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Abstract. This paper demonstrates and exploits some interesting fre-
quency-domain properties of nonstationary signals. Considering these
properties, two new methods for blind separation of linear instantaneous
mixtures of mutually uncorrelated, nonstationary sources are proposed.
These methods are based on spectral decorrelation of the sources. The
second method is particularly important because it allows the existing
time-domain algorithms developed for stationary, temporally correlated
sources to be applied to nonstationary, temporally uncorrelated sources
just by mapping the mixtures in the frequency domain. Moreover, it sets
no constraint on the variance profile, unlike previously reported methods.

1 Introduction

Blind source separation can be achieved by exploiting nonGaussianity, time cor-
relation or nonstationarity [1]. In this paper, our goal is to propose new ap-
proaches using the nonstationarity of the sources. A few authors have studied this
problem [2]-[9]. In many of these works, the nonstationarity of the variance of the
sources is used. In [2], separation of nonstationary signals is achieved by comput-
ing output components which are uncorrelated at every time point. The method
requires the joint diagonalization of N covariance matrices, where N represents
the number of samples. In [3], the signals are divided in only two subintervals.
Then, the joint diagonalization of two covariance matrices, estimated on the two
subintervals, allows one to separate the sources. Another approach, presented in
[4], is based on the maximization of the nonstationarity, measured by the cross-
cumulant, of a linear combination of the observed mixtures. Several methods use
the time-frequency diversity of the sources. Some of them [5] are based on a time-
frequency version of joint-diagonalization source separation techniques. Others
[6]-[8] assume that each source occurs alone in a small time-frequency area and
identify the corresponding columns of the scaled mixing matrix in these areas.
Pham and Cardoso have developed novel approaches based on the principles of
maximum likelihood and minimum mutual information [9].

The methods proposed in the present paper are based on spectral decorrela-
tion of the signals. They result from some interesting frequency-domain proper-
ties of nonstationary signals, and may be used for separating linear instantaneous



mixtures of Gaussian or nonGaussian nonstationary, mutually uncorrelated sig-
nals. For the sake of simplicity, in this paper we only study the case of two
mixtures of two sources. However, the method may be extended to more sources
and mixtures.

2 Some mathematical preliminaries

We here introduce some interesting statistical properties of the Fourier trans-
forms of real random signals. Their proofs are given in Appendix A.

1. Let u1(t) and u2(t) be two zero-mean, mutually uncorrelated real signals,
i.e. such that E[u1(t)u2(t)] = 0. Then, denoting their Fourier transforms1

by U1(ω) and U2(ω), we have E[U1(ω)U2(ω)] = E[U1(ω)U∗
2 (ω)] = 0.

2. Let u(t) be a real stationary signal with Fourier transform U(ω). Then,
E[U2(ω)] = 0 for ω 6= 0.

3. If u1(t) and u2(t) are two stationary, mutually uncorrelated, real, zero-mean
signals with Fourier transforms U1(ω) and U2(ω), and if V1(ω) and V2(ω) are
two linear combinations of U1(ω) and U2(ω), then E[V 2

1 (ω)] = E[V 2
2 (ω)] =

E[V1(ω)V2(ω)] = 0 for ω 6= 0.
4. If u(t) is a temporally uncorrelated, real, zero-mean signal with a nonsta-

tionary variance q(t), i.e. if E[u(t1)u(t2)] = q(t1)δ(t1 − t2), then its Fourier
transform, U(ω) is a stationary2, correlated process with autocorrelation
Q(ω), the Fourier transform of q(t).

3 Source separation in the frequency domain

Given N samples of two linear instantaneous mixtures x1(t) and x2(t) of two
mutually uncorrelated, nonstationary, real, zero-mean sources s1(t) and s2(t),
our objective is to estimate s1(t) and s2(t) up to a scaling factor and a per-
mutation. Let’s denote s(t) = [s1(t), s2(t)]T and x(t) = [x1(t), x2(t)]T so that
x(t) = As(t) where A is the mixing matrix. Taking the Fourier transform of
x(t), we obtain:

X(ω) = AS(ω) (1)

where S(ω) = [S1(ω), S2(ω)]T , X(ω) = [X1(ω), X2(ω)]T , and S1(ω), S2(ω),
X1(ω) and X1(ω) are respectively the Fourier transforms of s1(t), s2(t), x1(t)
and x2(t). The spectra Y(ω) = [Y1(ω), Y2(ω)]T of the estimated sources y(t) =
[y1(t), y2(t)]T may be obtained by multiplying X(ω) by a real separating matrix
B, i.e. Y(ω) = BX(ω). It is well known that because of the indeterminacies
involved in the problem, this matrix has only two degrees of freedom. Hence, we
need at least two equations for estimating it. In the following, we propose two
1 The Fourier transform of a stochastic process u(t) is a stochastic process U(ω) given

by [10] U(ω) =
R∞
−∞ u(t)e−jωtdt. The integral is interpreted as a Mean Square limit.

2 In the sense that E[U(Ω + ω)U∗(Ω)] = Q(ω), i.e. its autocorrelation depends only
on ω, not on Ω.



alternative ideas for obtaining such equations in the frequency domain, using
the properties mentioned in Section 2, and knowing that the estimated sources
y1(t) and y2(t) must be mutually uncorrelated.

3.1 First source separation method, using Property 1

To avoid the indeterminacy due to the scaling factor, let’s fix the entries of the

second column of the separating matrix B to one, so that Y(ω) =
(

b1 1
b2 1

)
X(ω).

Following Property 1, the uncorrelatedness of y1(t) and y2(t) implies that

E[Y1(ω)Y ∗
2 (ω)] = E[(b1X1(ω) + X2(ω))(b2X

∗
1 (ω) + X∗

2 (ω))] = 0
E[Y1(ω)Y2(ω)] = E[(b1X1(ω) + X2(ω))(b2X1(ω) + X2(ω))] = 0 (2)

Solving these two equations with respect to b1 and b2, it can be shown (see
Appendix B) that b1 and b2 are the two real solutions of the following second-
order equation:

Az2 + Bz + C = 0 (3)

where

A = −E[X1(ω)X2(ω)]E[X1(ω)X∗
1 (ω)] + E[X2

1 (ω)]E[X1(ω)X∗
2 (ω)]

B = −E[X1(ω)X∗
1 (ω)]E[X2

2 (ω)] + E[X2
1 (ω)]E[X2(ω)X∗

2 (ω)]
C = −E[X1(ω)X∗

2 (ω)]E[X2
2 (ω)] + E[X1(ω)X2(ω)]E[X2(ω)X∗

2 (ω)] (4)

These equations are of interest only if s1(t) and/or s2(t) are nonstationary, be-
cause, from Property 3, if s1(t) and s2(t) are stationary, E[X2

1 (ω)] = E[X2
2 (ω)]

= E[X1(ω)X2(ω)] = 0 for ω 6= 0 so that the coefficients A, B and C are equal to
zero for ω 6= 0. Moreover, since the Fourier transform of a real signal is real at ω =
0, we can write E[X1(0)X2(0)] = E[X1(0)X∗

2 (0)], E[X2
1 (0)] = E[X1(0)X∗

1 (0)],
and E[X2

2 (0)] = E[X2(0)X∗
2 (0)], so that at ω = 0, A = B = C = 0 too, and

the sources cannot be separated. This result is not surprising because it is well
known that the mutual decorrelation of two sources (which is a second-order
statistical parameter) is not a strong enough hypothesis for separating station-
ary sources3. It is therefore necessary to suppose that at least one of the sources
is nonstationary for achieving source separation only using mutual decorrelation.

Discussion. From (4), the implementation of the above method requires the
computation of the expected values of some spectral functions. Three different
cases may be considered.

a) Several realizations of the mixtures x1(t) and x2(t) are available. In this
case, the expected values may be approximated by averaging the spectral func-
tions on these realizations (for a particular frequency).

b) Only one realization of the mixtures is available but the spectra are ergodic
so that the expected values in (4) can be estimated by frequency averages. A
3 Except for temporally correlated sources by exploiting the time correlation.



necessary condition for the ergodicity is the stationarity of the spectral functions,
i.e., the expected values in (4) must be independent from ω. However, it seems
difficult to find signals satisfying this condition.

c) Only one realization of the mixtures is available but each mixture has
nearly the same spectral shape in different time frames (for example, the mix-
tures are cyclostationary). In this case, the expected values may be estimated by
dividing the mixtures in several time frames, computing the Fourier transforms
and the spectral functions over each frame, and averaging the results on different
frames (for a particular frequency).

3.2 Second source separation method, using Property 4

If we also suppose that s1(t) and s2(t) are temporally uncorrelated, from Prop-
erty 4, S1(ω) and S2(ω) are stationary and correlated processes. Moreover, from
(1), X(ω) is a linear mixture of these two processes. Many algorithms have been
proposed for separating such mixtures [11]-[16]. Although these algorithms were
originally developed for time-domain stationary, time-correlated processes, noth-
ing prohibits us from applying them to frequency-domain stationary, frequency-
correlated processes. Thus, only by mapping the nonstationary temporally un-
correlated mixtures in the frequency domain, they can be separated using one
of the numerous methods developed previously for time-correlated stationary
mixtures.

4 Simulation results

In the first experiment, we consider the example used in [2]. The following sta-
tionary and nonstationary Gaussian signals are used: s1(t) = n1(t), s2(t) =
µ2(t)n2(t), where n1(t) and n2(t) are mutually independent Gaussian i.i.d. sig-
nals with zero mean and unity variance, and µ2(t) = 2 sin(ω0t). The mixing ma-

trix is A =
(

1 0.5
0.5 1

)
. It can be easily shown that E[s1(t1)s1(t2)] = δ(t1 − t2)

and E[s2(t1)s2(t2)] = 4 sin2(ω0t1)δ(t1 − t2). Thus, using the same notations as
in Property 4, q1(t) = 1 and q2(t) = 4 sin2(ω0t), so that Q1(ω) = 2πδ(ω) and
Q2(ω) = 2π[2δ(ω)− δ(ω − 2ω0)− δ(ω + 2ω0)].

In the first step, we want to separate the sources using the method pro-
posed in Subsection 3.1. The coefficients A, B and C in (4) depend on E[S2

1(ω)],
E[S2

2(ω)], E[S1(ω)S∗1 (ω)] and E[S2(ω)S∗2 (ω)]. Using the method employed in
the proof of Property 2, it can be shown that E[S2

1(ω)] = Q1(2ω), E[S2
2(ω)] =

Q2(2ω), E[S1(ω)S∗1 (ω)] = Q1(0) and E[S2(ω)S∗2 (ω)] = Q2(0). Since E[S2
1(ω)]

and E[S2
2(ω)] depend on ω, they cannot be considered as ergodic processes so

that the coefficients A, B and C in (4) cannot be estimated by frequency aver-
ages. However, as s1(t) is stationary and s2(t) is cyclostationary, we can estimate
the expected values in (4) using the method proposed in part (c) of the discussion
of Subsection 3.1.



The experiment was done using 1 second of the sources s1(t) and s2(t) con-
taining 8192 samples. The frequency ω0 = 2π.256 of µ2(t) was chosen so that
each period of µ2(t) contains 32 points. Hence, the signal s2(t) includes 256 pe-
riods of µ2(t). Then, the 32-point Discrete Fourier Transforms of the mixtures
x1(t) and x2(t) were computed on each period and the expected values in (4)
were estimated by averaging the spectral functions (at ω = ω0) on 256 periods.
The experiment was repeated 100 times corresponding to 100 different seed val-
ues of the random variable generator. For each experiment, the output Signal to
Noise Ratio (in dB) was computed by SNR = 0.5

∑2
i=1 10 log10

E[s2
i ]

E[(yi−si)2]
, after

normalizing the estimated sources, yi(t), so that they have the same variances
as the source signals, si(t). The mean and the standard deviation of SNR on the
100 experiments were 27.0 dB and 8.9 dB .

In the second step, we want to separate the sources using the method pro-
posed in Subsection 3.2. This time, we compute the Fourier transforms of x1(t)
and x2(t) on the whole signals. The autocorrelation function of X1(ω) is shown
in Figure 1 which presents three peaks at ω = 0 and ω = ±2ω0, and confirms the
theoretical calculus mentioned above (see the expression of Q2(ω)). The separat-
ing matrix may be estimated using the following equations: E[Y1(ω)Y ∗

2 (ω)] = 0,
and E[Y1(ω + 2ω0)Y ∗

2 (ω)] = 0. We used a modified version of the AMUSE
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Fig. 1. Autocorrelation function of X1(ω).

algorithm [11] for this purpose. This simple and fast algorithm, originally de-
veloped for separating time-correlated stationary sources in the time domain,
here works as follows. (a) Spatially whiten the data X(ω) to obtain Z(ω).
(b) Compute the eigenvalue decomposition of CZ

2ω0
= 1

2 [C2ω0 + CT
2ω0

], where
C2ω0 = E[Z(ω + 2ω0)Z∗(ω)] is the covariance matrix corresponding to lag 2ω0.
(c) The rows of the separating matrix B are given by the eigenvectors of CZ

2ω0
.

Using the same signals as in the first step, the mean and the standard deviation
of SNR were 41.6 dB and 7.2 dB. Other experiments with different profiles of
nonstationary variance for the sources s1(t) and s2(t) led to similar results.

In the second experiment, the above algorithm based on AMUSE was used
for separating mixtures of speech signals. Three tests using three couples of
44100-sample speech signals led to an average SNR of 40.6 dB. This experiment
shows that although Property 4 is derived for temporally uncorrelated signals,
the proposed method works well also for temporally correlated signals.



5 Conclusion

A major objective of this paper was to demonstrate and exploit some theoreti-
cally interesting frequency-domain properties of signals which are nonstationary
in the time domain. These properties provide sufficient second-order constraints
in the frequency domain for separating instantaneous linear mixtures of nonsta-
tionary sources.

Two separating methods were proposed based on Properties 1 and 4. The
first method is theoretically interesting but its implementation is difficult unless
either many realizations of the mixtures are available or the sources are cyclo-
stationary. The second method is very simple and powerful because it allows the
time-domain algorithms developed for stationary time-correlated signals to be
applied to temporally uncorrelated sources which are nonstationary in the time
domain, just by mapping them in the frequency domain. It should be remarked
that this algorithm does not require the variance of the sources to be constant
over subintervals, while this hypothesis is necessary in the majority of the source
separation algorithms based on the nonstationarity of variance which have been
reported in the literature.

A Proofs of the properties of Section 2

Proof of Property 1: Consider two mutually uncorrelated zero-mean real sig-
nals u1(t) and u2(t), with Fourier transforms U1(ω) and U2(ω). We can write:

E[U1(ω)U2(ω)] =
∫ ∞

−∞

∫ ∞

−∞
E[u1(t1)u2(t2)]e−jω(t1+t2)dt1dt2 = 0

E[U1(ω)U∗
2 (ω)] =

∫ ∞

−∞

∫ ∞

−∞
E[u1(t1)u2(t2)]e−jω(t1−t2)dt1dt2 = 0

because E[u1(t)u2(t)] = 0.

Proof of Property 2: Let u(t) be a real stationary signal with Fourier
transform U(ω). We want to show that E[U2(ω)] = 0, for ω 6= 0. Using the
definition of the Fourier transform, we can write

E[U2(ω)] =
∫ ∞

−∞

∫ ∞

−∞
E[u(t1)u(t2)]e−jω(t1+t2)dt1dt2

Since u(t) is stationary, its autocorrelation function depends only on t1 − t2:
E[u(t1)u(t2)] = R(t1 − t2). Denoting the auxiliary variable τ = t1 − t2,

E[U2(ω)] =
∫ ∞

−∞

∫ ∞

−∞
R(τ)e−jω(2t2+τ)dτdt2

=
∫ ∞

−∞
e−j2ωt2

∫ ∞

−∞
R(τ)e−jωτdτdt2



The inner integral represents the power spectral density of u(t), denoted by
Γ (ω). Thus E[U2(ω)] = Γ (ω)

∫∞
−∞ e−j2ωt2dt2 = 2πΓ (ω)δ(2ω), which yields

E[U2(ω)] = 0 for ω 6= 0.

Proof of Property 3: Suppose V1(ω) = a11U1(ω) + a12U2(ω) and V2(ω) =
a21U1(ω) + a22U2(ω). We can write

E[V 2
1 (ω)] = a2

11E[U2
1 (ω)] + a2

12E[U2
2 (ω)] + 2a11a12E[U1(ω)U2(ω)]

E[V 2
2 (ω)] = a2

21E[U2
1 (ω)] + a2

22E[U2
2 (ω)] + 2a21a22E[U1(ω)U2(ω)]

E[V1(ω)V2(ω)] = a11a21E[U2
1 (ω)] + a12a22E[U2

2 (ω)] + (a11a22 + a12a21)
E[U1(ω)U2(ω)]

Since u1(t) and u2(t) are real, zero-mean, uncorrelated and stationary, the first
two terms of the right side of all the above equations vanish for ω 6= 0 following
Property 2, and the third term of all the equations vanishes whatever ω following
Property 1.

Proof of Property 4: (see also [10]) If E[u(t1)u(t2)] = q(t1)δ(t1−t2), where
δ(t1 − t2) is a Dirac distribution, then

E[U(Ω + ω)U∗(Ω)] =
∫ ∞

−∞

∫ ∞

−∞
E[u(t1)u(t2)]e−j(Ω+ω)t1ejΩt2dt1dt2

=
∫ ∞

−∞

∫ ∞

−∞
q(t1)δ(t1 − t2)e−jΩ(t1−t2)e−jωt1dt1dt2 (5)

Since δ(t1 − t2)e−jΩ(t1−t2) = δ(t1 − t2),

E[U(Ω + ω)U∗(Ω)] =
∫ ∞

−∞
q(t1)e−jωt1

∫ ∞

−∞
δ(t1 − t2)dt2dt1

=
∫ ∞

−∞
q(t1)e−jωt1dt1 = Q(ω) (6)

B Derivation of Equation (3)

For the sake of simplicity, we omit the parameter ω in the following notations.
Developing Equations (2), we obtain4:

b1b2E[X1X
∗
1 ] + (b1 + b2)E[X1X

∗
2 ] + E[X2X

∗
2 ] = 0 (7)

b1b2E[X2
1 ] + (b1 + b2)E[X1X2] + E[X2

2 ] = 0 (8)

From (8), b2 = −b1E[X1X2]−E[X2
2 ]

b1E[X2
1 ]+E[X1X2]

. Replacing b2 in (7), we obtain:

−b1E[X1X2]− E[X2
2 ]

b1E[X2
1 ] + E[X1X2]

(b1E[X1X
∗
1 ] + E[X1X

∗
2 ]) + (b1E[X1X

∗
2 ] + E[X2X

∗
2 ]) = 0

4 Note that E[X1X
∗
2 ] = E[X2X

∗
1 ], because X1 and X2 are linear combinations of two

spectra S1 and S2, and E[S1S
∗
2 ] = E[S∗1S2] = 0, following Property 1.



which yields:

(−b1E[X1X2]− E[X2
2 ])(b1E[X1X

∗
1 ] + E[X1X

∗
2 ]) + (b1E[X1X

∗
2 ] + E[X2X

∗
2 ])

(b1E[X2
1 ] + E[X1X2]) = 0

Developing the above equation leads to the second-order equation (3), for which
b1 is a real solution. Note that the two equations (7) and (8) are symmetrical
with respect to b1 and b2. This implies that b2 is also a real solution of (3).
This result is not surprising because the sources may be estimated only up to a
permutation.
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