This proves that the pro-
posed method achieves BMI and BSS with high accuracy.

5. CONCLUSION

In this paper, we considered two types of assumptions
for stochastic signals, i.e. mainly non-stationarity/sparsity
and optionally linear independence. We have developed
and analyzed several versions of a BMI and BSS method
based on these assumptions, both for LI and LQ mixtures.
Our method for LQ mixtures may be considered as an ex-
tension of our previous LI-TEMPCORR approach and is

therefore called LQ-TEMPCORR. Our future investiga-
tions will especially aim at further reducing its assump-
tions and extending it to more general mixture models.

A. APPENDIX

We here investigate the properties of the cross-correlation coefficients
ρx1xi (t) defined in (8), depending on the number of active sources at the
considered time t. We assume that at least one source is active, otherwise
these coefficients ρx1xi(t) are undefined. If only one source is active,
say sl(t), it may be shown that

E{x′
i(t)x

′
k(t)} = ailaklE{[s′l(t)]2} ∀i, k = 1 . . . P. (21)

Eq. (8) then yields

|ρx1xi(t)| = 1 ∀i = 2 . . . P. (22)

Conversely, assume that (22) is met. We then have (see [4], Ed. 1965, p.
210)

∀i = 2 . . . P, ∃ αi, βi, / xi(t) = αix1(t) + βi. (23)

This yields for the centered version of the observations

∀i = 2 . . . P, ∃ αi, / x′
i(t) = αix

′
1(t). (24)

Eq. (4) and (24) then result in
∑

j=1,...,N

(aij − αia1j)s
′
j(t) + (25)

∑

1≤j<k≤N

(qijk − αiq1jk)s̃′jk(t) = 0, ∀i = 2, . . . , P.

Denoting A(t) the set of indices of active sources at the considered
time t, one derives from (25) that

E{[
∑

j = 1, . . . , N
j ∈ A(t)

(aij − αia1j)s
′
j(t) +

∑

1 ≤ j < k ≤ N
j ∈ A(t), k ∈ A(t)

(qijk − αiq1jk)s̃′jk(t)]2} = 0,

∀i = 2, . . . , P. (26)

Assumption 4 then implies for any i, with i = 2 . . . P , that

aij − αia1j = 0, ∀j = 1, . . . , N, j ∈ A(t) (27)

qijk − αiq1jk = 0, 1 ≤ j < k ≤ N, j ∈ A(t), k ∈ A(t).

It may then be derived from (27) that, if several sources were active at

time t, the corresponding columns of A would be proportional. This is

in contradiction with Assumption 2. We therefore conclude that, if (22)

is met, only one source is active. As an overall result, (22) is met when

and only when one source is active.
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