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Abstract. We proposed recently a new method for separating linear-
quadratic mixtures of independent real sources, based on parametric
identification of a recurrent separating structure using an ad hoc algo-
rithm. In this paper, we develop a maximum likelihood approach pro-
viding an asymptotically efficient estimation of the model parameters. A
major advantage of this method is that the explicit form of the inverse
of the mixing model is not required to be known. Thus, the method can
be easily generalized to more complicated polynomial mixtures.

1 Introduction

Little work has been dedicated to the BSS problem in nonlinear mixtures [1]-[8].
It is well known [1], [2] that the independence hypothesis is not sufficient for
separating general nonlinear mixtures because of the very large indeterminacies
which make the nonlinear BSS problem ill-posed. A natural idea for reducing the
indeterminacies is to constrain the structure of mixing and separating models to
belong to a certain set of transformations. This supplementary constraint can
be viewed as a regularization of the initially ill-posed problem [5], [8].

In a recent paper [7], we studied a linear-quadratic mixture model which
may be considered as the simplest (nonlinear) version of a general polynomial
model. Our main aim is to develop an approach which can be easily extended to
higher-order polynomial models. Hence, in [7] we proposed a recurrent separating
structure whose realization does not require the knowledge of the explicit form of
the inverse of the mixing model. A drawback of the proposed approach was that
somewhat heuristic criteria had been chosen to identify the model parameters.
In the present paper, we develop a rigorous method to identify the parameters
of the separating structure in a maximum likelihood framework. Once more, the
algorithm is developed so that the inverse of the mixing structure is not required
to be known. Thus, it can be extended to more general polynomial mixtures.

2 mixing and separating models

Suppose u1 and u2 are two independent random signals. Given the following
nonlinear instantaneous mixture model

xi = ai1u1 + ai2u2 + biu1u2 i = 1, 2 (1)



we would like to estimate u1 and u2 up to a permutation and a scaling factor
(and possibly an additive constant). For simplicity, let’s denote s1 = a11u1 and
s2 = a22u2. s1 and s2 will be referred to as the sources in the following. (1) can
be rewritten as

x1 = s1 − l1s2 − q1s1s2

x2 = s2 − l2s1 − q2s1s2 (2)

in which l1 = −a12/a22 and l2 = −a21/a11 represent the linear contributions of
the sources in the mixture, and q1 = −b1/(a11a22) and q2 = −b2/(a11a22) repre-
sent the quadratic contributions. The negative signs are chosen for simplifying
the notations of the separating structure.

A more general form of the model (2), containing the additional terms s2
1 and

s2
2, has been studied by a few authors [9], [10], for the special case of circular

complex sources, when at least 5 mixtures are available. In the current work,
however, we suppose that: 1) the sources are arbitrary real signals, and 2) only
two mixtures are available.

The invertibility of the model (2) was briefly discussed in [7]. Here, we present
a more rigorous analysis of this subject. Solving the model (2) for s1 and s2 leads
to the following two pairs of solutions [7], which may be considered as two direct
separating structures:

(∫1, ∫2)1 = ((−b1 +
√

∆1)/2a1, (−b2 +
√

∆2)/2a2)

(∫1, ∫2)2 = ((−b1 −
√

∆1)/2a1, (−b2 −
√

∆2)/2a2) (3)

where ∆i = b2
i − 4aici, a1 = q2 + l2q1, a2 = q1 + l1q2, b1 = q1x2− q2x1 + l1l2− 1,

b2 = q2x1 − q1x2 + l1l2 − 1, c1 = x1 + l1x2 and c2 = x2 + l2x1. It can be easily
verified that ∆1 = ∆2 = J2, where J is the Jacobian of the mixing model (2)
and reads

J = 1− l1l2 − (q2 + l2q1)s1 − (q1 + l1q2)s2 (4)

According to the variation domain of the two sources, three different cases may
be considered:

1) J < 0 for all the values of s1 and s2. In this case (3) becomes:

(∫1, ∫2)1 = (s1, s2) (5)

(∫1, ∫2)2 = (−q1 + l1q2

q2 + l2q1
s2 − l1l2 − 1

q2 + l2q1
,−q2 + l2q1

q1 + l1q2
s1 − l1l2 − 1

q1 + l1q2
) (6)

Thus, the first direct separating structure in (3) leads to the actual sources and
the second direct separating structure leads to another solution, equivalent to
the first one up to a permutation, a scaling factor, and an additive constant.

2) J > 0 for all the values of s1 and s2. In this case, the first structure
leads to the permuting solution, defined by (6), and the second structure to the
actual sources (s1, s2). An example is shown in Fig. 1 for the numerical values
l1 = −0.2, l2 = 0.2, q1 = −0.8, q2 = 0.8 and si ∈ [−0.5, 0.5].
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Fig. 1. Case when J > 0 for all the source values. Distribution of (a) sources, (b)
mixtures, (c) output of the first direct separating structure, (d) output of the second
direct separating structure.

3) J > 0 for some values of the sources and J < 0 for the other values. In
this case, each structure leads to the non-permuted sources (5) for some values
of the observations and to the permuted sources (6) for the other values. An
example is shown in Fig. 2 (with the same coefficients as in the second case, but
for si ∈ [−2, 2]). The permutation effect is clearly visible in the figure. One may
also remark that the straight line J = 0 in the source plane is mapped to a conic
section in the observation plane (shown by asterisks).
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Fig. 2. Case when J > 0 for some values of the sources and J < 0 for the other
values. Distribution of (a) sources, (b) mixtures, (c) output of the first direct separating
structure, (d) output of the second direct separating structure.

Thus, it is clear that the direct structures may be used for separating the
sources if the Jacobian of the mixing model is always negative or always posi-



tive, i.e. for all the source values. Otherwise, although the sources are separated
sample by sample, each retrieved signal contains samples of the two sources. This
problem arises because the mixing model (2) is not bijective. This theoretically
insoluble problem should not discourage us. In fact, our final objective is to ex-
tend the idea developed in the current study to more general polynomial models
which will be used to approximate the nonlinear mixtures encountered in the real
world. If these real-world nonlinear models are bijective, we can logically suppose
that the coefficients of their polynomial approximations take values which make
them bijective on the variation domains of the sources. Thus, in the following,
we suppose that the sources and the mixture coefficients have numerical values
ensuring that the Jacobian J of the mixing model has a constant sign.

The natural idea to separate the sources is to form a direct separating struc-
ture using any of the equations in (3), and to identify the parameters l1, l2,
q1 and q2 by optimizing an independence measuring criterion. Although this
approach may be used for our special mixing model (2), as soon as a more com-
plicated polynomial model is considered, the solutions (∫1, ∫2) can no longer be
determined so that the generalization of the method to arbitrary polynomial
models seems impossible. To avoid this limitation, we propose a recurrent struc-
ture. Such structures have been considered since the early work of Hérault and
Jutten [11] and then in more complex configurations [12], [13]. We here extend
them to linear-quadratic mixtures by introducing the structure shown in Fig. 3.
Note that, for q1 = q2 = 0, this structure is reduced to the basic Hérault-Jutten
network. It may be checked easily that, for fixed observations defined by (2),
y1 = s1 and y2 = s2 corresponds to a steady state for the structure in Figure 3.
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Fig. 3. Recurrent separating structure.

The use of this recurrent structure is more promising because it can be easily
generalized to arbitrary polynomial models. However, the main problem with
this structure is its stability. In fact, even if the mixing model coefficients are
exactly known, the computation of the structure outputs requires the realization
of the following recurrent iterative model

y1(n + 1) = x1 + l1y2(n) + q1y1(n)y2(n)
y2(n + 1) = x2 + l2y1(n) + q2y1(n)y2(n) (7)



where a loop on n is performed for each couple of observations (x1, x2) until
convergence is achieved.

In [7], we have studied the local stability of the model (7) and shown that
this model is locally stable at the separating point (y1, y2) = (s1, s2), if and only
if the absolute values of the two eigenvalues of the Jacobian matrix of (7) are
smaller than one. In the following, we suppose that this condition is satisfied.

3 Maximum likelihood estimation of the model
parameters

Let fS1,S2(s1, s2) be the joint pdf of the sources, and assume that the mixing
model is bijective so that the Jacobian of the mixing model has a constant sign
on the variation domain of the sources. The joint pdf of the observations can be
written as

fX1,X2(x1, x2) =
fS1,S2(s1, s2)
|J(s1, s2)| (8)

Taking the logarithm of (8), and considering the independence of the sources,
we can write:

log fX1,X2(x1, x2) = log fS1(s1) + log fS2(s2)− log |J(s1, s2)| (9)

Given N samples of the mixtures X1 and X2, we want to find the maximum
likelihood estimator for the mixture parameters w = [l1, l2, q1, q2]. This estimator
is obtained by maximizing the joint pdf of all the observations (supposing that
the parameters in w are constant), which is equal to

E = fX1,X2(x1(1), x2(1), · · · , x1(N), x2(N)) (10)

If s1(t) and s2(t) are two i.i.d. sequences, x1(t) and x2(t) are also i.i.d. so that
E =

∏N
i=1 fX1,X2(x1(i), x2(i)) and log E =

∑N
i=1 log fX1,X2(x1(i), x2(i)). The

cost function to be maximized can be defined as L = 1
N log E, which will be

denoted using the temporal averaging operator Et[.] as

L = Et[log fX1,X2(x1(t), x2(t))] (11)

Using (9):

L = Et[log fS1(s1(t))] + Et[log fS2(s2(t))]− Et[log |J(s1(t), s2(t))|] (12)

Maximizing this cost function requires that its gradient with respect to the
parameter vector w, i.e. ∂L

∂w , vanishes. Defining the score functions of the two
sources as

ψi(u) = −∂ log fSi(u)
∂u

i = 1, 2 (13)

and considering that ∂ log |J|
∂w = 1

J
∂J
∂w , we can write

∂L

∂w
= −Et[ψ1(s1)

∂s1

∂w
]− Et[ψ2(s2)

∂s2

∂w
]− Et[

1
J

∂J

∂w
] (14)



Rewriting (2) in the vector form x = f(s,w) and considering w as the inde-
pendent variable and s as the dependent variable, we can write, using implicit
differentiation

0 =
∂f
∂s

∂s
∂w

+
∂f
∂w

(15)

which yields
∂s
∂w

= −(
∂f
∂s

)−1 ∂f
∂w

(16)

Note that ∂f
∂s is the Jacobian matrix of the mixing model. Using (14) and (16),

the gradient of the cost function L with respect to the parameter vector w is
equal to (see the appendix for the computation details)

∂L

∂w
= −Et[(ψ1(s1)(1− q2s1)s2 + ψ2(s2)(l2 + q2s2)s2 − (l2 + q2s2))/J,

(ψ1(s1)(l1 + q1s1)s1 + ψ2(s2)(1− q1s2)s1 − (l1 + q1s1))/J,

(ψ1(s1)(1− q2s1)s1s2 + ψ2(s2)(l2 + q2s2)s1s2 − (l2s1 + s2))/J,

(ψ1(s1)(l1 + q1s1)s1s2 + ψ2(s2)(1− q1s2)s1s2 − (s1 + l1s2))/J] (17)

In practice, the actual sources and their density functions are unknown and
will be replaced by the reconstructed sources, i.e. by the outputs of the sepa-
rating structure of Fig 3, yi, in an iterative algorithm. The score functions of
the reconstructed sources can be estimated by any of the existing parametric or
non-parametric methods. In our work, we used the kernel estimator proposed in
[14] based on third-order cardinal splines. Using (17), the cost function (12) can
be maximized by a gradient ascent algorithm which updates the parameters by
the rule w(n + 1) = w(n) + µ ∂L

∂w . The learning rate parameter µ must be cho-
sen carefully to avoid the divergence of the algorithm. Note that the algorithm
does not require the knowledge of the explicit inverse of the mixing model (di-
rect separating structures (3)). Hence, it can be easily extended to more general
polynomial mixing models.

4 Simulation results

The algorithm was tested using different combinations of subgaussian and su-
pergaussian sources, where the subgaussien sources were uniformly distributed
on [−0.5, 0.5] and the supergaussian sources were laplacian with pdf fS(s) =
5exp(−10|s|). The distribution of the mixtures for two uniform sources is like
that presented in Fig. 1.b. The distribution of the estimated sources y1 and y2

applying our algorithm is shown in Fig. 4. The rectangular shape of this distribu-
tion indicates that the independent components are retrieved. Table 1 represents
the output Signal to Noise Ratio, defined as SNR = 0.5

∑2
i=1 10 log10

E[s2
i ]

E[(yi−si)2]

achieved by our algorithm for 3 different combinations of the sources. In each
case, the experiment was repeated 100 times, corresponding to different seed
values of the random variable generator, using 1000 samples of the sources. The
results confirm the good performance of the algorithm.
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Fig. 4. Distribution of the estimated sources.

Mean(SNR) STD(SNR)

s1 and s2 uniform 28.0 4.2

s1 uniform, s2 laplacian 27.8 3.8

s1 and s2 laplacian 26,8 3,1

Table 1. Mean and Standard Deviation of output SNR (in dB) for different combina-
tions of the sources.

5 Conclusion

Nonlinear blind source separation is a difficult, little studied problem. In this
work, we investigated one of the simplest structured nonlinear models, i.e. the
linear-quadratic model. As we aim at generalizing the idea developed in this
study to more complicated polynomial models, we proposed a separating struc-
ture and an estimation method which do not make use of our knowledge on the
explicit form of the inverse of the mixing model. The maximum likelihood ap-
proach, developed in this paper, provides an asymptotically efficient estimation
of the model parameters and works very well in practice. Some of our objectives
for completing this work are: a more precise stability analysis of the recurrent
separating network, development of an equivariant estimating method using nat-
ural gradient, study of the separability problem, and generalizing the method to
more complicated polynomial models and more sources.

Appendix: details of gradient computation

Considering (2), we can write
∂f
∂s =

(
1− q1s2 −l1 − q1s1

−l2 − q2s2 1− q2s1

)
and ∂f

∂w =
(−s2 0 −s1s2 0

0 −s1 0 −s1s2

)
, which im-

plies, from (16)

∂s
∂w

=
−1
J

(
1− q2s1 l1 + q1s1

l2 + q2s2 1− q1s2

)
.

(−s2 0 −s1s2 0
0 −s1 0 −s1s2

)



which yields

∂s1

∂w
=

1
J
[(1− q2s1)s2 , (l1 + q1s1)s1 , (1− q2s1)s1s2 , (l1 + q1s1)s1s2]

∂s2

∂w
=

1
J
[(l2 + q2s2)s2 , (1− q1s2)s1 , (l2 + q2s2)s1s2 , (1− q1s2)s1s2] (19)

Considering (4)

∂J

∂w
= −[l2 + q2s2, l1 + q1s1, l2s1 + s2, s1 + l1s2] (20)

(17) follows directly from (14), (19) and (20).
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