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Abstract. This paper concerns underdetermined linear instantaneous
blind source separation (BSS), i.e. the case when the number P of ob-
served mixed signals is lower than the number N of sources. We pro-
pose a partial BSS method, which separates P supposedly non-stationary
sources of interest one from the others (while keeping residual compo-
nents for the other N − P , supposedly stationary, ”noise” sources). This
method is based on the general differential BSS concept that we in-
troduced before. Unlike our previous basic application of that concept,
this improved method consists of a differential extension of the FastICA
method (which does not apply to underdetermined mixtures), thus keep-
ing the attractive features of the latter algorithm. Our approach is there-
fore based on a differential sphering, followed by the optimization of the
differential kurtosis that we introduce in this paper. Experimental tests
show that this differential method is much more robust to noise than
standard FastICA.

1 Introduction

Blind source separation (BSS) methods [9] aim at restoring a set of N unknown
source signals sj(n) from a set of P observed signals xi(n). The latter signals
are linear instantaneous mixtures of the source signals in the basic case, i.e.

x(n) = As(n) (1)

where s(n) = [s1(n) . . . sN (n)]T and x(n) = [x1(n) . . . xP (n)]T are the source and
observation vectors, and A is a constant mixing matrix. We here assume that the
signals and mixing matrix are real-valued and that the sources are centered and
statistically independent. Moreover, we consider the underdetermined case, i.e.
P < N , and we require that P ≥ 2. Some analyses and statistical BSS methods
have been reported for this difficult case (see e.g. [2],[3],[4],[7],[10]). However, they
set major restrictions on the source properties (discrete sources are especially
considered) and/or on the mixing conditions. Other reported approaches use
in several ways the assumed sparsity of the sources (see e.g. [1] and references

J. Rosca et al. (Eds.): ICA 2006, LNCS 3889, pp. 48–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Differential Fast Fixed-Point BSS 49

therein). In [6], we introduced a general differential BSS concept for processing
underdetermined mixtures. In its standard version, we consider the situation
when (at most) P of the N mixed sources are non-stationary while the other
N − P sources (at least) are stationary. The P non-stationary sources are the
signals of interest in this approach, while the N − P stationary sources are
considered as ”noise sources”. Our differential BSS concept then achieves the
”partial BSS” of the P sources of interest, i.e. it yields output signals which
each contain contributions from only one of these P sources, still superimposed
with some residual components from the noise sources (this is described in [6]).

Although we first defined this differential BSS concept in a quite general
framework in [6], we then only applied it to a simple but restrictive BSS method,
which is especially limited to P = 2 mixtures and based on slow-convergence al-
gorithms. We here introduce a much more powerful BSS criterion and associated
algorithms, based on differential BSS. This method is obtained by extending
to underdetermined mixtures the kurtotic separation criterion [5] and the as-
sociated, fast converging, fixed-point, FastICA algorithm [8], thus keeping the
attractive features of the latter algorithm.

2 Proposed Differential BSS Method

2.1 A New BSS Criterion Based on Differential Kurtosis

The standard FastICA method [8], which is only applicable to the case when
P = N (or P > N), extracts a source by means of a two-stage procedure. The
first stage consists in transferring the observation vector x(n) through a real
PxP matrix M , which yields the vector

z(n) = Mx(n). (2)

In the standard FastICA method, M is selected so as to sphere the observations,
i.e. so as to spatially whiten and normalize them. The second stage of that
standard method then consists in deriving an output signal yi(n) as a linear
instantaneous combination of the signals contained by z(n), i.e

yi(n) = wT z(n) (3)

where w is a vector, which is constrained so that ‖ w ‖= 1. This vector w is
selected so as to optimize the (non-normalized) kurtosis of yi(n), defined as its
zero-lag 4th-order cumulant

Kyi(n) = cum(yi(n), yi(n), yi(n), yi(n)). (4)

Now consider the underdetermined case, i.e. P < N . We again derive an output
signal yi(n) according to (2) and (3). We aim at defining how to select M and
w, in order to achieve the above-defined partial BSS of the P sources of interest.
To this end, we apply the general differential BSS concept that we described
in [6] to the specific kurtotic criterion used in the standard FastICA method.



50 Y. Deville et al.

We therefore consider two times n1 and n2. We then introduce the differential
(non-normalized) kurtosis that we associate to (4) for these times. We define
this parameter as

DKyi(n1, n2) = Kyi(n2) − Kyi(n1). (5)

Let us show that, whereas the standard parameter Kyi(n) depends on all sources,
its differential version DKyi(n1, n2) only depends on the non-stationary sources.
Eq. (1), (2) and (3) yield

yi(n) = vT s(n) (6)

where the vector
v = (MA)T w (7)

includes the effects of the mixing and separating stages. Denoting vq, with q =
1 . . .N , the entries of v, (6) implies that the output signal yi(n) may be expressed
with respect to all sources as

yi(n) =
N∑

q=1

vqsq(n). (8)

Using cumulant properties and the assumed independence of all sources, one
derives easily

Kyi(n) =
N∑

q=1

v4
qKsq(n) (9)

where Ksq(n) is the kurtosis of source sq(n), again defined according to (4). The
standard output kurtosis (9) therefore actually depends on the kurtoses of all
sources. The corresponding differential output kurtosis, defined in (5), may then
be expressed as

DKyi(n1, n2) =
N∑

q=1

v4
qDKsq(n1, n2) (10)

where we define the differential kurtosis DKsq(n1, n2) of source sq(n) in the same
way as in (5). Let us now take into account the assumption that P sources are
non-stationary, while the other sources are stationary. We denote by I the set
containing the P unknown indices of the non-stationary sources. The standard
kurtosis Ksq(n) of any source sq(n) with q /∈ I then takes the same values for
n = n1 and n = n2, so that DKsq(n1, n2) = 0 1. Eq. (10) then reduces to

DKyi(n1, n2) =
∑

q∈I
v4

qDKsq(n1, n2). (11)

1 Note that the ”complete” stationarity of the sources sq(n) with q /∈ I is sufficient
for, but not required by, our method: we only need their differential kurtoses (and
their differential powers below) to be zero for the considered times.
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This shows explicitly that this differential parameter only depends on the non-
stationary sources. Moreover, for given sources and times n1 and n2, it may be
seen as a function f(.) of the set of variables {vq, q ∈ I}, i.e DKyi(n1, n2) is
equal to

f(vq, q ∈ I) =
∑

q∈I
v4

qαq (12)

where the parameters αq are here equal to the differential kurtoses DKsq(n1, n2)
of the non-stationary sources. The type of function defined in (12) has been
widely studied in the framework of standard kurtotic BSS methods, i.e. methods
for the case when P = N , because the standard kurtosis used as a BSS criterion
in that case may also be expressed according to (12) 2. The following result
has been established (see [9] p. 173 for the basic 2-source configuration and [5]
for a general proof). Assume that all parameters αq with q ∈ I are non-zero,
i.e. that all non-stationary sources have non-zero differential kurtoses for the
considered times n1 and n2. Consider the variations of the function in (12) on
the P - dimensional unit sphere, i.e. for {vq, q ∈ I} such that

∑

q∈I
v2

q = 1. (13)

The results obtained in [5],[9] imply in our case that the maxima of the absolute
value of f(vq, q ∈ I) on the unit sphere are all the points such that only one of
the variables vq, with q ∈ I, is non zero. Eq. (8) shows that the output signal
yi(n) then contains a contribution from only one non-stationary source (and
contributions from all stationary sources). We thus reach the target partial BSS
for one of the non-stationary sources.

The last aspect of our method that must be defined is how to select the matrix
M and to constrain the vector w (which is the parameter controlled in practice,
unlike v) so that the variables {vq, q ∈ I} meet condition (13). To this end, we
define the differential correlation matrix of z(n) as

DRz(n1, n2) = Rz(n2) − Rz(n1) (14)

where Rz(n) = E{z(n)z(n)T } is its standard correlation matrix. The differential
correlation matrix DRs(n1, n2) of the sources is defined in the same way. It is
diagonal, since the sources are assumed to be uncorrelated and centered, and its
non-zero entries are the differential powers of the non-stationary sources, i.e.

DPsq (n1, n2) = E{s2
q(n2)} − E{s2

q(n1)}. (15)

The BSS scale indeterminacy makes it possible to rescale these differential powers
up to positive factors. Therefore, provided the diagonal elements of DRs(n1, n2)

2 In standard approaches, the summation for q ∈ I in (12) is performed over all P = N
sources and the parameters αq are equal to the standard kurtoses Ksq (n) of all these
sources. However, this has no influence on the discussion below, which is based on
the general properties of the type of functions defined by (12).
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corresponding to the P sources of interest are strictly positive for the considered
times n1 and n2, they may be assumed to be equal to 1 without loss of generality.
We then select the matrix M so that

DRz(n1, n2) = I (16)

and we control w so as to meet ‖ w ‖= 1. This method is the differential extension
of the sphering stage of the FastICA approach. As shown in Appendix A, these
conditions on M and w guarantee that the constraint (13) is satisfied.

2.2 Summary of Proposed Method

The practical method which results from the above analysis operates as follows:

Step 1 Select two non-overlapping bounded time intervals (which correspond
to n1 and n2 in the above theoretical analysis) such that all non-stationary3

sources have non-zero differential kurtoses and positive differential powers (15).
These intervals may be derived by only resorting to the observed signals, xi(n),
e.g. as explained in [6].
Step 2 Compute an estimate D̂Rx(n1, n2) of the differential correlation ma-

trix of the observations, defined in the same way as in (14). Then perform the
eigendecomposition of that matrix. This yields a matrix Ω whose columns are
the unit-norm eigenvectors of D̂Rx(n1, n2) and a diagonal matrix Λ which con-
tains the eigenvalues of D̂Rx(n1, n2). Then derive the matrix M = Λ−1/2ΩT .
This matrix performs a ”differential sphering” of the observations, i.e. it yields
a vector z(n) defined by (2) which meets (16).
Step 3 Create an output signal yi(n) defined by (3), where w is a vector which

satisfies ‖ w ‖= 1 and which is adapted so as to maximize the absolute value
of the differential kurtosis of yi(n), defined by (5). Various algorithms may be
used to achieve this optimization, especially by developing differential versions
of algorithms which were previously proposed for the case when P = N . The
most classical approach is based on gradient ascent [9]. We here preferably de-
rive an improved method from the standard fixed-point FastICA algorithm [8],
which yields several advantages with respect to the gradient-based approach,
i.e. fast convergence and no tunable parameters. Our differential fast fixed-
point algorithm then consists in iteratively performing the following couple of
operations:

3 ”non-stationary” here means ”long-term non-stationary”. More precisely, all sources
should be stationary inside each of the two time intervals considered here, so that
their statistics may be estimated for each of these intervals, by time averaging. This
corresponds to ”short-term stationarity”. The above-mentioned ”sources of interest”
(resp. ”noise sources”) then consist of source signals whose statistics are requested
to vary (resp. not to vary) from one of the considered time intervals to the other one,
i.e. sources which are ”long-term non-stationary” (resp. ”long-term stationary”).



Differential Fast Fixed-Point BSS 53

1) Differential update of w

w =
[
E{z(wT z)3} − 3w

]
n2

−
[
E{z(wT z)3} − 3w

]
n1

(17)

=
[
E{z(wT z)3}

]
n2

−
[
E{z(wT z)3}

]
n1

(18)

where the expressions
[
E{z(wT z)3}

]
ni

are resp. estimated over the two consid-
ered time intervals.
2) Normalization of w, to meet condition ‖ w ‖= 1, i.e

w = w/||w||. (19)

Step 4 The non-stationary source signal extracted as yi(n) in Step 3 is then
used to subtract its contributions from all observed signals. The resulting signals
are then processed by using again the above complete procedure, thus extracting
another source, and so on until all non-stationary sources have been extracted.
This corresponds to a deflation procedure, as in the standard FastICA method
[8], except that a differential version of this procedure is required here again.
This differential deflation operates in the same way as the standard deflation,
except that the statistical parameters are replaced by their differential versions,
as in (17). Here again, a parallel (differential) approach [8] could be considered
instead of deflation.

3 Experimental Results

We now illustrate the performance of the proposed method for a configuration
involving 2 linear instantaneous mixtures of 3 artificial sources. Each of the 2 non-
stationary sources s1(n) and s2(n) consists of two 5000-sample time windows.
Both sources have a Laplacian distribution p(x) = 1/2 exp(−|x|) in the first
window and a uniform distribution over [−0.5, 0.5] in the second window. The
”noise” source s3(n) has the same distribution over all 10000 samples.

The overall relationship between the original sources and the outputs of our
BSS system reads y(n) = Cs(n), where C = [cij ] is here a 2x3 matrix. If s1(n)
and s2(n) appear without permutation in y(n), c12 and c21 correspond to the
undesired residual components of s2(n) and s1(n) resp. in y1(n) and y2(n) and
should ideally be equal to zero. The ”error” associated to the partial BSS of
s1(n) and s2(n) may then be measured by the parameter (E{c2

12} + E{c2
21}),

where the expectations E{.} are estimated over a set of 100 tests hereafter.
Equivalently, the quality of this partial BSS may be measured by the inverse of
the above error criterion, i.e

Q =
1

E{c2
12} + E{c2

21}
. (20)

We investigated the evolution of this criterion with respect to the input Signal
to Noise Ratio (SNR) associated to the observed mixed signals, defined as

SNRin =
√

SNR1
in . SNR2

in (21)

where the input SNR associated to each mixed signal xi(n) reads
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Fig. 1. Separation quality criterion Q of standard and differential FastICA methods
vs input SNR
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SNRi
in =

ai1E{s2
1} + ai2E{s2

2}
ai3E{s2

3}
i ∈ {1, 2}. (22)

The input SNR was varied in our tests by changing the magnitude of the noise
source s3(n). Fig. 1 shows the performance of the proposed differential BSS
method and of the standard FastICA algorithm. This proves the effectiveness of
our differential approach, since its quality criterion Q remains almost unchanged
down to quite low input SNRs, i.e less than 5 dB, whereas the performance of
standard FastICA already starts to degrade around 30 dB input SNR4.

4 Conclusion

In this paper, we considered underdermined BSS. By using our differential BSS
concept, we proposed a partial BSS method which has the same general struc-
ture as the kurtotic methods (especially FastICA) which have been developed
for the case when P = N : it consists of a first stage which uses the second-order
statistics of the signals, followed by a second stage which takes advantage of their
fourth-order statistics. However, these stages are here based on new statistical
parameters, that we introduce as the differential versions of the standard param-
eters. The proposed BSS method thus basically consists of a differential sphering,
followed by the optimization of the differential kurtosis of an output signal. This
optimization may especially be performed by using our differential version of the
fast fixed-point algorithm which has been introduced in the standard FastICA
approach, thus keeping the advantages of the latter algorithm. This has been
4 For very high input SNRs (which is not the target situation for our approach !)

standard FastICA performs slightly better than its differential counterpart. This
probably occurs because the differential statistical parameters involved in the latter
approach are estimated with a slightly lower accuracy than their standard version,
partly because each expectation in the differential parameters is only estimated over
one half of the available signal realization.
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confirmed by our experimental tests, which show that our method is much more
robust to noise than standard FastICA. Our future investigations will especially
aim at extending our differential BSS method to convolutive mixtures.
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A Proof of Condition (13)

We first introduce the matrix H , defined as the diagonal matrix with entries
equal to 1 for indices q ∈ I and 0 otherwise. We then define the vector

ṽ = Hv (23)

which is such that
||ṽ||2 =

∑

q∈I
v2

q . (24)

Besides, Eq. (23) and (7) yield

||ṽ||2 = wT (MA)H(MA)T w. (25)

Moreover, Eq. (1) and (2) yield

DRz(n1, n2) = (MA)DRs(n1, n2)(MA)T . (26)
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In addition, the properties of DRs(n1, n2) provided in Section 2.1 mean that
DRs(n1, n2) = H . Eq. (26) and (25) then yield

||ṽ||2 = wT DRz(n1, n2)w. (27)

Therefore, (27) and (24) show that, if M is selected so that (16) is met and w is
controlled so as to meet ‖ w ‖= 1, then the requested condition (13) is met.
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