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Abstract. We recently proposed a markovian image separation method.
The proposed algorithm is however very time consuming so that it cannot
be applied to large-size real-world images. In this paper, we propose
two major modifications i.e. utilization of a low-cost parametric score
function estimator and derivation of a modified equivariant version of
Newton-Raphson algorithm for solving the estimating equations. These
modifications make the algorithm much faster and allow us to perform
more experiments with artificial and real data which are presented in
the paper.

1 Introduction

We recently proposed [1] a quasi-efficient Maximum Likelihood (ML) approach
for blindly separating mixtures of temporally correlated, mono-dimensional inde-
pendent sources where a Markov model was used to simplify the joint Probability
Density Functions (PDF) of successive samples of each source. This approach
exploits both source non-gaussianity and autocorrelation in a quasi-optimal
manner.

In [2], we extended this idea to bi-dimensional sources (in particular images),
where the spatial autocorrelation of each source was described using a second-
order Markov Random Field (MRF). The idea of using MRF for image sepa-
ration has recently been exploited by other authors [3], where the source PDF
are supposed to be known, and are used to choose the Gibbs priors. In [2],
however, we made no assumption about the source PDF so that the method
remains quasi-efficient whatever the source distributions. The first experimen-
tal results reported in [2] confirmed the better performance of our method with
respect to the ML methods which ignore the source autocorrelation [4] and the
autocorrelation-based methods which ignore the source non-gaussianity [5], [6].

The algorithm used in [2] is however very slow: its implementation requires
the estimation of some 5-dimensional conditional score functions using a non-
parametric estimator and the maximization of a likelihood function using a time
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consuming gradient method. In the present paper, we propose a parametric poly-
nomial estimator of the conditional score functions which is much faster than
the non-parametric estimator. We also derive a modified equivariant Newton-
Raphson algorithm which considerably reduces the computational cost of the
optimization procedure. Using this fast algorithm, we performed more simula-
tions with artificial and real-world data to compare our method with classical
approaches.

2 ML Method for Separating Markovian Images

Assume we have N = N1 × N2 samples of a K-dimensional vector x(n1, n2)
resulting from a linear transformation x(n1, n2) = As(n1, n2), where s(n1, n2)
is the vector of independent image sources si(n1, n2), each one of dimension
N1 × N2 and possibly spatially autocorrelated, and A is a K × K invertible
matrix. Our objective is to estimate the separating matrix B = A−1 up to a
diagonal matrix and a permutation matrix.

The ML method consists in maximizing the joint PDF of all the samples of
all the components of the vector x (all the observations), with respect to the
separating matrix B. We denote this PDF

fx(x1(1, 1), · · · , xK(1, 1), · · · , x1(N1, N2), · · · , xK(N1, N2)) (1)

Under the assumption of independence of the sources, this function is equal to

(
1

|det(B−1)| )
N

K∏

i=1

fsi
(si(1, 1), · · · , si(N1, N2)) (2)

where fsi
(.) represents the joint PDF of N samples of the source si. Each joint PDF

can be decomposed using Bayes rule in many different manners following different
sweeping trajectories within the image corresponding to source si (Fig. 1). These
schemes being essentially equivalent, we chose the horizontal sweeping. Then, the
joint PDF of source si can be decomposed using Bayes rule to obtain

fsi
(si(1, 1))fsi

(si(1, 2)|si(1, 1))fsi
(si(1, 3)|si(1, 2), si(1, 1)) · · · · · ·

fsi
(si(1, N2)|si(1, N2 − 1), · · · , si(1, 1))fsi

(si(2, 1)|si(1, N2), · · · , si(1, 1)) · · · · · ·
fsi

(si(N1, N2)|si(N1, N2 − 1), · · · , si(1, 1)) (3)

This equation may be simplified by assuming a Markov model for the sources.
We suppose hereafter that the sources are second-order Markov random fields,
i.e. the conditional PDF of a pixel s(n1, n2) given all the other pixels is equal to
its conditional PDF given its 8 nearest neighbors (Fig. 2). From this assumption,
it is clear that the conditional PDF of a pixel not situated on the boundaries,
given all its predecessors (in the sense of sweeping trajectory) is equal to its
conditional PDF given its three top neighbors and its left neighbor (squares in
Fig. 2). In other words, if Dn1,n2 is the set of pixel values si(k, l) such that
{k < n1} or {k = n1, l < n2}, then
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(1) (2) (3)

Fig. 1. Different sweeping possibilities
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Fig. 2. Second-order Markov random field

fsi
(si(n1, n2)|Dn1,n2) = fsi

(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1),
si(n1 − 1, n2), si(n1 − 1, n2 − 1)) (4)

If N is sufficiently large, the conditional PDF of the pixels located on the left,
top and right image boundaries (for which, the 4 mentioned neighbors are not
available) may be neglected in (3). Supposing that the sources are stationary so
that the conditional PDF (4) does not depend on n1 and n2, it follows from (4)
that the decomposed joint PDF (3) can be rewritten as

fsi
(si(1, 1), si(1, 2), · · · , si(1, N2), si(2, 1), · · · , si(N1, N2)) �

N1∏

n1=2

N2−1∏

n2=2

fsi
(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1))

The log-likelihood function may be obtained by replacing the above PDF in (2)
and taking the logarithm:

N log(|det(B)|) +
K∑

i=1

N1∑

n1=2

N2−1∑

n2=2

log fsi
(si(n1, n2)|si(n1, n2 − 1),

si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1)) (5)

Dividing the above cost function by N and defining the spatial average operator
EN [.] = 1

N

∑N1
n1=2

∑N2−1
n2=2 [.], Equation (5) may be rewritten in the following

simpler form

L1 = log(|det(B)|) + EN [
K∑

i=1

log fsi
(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1),

si(n1 − 1, n2), si(n1 − 1, n2 − 1))]
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In [2], the separating matrix B was obtained by maximizing the above cost
function using a relative gradient ascent algorithm which is very time consuming.
Here, we choose another approach which consists in solving the equation ∂L1

∂B = 0
using a modified equivariant Newton-Raphson algorithm.

3 Estimating Equations and Their Solution

As shown in [2], the gradient of the cost function L1 is equal to

∂L1

∂B
= B−T − EN [

∑

(k,l)∈Υ

Ψ (k,l)
s (n1, n2).xT (n1 − k, n2 − l)] (6)

where Υ = {(0, 0), (0, 1), (1,−1), (1, 0), (1, 1)} and the vector Ψ (k,l)
s (n1, n2)

contains the conditional score functions of the K sources, which are denoted
ψ

(k,l)
si (n1, n2) hereafter for simplicity, and which read explicitly

ψ(k,l)
si

(n1, n2) = ψ(k,l)
si

(si(n1, n2)|si(n1, n2 − 1), si(n1 − 1, n2 + 1),

si(n1 − 1, n2), si(n1 − 1, n2 − 1)) =
−∂

∂si(n1 − k, n2 − l)
log fsi

(si(n1, n2)|

si(n1, n2 − 1), si(n1 − 1, n2 + 1), si(n1 − 1, n2), si(n1 − 1, n2 − 1)) (7)

Setting (6) to zero, then post-multiplying by BT we obtain

EN [
∑

(k,l)∈Υ

Ψ (k,l)
s (n1, n2).sT (n1 − k, n2 − l)] = I (8)

This yields the K(K − 1) estimating equations

EN [
∑

(k,l)∈Υ

ψ(k,l)
si

(n1, n2).sj(n1 − k, n2 − l)] = 0 i �= j = 1, · · · ,K (9)

which determine B up to a diagonal and a permutation matrix. The other K

equations EN [
∑

(k,l)∈Υ ψ
(k,l)
si (n1, n2).si(n1 − k, n2 − l)] = 1 i = 1, · · · ,K are

not important and can be replaced by any other scaling convention.
The system of equations (9) may be solved using the Newton-Raphson algo-

rithm. We propose a modified version of this algorithm which has the equivari-
ance property, i.e. its performance does not depend on the mixing matrix.

To ensure the equivariance property, the adaptation gain must be proportional
to the previous value of B. Let B̃ be an initial estimation of B. We want to find
a matrix ∆ so that the estimation B̂ = (I+∆)B̃ be a solution of (9). To simplify
the notations, we here only consider the case K = 2 but the same approach may
be used for higher values of K. In the appendix, we show that the off-diagonal
entries of ∆, δ12 and δ21, are the solutions of the following linear system of
equations
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EN [
∑

(k,l)∈Υ

ψ
(k,l)
ŝ1

(n1, n2).s̃1(n1 − k, n2 − l)]δ21

+EN [
∑

(k,l)∈Υ

{
∑

(i,j)∈Υ

∂ψ
(k,l)
ŝ1

(n1, n2)
∂s1(n1 − i, n2 − j)

s̃2(n1 − i, n2 − j)}.s̃2(n1 − k, n2 − l)]δ12

= −EN [
∑

(k,l)∈Υ

ψ
(k,l)
ŝ1

(n1, n2).s̃2(n1 − k, n2 − l)]

EN [
∑

(k,l)∈Υ

ψ
(k,l)
ŝ2

(n1, n2).s̃2(n1 − k, n2 − l)]δ12

+EN [
∑

(k,l)∈Υ

{
∑

(i,j)∈Υ

∂ψ
(k,l)
ŝ2

(n1, n2)
∂s2(n1 − i, n2 − j)

s̃1(n1 − i, n2 − j)}.s̃1(n1 − k, n2 − l)]δ21

= −EN [
∑

(k,l)∈Υ

ψ
(k,l)
ŝ2

(n1, n2).s̃1(n1 − k, n2 − l)] (10)

The computation of the coefficients δ12 and δ21 requires the estimation of the con-
ditional score functions and their derivatives. In [2], we used a non-parametric
method proposed in [7] involving the estimation of joint entropies using a discrete
Riemann sum and third-order cardinal spline kernels. This estimator is very time
and memory consuming and does not provide the derivatives of the score func-
tions required for Newton-Raphson algorithm. In the following section, we pro-
pose another solution based on a third order polynomial parametric estimation
of the score functions which is very fast and directly provides the derivatives of
the score functions. Then, the terms δ12 and δ21 can be obtained by solving (10).
The diagonal entries of ∆ are not important because they influence only the scale
factors. Thus, we can fix them arbitrarily to zero.

4 Parametric Estimation of the Score Functions

Our parametric estimator of the conditional score functions is based on the
following theorem, proved in [8] in the scalar case:

Theorem. If limyi→±∞ fy(y0, · · · , yq)g(y0, · · · , yq) = 0 1 where fy is the joint
PDF of y0, · · · .yq and g is an arbitrary function of these variables, then

E[−∂ log fy(y0, · · · , yq)
∂yi

g(y0, · · · , yq)] = E[
∂g(y0, · · · , yq)

∂yi
] (11)

Following this theorem, if g(y0, · · · , yq,W) is a mean-square parametric estima-
tor of the joint score function ψyi

(y0, · · · , yq) = −∂ log fy(y0,··· ,yq)
∂yi

, its parameter
vector W, can be found from
1 When g(.) is bounded, this condition is satisfied for every real-world signal because

its joint PDF tends to zero at infinity.
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W = argmin{E[g2(y0, · · · , yq,W)] − 2E[
∂g(y0, · · · , yq,W)

∂yi
]} (12)

Note that the function to be minimized does not explicitly depend on the score
function itself. In our problem, we want to estimate the conditional score func-
tions. Each conditional score function can be written as the difference between
two joint score functions:

ψyi
(y0|y1, · · · , yq) = −∂ log fy(y0, · · · , yq)

∂yi
+

∂ log fy(y1, · · · , yq)
∂yi

= ψyi
(y0, · · · , yq) − ψyi

(y1, · · · , yq) (13)

Each of two joint score functions in the above equation can be estimated using
a parametric estimator which may be realized in different manners. In our work,
we used the polynomial functions because of their linearity with respect to the
parameters which simplifies the computations.

The conditional score functions used in our work being of dimension 5, they
may be written as the difference between two joint score functions of dimensions
5 and 4 respectively. We used third-order polynomial functions for estimating
them. The polynomial function modeling the 5-dimensional joint score function
must contain all the possible terms in {1, (y0, y1, y2, y3, y4), (y0, y1, y2, y3, y4)2,
(y0, y1, y2, y3, y4)3}. Hence, it contains

∑3
k=0

(5+k−1
k

)
= 56 coefficients. In the

same manner, the polynomial function modeling the 4-dimensional joint score
function contains

∑3
k=0

(4+k−1
k

)
= 35 coefficients.

Our tests confirm that the above parametric estimator is much more faster,
roughly 100 times, than the non-parametric estimator used in [2] and leads to
the same performance.

5 Simulation Results

In the following experiments, we compare our method with two well-known al-
gorithms: SOBI [6] and Pham-Garat [4]. SOBI is a second-order method which
consists in jointly diagonalizing several covariance matrices evaluated at different
lags. The Pham-Garat algorithm is based on a maximum likelihood approach
which supposes that the sources are i.i.d. and therefore does not take into ac-
count their possible autocorrelation. For each experiment, the output Signal to
Interference Ratio (in dB) was computed by SIR = 0.5

∑2
i=1 10 log10

E[s2
i ]

E[(ŝi−si)2]
,

after normalizing the estimated sources, ŝi(n1, n2), so that they have the same
variances and signs as the source signals, si(n1, n2).

In the first experiment, we use artificial image sources of size 100×100 which sat-
isfy exactly the considered Markov model. Two independent non-autocorrelated
and uniformly distributed image noises, e1(n1, n2) and e2(n1, n2), are filtered by
two autoregressive (AR) filters using the following formula:

si(n1, n2) = ei(n1, n2) + ρ0,1si(n1, n2 − 1) + ρ1,−1si(n1 − 1, n2 + 1)
+ρ1,0si(n1 − 1, n2) + ρ1,1si(n1 − 1, n2 − 1) (14)



112 S. Hosseini et al.

The coefficients ρi,j are chosen to guarantee a sufficient stability condition.
Thus, the coefficients of the first and the second filters are respectively fixed to
{−0.5, 0.4, 0.5, 0.3} and {−0.5, ρ1,−1, 0.5, 0.3}. The coefficient ρ1,−1 of the second
filter may change in its stability interval, i.e. [0.2, 0.6]. Then, the source images

si(n1, n2) are mixed by the mixing matrix A =
(

1 0.99
0.99 1

)
. The mean of SIR

over 100 Monte Carlo simulations as a function of the coefficient ρ1,−1 of the
second AR filter is shown in Fig. 3-a. Our algorithm outperforms the other two,
whatever ρ1,−1.

In the second experiment, the same non-autocorrelated and uniformly dis-
tributed image noises, e1(n1, n2) and e2(n1, n2), were generated and one of them
was filtered by a symmetrical FIR filter. It is evident that the filtered signal is
no longer a 2nd-order MRF. Then, the signals were mixed by the same matrix
as in the first experiment. The mean of SIR as a function of the selectivity of the
FIR filter is shown in Fig. 3-b. The performance of our method is always better
than SOBI. It also outperforms Pham-Garat unless the filter selectivity is small
so that the filtered signal is nearly uncorrelated. In the last experiment, the two
real images of dimension 230 × 270 pixels, shown in Fig. 4, were mixed by the
same matrix. It is clear that the working hypotheses are no longer true because
the images are not stationary and cannot be described by 2nd-order MRFs.
However, the images are autocorrelated and nearly cyclostationary because the
correlation profiles on different circles are similar. Thus, the conditional score
functions on different circles are nearly similar. Once more, the three mentioned
algorithms were used for separating the sources. Our algorithm led to 57-dB SIR
while SOBI and Pham-Garat led to 23-dB and 12-dB SIR respectively.
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Fig. 3. Simulation results using (a) IIR and (b) FIR filters
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6 Conclusion

In this paper, we made two major modifications in our markovian blind image
separation algorithm i.e. utilization of a low-cost parametric score function es-
timator instead of the non-parametric estimator, and derivation of a modified
equivariant Newton-Raphson algorithm for solving the estimating equations in-
stead of maximizing the log-likelihood function by a relative gradient algorithm.
These modifications led to a much faster algorithm and allowed us to perform
more experiments using artificial and real-world data. These experiments con-
firmed the better performance of our method in comparison to the classical
methods which ignore spatial autocorrelation or non-gaussianity of data.
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Appendix. Derivation of Equations (10)

Post-multiplying B̂ = (I + ∆)B̃ by x we obtain ŝ = (I + ∆)s̃. Denoting ∆ =(
δ11 δ12
δ21 δ22

)
, it implies that ŝ1(n1, n2) = s̃1(n1, n2)+ δ11s̃1(n1, n2)+ δ12s̃2(n1, n2)

and ŝ2(n1, n2) = s̃2(n1, n2) + δ21s̃1(n1, n2) + δ22s̃2(n1, n2). Since ŝ1 and ŝ2 must
satisfy the estimating equations (9), by replacing the above relations in the first
estimating equation and considering (7) we obtain
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E
[ ∑

(k,l)∈Υ

{
ψ

(k,l)
ŝ1

(
s̃1(n1, n2) + δ11s̃1(n1, n2) + δ12s̃2(n1, n2)|s̃1(n1, n2 − 1)

+δ11s̃1(n1, n2 − 1) + δ12s̃2(n1, n2 − 1), . . . , s̃1(n1 − 1, n2 − 1)
+δ11s̃1(n1 − 1, n2 − 1) + δ12s̃2(n1 − 1, n2 − 1)

)}
.
{
s̃2(n1 − k, n2 − l)

+δ21s̃1(n1 − k, n2 − l) + δ22s̃2(n1 − k, n2 − l)
}]

= 0(15)

Using a first-order Taylor development of the score function, noting that the
separated sources are independent at the vicinity of the solution, neglecting the
terms containing the products of δij , and neglecting δ22 with respect to 1, we
obtain by some simple calculus the first equation in (10). The second equation
can be derived by symmetry.
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