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Abstract

In this paper, we consider the nonlinear Blind Source Separation BSS and independent component analysis (ICA) problems,
and especially uniqueness issues, presenting some new results. A fundamental di6culty in the nonlinear BSS problem and
even more so in the nonlinear ICA problem is that they are nonunique without a suitable regularization. In this paper, we
mainly discuss three di8erent ways for regularizing the solutions, that have been recently explored.
? 2003 Elsevier B.V. All rights reserved.
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1. The nonlinear ICA and BSS problems

1.1. Model and problem

Consider N samples of the m-dimension observed
random vector x, modeled by

x =F(s) + n; (1)

where F is an unknown mixing mapping assumed
invertible, s is an unknown n-dimensional source
vector containing the source signals s1; s2; : : : ; sn,
which are assumed to be statistically independent,
and n is an additive noise, independent of the
sources.
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Such a model is usual in multidimensional signal
processing, where each sensor receives an unknown
superimposition of unknown source signals at time in-
stants t = 1; : : : ; N . Then, the goal is to recover the n
unknown actual source signals sj(t) which have given
rise to the observed mixtures. This is referred to as the
blind source separation (BSS) problem, blind since
no or very little prior information about the sources
is required. Since the only assumption is the indepen-
dence of sources, the basic idea in blind source sepa-
ration consists in estimating a mapping G, only from
the observed data x, such that y=G(x) are statistically
independent. The method, based on statistical inde-
pendence, constitutes a generic approach called inde-
pendent component analysis (ICA). The key question
addressed in this paper is the following: under which
conditions is the vector y provided by ICA equal to
the unknown sources s?
In the following, we assume that there are as

many mixtures as sources (m = n) and that noise is
zero.
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1.2. Nonlinear mixtures

The general nonlinear ICA problem then consists
in estimating a mapping G : (R)n → (R)n that yields
components

y = G(x) (2)

which are statistically independent, only using the ob-
servations x.
A fundamental characteristic of the nonlinear ICA

problem is that, in the general case, solutions always
exist and they are highly nonunique. In other words,
ICA and BSS are not equivalent: one can easily de-
sign a nonlinear mapping which mixes the sources and
provides statistically independent variables yi

yi = hi(s) �= hi(s�(i)); (3)

where �(i) is a permutation over {1; 2; : : : ; n} (see Sec-
tion 2).
Moreover, the separation is achieved, if each es-

timated output yi only depends on a unique source
yi = hi(s�(i)). Then, strong distortions can still occur,
due to the mapping hi(:). One reason for this is that
if u and v are two independent random variables, any
of their functions f(u) and g(v) (where f and g are
invertible functions) are independent too.
In the nonlinear BSS problem, one would like to

Fnd the original source signals s that have generated
the observed data x with weaker indeterminacies, e.g.
like the usual scale and permutation indeterminacies
in linear mixtures. This would be a clearly more mean-
ingful and unique problem than the nonlinear ICA
problem deFned above. But is it possible? In other
words, can prior information on the sources and/or the
mixing mapping be su6cient for this?
In other words, if some arbitrary independent com-

ponents are found for the data generated by (1), they
may be quite di8erent from the true source signals.
Generally, using ICA for solving the nonlinear BSS
problem requires additional prior informations or suit-
able regularizing constraints.

1.3. Regularization examples

1.3.1. Linear mixtures
In linear mixtures, the unknown invertible mapping

F is modeled by a square regular matrix A

x = As; (4)

and the separating structure G is parameterized by a
matrix B. The global mapping is then a matrix BA:
it constitutes a very e6cient regularization constraint
which insures equivalence between ICA and BSS
[15]. The basic linear case is now understood quite
well [10,13,22]. Since 1985 (see [26] for a historical
review and early references), several well-performing
BSS and ICA algorithms [4,8,11,12,14,23,25] have
been developed and applied to an increasing num-
ber of applications in biomedical [30,47], instru-
mentation [17,33], acoustics [32,44], sparse coding
and feature extraction [21], analysis of color [46]
or hyperspectral images [34], etc. Basically, these
algorithms are based on the optimization of an in-
dependence criterion, and require statistics of or-
der higher than 2. Many more references on linear
ICA and BSS can be found in the recent books
[13,22].

1.3.2. Using extra information
If the source signals are random variables having

a temporal structure, linear blind source separation
can be achieved by using either temporal correlations
[9,43] or nonstationarity [31,35]. With these weak
(since many signals satisfy them) assumptions, the in-
dependence criterion involves more equations, and it
acts like a regularization. It also allows to simplify
it: it is well known that, under the above assump-
tions, second order statistics are su6cient for insuring
separation.

1.4. Outline

This paper is organized as follows. In Sec-
tion 2, we explain with more details and ex-
amples why ICA and BSS are di8erent in non-
linear mixtures. Then, we consider three ways
for regularizing the problem of source separa-
tion in nonlinear mixtures. In Section 3, we show
that smoothing mappings is not a su6cient con-
straint. In Section 4, we study constrained struc-
tures of nonlinear mixtures, which are separable,
i.e. for which BSS and ICA are equivalent. In
Section 5, we show that priors on sources can
also regularize the solutions. Concluding remarks,
in Section 6, summarize the key points of the
paper.
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2. Existence and uniqueness of nonlinear ICA and
BSS

Several authors [18,24,26,39,40] have recently ad-
dressed the important issues on the existence and
uniqueness of solutions for the nonlinear ICA and
BSS problems. Their main results, which are direct
consequences of Darmois’s results on factorial anal-
ysis [16], are reported in this section.

2.1. Indeterminacies

Recall Frst the deFnition of a random vector with
independent components.

De nition 2.1.1. A random vector x has statistically
independent components if its joint probability den-
sity function (pdf) px(u) satisFes px(u)=

∏
i pxi(ui),

where pxi(ui) are the marginal pdfs of the random
variables xi.

Clearly, the product of a permutation matrix P by
any diagonal mapping both preserves independence
and insures separability.

De nition 2.1.2. A one-to-one mapping H is called
trivial, if it transforms any independent random vector
s into an independent random vector.

The set of trivial transformations will be denoted by
T. Trivial mappings preserve the independence prop-
erty of any random vector, i.e. for any distributions.
One can easily show the following result [39].

Theorem 2.1.3. A one-to-one mapping H is trivial
if and only if it satis@es

Hi(u1; u2; : : : ; un) = hi(u�(i)); i = 1; 2; : : : ; n; (5)

where the hi(:) are arbitrary scalar functions and �
is any permutation over {1; 2; : : : ; n}.

From this result, we can deduce immediately the
corollary.

Corollary 2.1.4. A one-to-one mapping H is trivial
if and only if its Jacobian matrix is diagonal up to a
permutation.

This result establishes a link between the indepen-
dence assumption and the objective of source separa-
tion. It becomes soon clear that the objective of source
separation is to make the global mapping H=G ◦F
trivial using the independence assumption.
However, from (5), it is clear that sources

can only be separated up to a permutation and
a nonlinear function. For any invertible map-
ping F(x) = [f1(x); : : : ; fn(x)]T such that each
of its components is a scalar nonlinear mapping
fi(x) = fi(xi); i = 1; : : : ; n, it is evident that if
px(u) =

∏
i pxi(ui), then pF(x)(v) =

∏
i pfi(xi)(vi).

Unfortunately, as we shall see in the next subsec-
tion, independence can be preserved with non trivial
mappings.

2.2. Results from factor analysis

Considering the factorial representation of the ran-
dom vector x in a random vector � with independent
components �i:

x =F1(�); (6)

the uniqueness study of the representation consists in
addressing the following question. Is there another
factorial representation of x in random vector ! with
independent components !i such that

x =F1(�) =F2(!); (7)

where � and ! are di8erent random vectors with
independent components? If yes, uniqueness is
wrong.
In the general case, when the mapping H has no

particular form, a well-known statistical result shows
that preserving independence is not a strong enough
constraint for ensuring separability in the sense of
Eq. (5). This result, based on a simple constructive
method (detailed below) similar to a Gram–Schmidt
orthogonalization procedure, has been established al-
ready early in the 1950s by Darmois [16]. It has also
been used in [24] for designing parameterized fami-
lies of nonlinear ICA solutions.
Let x be any random vector, and y = G(x) the

independent random vector provided by the invert-
ible mapping G. Since y is independent, one can
write:

pY(y) = pX(x)=|JG(x)|: (8)
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Without loss of generality, one can assume that yi,
i=1; : : : ; n, is a uniform random variable. Then, Eq. (8)
reduces to the condition

pX(x) = |JG(x)|: (9)

Looking for solutions of the form:

g1(x) = g1(x1);

g2(x) = g2(x1; x2);

...

gn(x) = gn(x1; x2; : : : ; xn); (10)

Eq. (8) becomes

pX(x) =
n∏
i=1

@gi(x)
@xi

(11)

or, using the Bayes theorem

pX1 (x1)pX2=X1 (x1; x2) : : : pXn=X1 ;:::;Xn−1 (x1; x2; : : : ; xn)

=
n∏
i=1

@gi(x)
@xi

: (12)

By simple integration of (12), one obtains the fol-
lowing solution

g1(x1) = FX1 (x1);

g2(x1; x2) = FX2=X1 (x1; x2);

...

gn(x1; x2; : : : ; xn) = FXn=X1 ;:::;Xn−1 (x1; x2; : : : ; xn); (13)

where FX1 denotes the marginal cumulative density
function of the random variable X1, and FXk+1=X1 ;:::;Xk
denotes the conditional cumulative density function of
the random variable Xk+1, given X1; : : : ; Xk . Mapping
(13) is then a nontrivial mapping, (since its Jacobian
is not diagonal) which maps the random vector x to
an independent (uniform) random vector y.
Darmois’s result is negative in the sense that it

shows that, for any random vector x, there exists
at least one nontrivial transformation H 1 which
“mixes” the variables while still preserving their sta-
tistical independence. Hence blind source separation

1 H depends on x, and generally it is not a mapping preserving
independence for another random vector u �= x.

is simply impossible for general nonlinear transfor-
mations by resorting to statistical independence only
without constraints on the transformation model.
We can then conclude like Darmois in [16]: “These

properties [ : : : ] clarify the general problem of fac-
tor analysis by showing the great indeterminacies it
presents as soon as one leaves the already very wide
@eld of linear diagrams.”

2.3. A simple example

We give a simple example of mixing mappings
preserving independence, derived from [40]. Suppose
s1 ∈R+ is a Rayleigh distributed variable with pdf
ps1 (s1) = s1 exp(−s21=2), and s2 is independent of s1,
with a uniform pdf s2 ∈ [0; 2�). Consider the non-
linear mapping

[y1; y2] =H(s1; s2)

= [s1 cos(s2); s1 sin(s2)] (14)

which has a nondiagonal Jacobian matrix

J =

(
cos(s2) −s1 sin(s2)
sin(s2) s1 cos(s2)

)
: (15)

The joint pdf of y1 and y2 is

py1 ;y2 (y1; y2) =
ps1 ;s2 (s1; s2)

|J|

=
1
2�

exp
(−y21 − y22

2

)

=
(

1√
2�

exp
−y21
2

)(
1√
2�

exp
−y22
2

)

This shows that the random variables y1 and y2 are in-
dependent, although they are still nonlinear mixtures
of the sources.H preserves the independence but only
for the random variables s1 and s2 (Rayleigh and uni-
form).
Other examples can be found in the literature (see

for example [29]), or can be easily constructed.

2.4. Conclusion

In nonlinear mixtures, ICA does not insure sepa-
ration, and emphasizes very large indeterminacies so
that the nonlinear BSS problem is ill-posed. A natural
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idea, for reducing the indeterminacies, is to add regu-
larization. This can be done according to a few ways,
e.g. constraining the transformationH in a certain set
of transformations Q or using priors on sources.

3. Smooth mappings

Recently, multi-layer perceptron (MLP) networks
(see [19]) have been used in [2,48] for estimating the
generic nonlinear mappings H. Especially, Almeida
conjectured that smooth mappings providing by MLP
networks leads to a regularization su6cient for en-
suring that nonlinear ICA leads to nonlinear BSS,
too. However, the following example [5] shows that
smoothness alone is not su6cient for separation.
Without a loss of generality, consider two indepen-

dent random variables s = (s1; s2)T which are both
uniformly distributed in the interval [− 1; 1], and the
nonlinear smooth mapping represented by the matrix

R =

(
cos(�(r)) − sin(�(r))

sin(�(r)) cos(�(r))

)
; (16)

where r ,
√
s21 + s

2
2. This is a rotation for which the

rotation angle �(r) depends on the radius r as follows:

�(r) =

{
�0(1− r)q; 06 r6 1;

0; r ¿ 1;
(17)

where q¿ 2. Fig. 1 shows the transformation of the
region {−16 s16 1;−16 s26 1} under this map-
ping for q= 2 and �0 = �=2.
It can be seen [5] that the Jacobian matrix of this

smooth mapping is

JR =

(
cos(�(r)) − sin(�(r))

sin(�(r)) cos(�(r))

)

×




1− s2 @�@s1 −s2 @�@s2
s1
@�
@s1

1 + s1
@�
@s2


 : (18)

Computing the determinant

det(JR) = 1 + s1
@�
@s2

− s2 @�@s1 (19)
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Fig. 1. The smooth mapping R is a mixing mapping which pre-
serves independence of any uniform random vector. The curves
are the transforms of lines s1 = cst and s2 = cst by the mapping
R points out these properties.

and since

s1
@�
@s2

= s2
@�
@s1

=
s1s2
r
�′(r) (20)

one Fnally gets det(JR = 1), and hence:

py1y2 (y1; y2) = ps1s2 (s1; s2): (21)

From (18) the Jacobian matrix of this smooth map-
ping is not diagonal (the mapping is then mixing).
However, from (21) the mapping preserves the in-
dependence of the two uniform random variables on
[ − 1; 1]. This counterexample proves that restricting
the mapping to be smooth is not su6cient.
In fact, it mainly means that smoothness is a

too vague property, and one has to explore further
for deFning su6cient conditions, and discovering
a (third) way for separating nonlinear mixtures.
HyvQarinen and Pajunen gave a partial answer to this
question in [24], proving that a unique solution (up
to a rotation) can be obtained in the two-dimensional
special case if the mixing mapping F is constrained
to be a conformal mapping. In fact, such a mapping
is characterized by much stronger constraints that
simple smoothness, since it is analytic and nonzero: a
well-known property is that angles remain unaltered
by conformal mappings.
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4. Structural constraints

A natural way of regularizing the solution consists
in looking for separating mappings belonging to a spe-
ciFc subspace Q. To characterize the indeterminacies
for this speciFc model Q, one must solve the tricky
independence preservation equation which can be
written

∀E ∈Mn;∫
E
dFs1 dFs2 · · · dFsn =

∫
H(E)

dFy1 dFy2 · · · dFyn ;
(22)

where Mn is the set of all the measurable compacts
in Rn (in other words, Mn is a �-algebra on Rn), and
Fsi denotes the distribution function of the random
variable si .
Let P denote the set 2

P= {(Fs1 ; Fs2 ; : : : ; Fsn); =∃H∈Q \ (T ∩ Q) :

H(s) has independent components} (23)

of all source distributions for which there exists a non-
trivial (i.e. not belonging to the set of trivial mappings
T) mappingH belonging to the modelQ and preserv-
ing the independence of the components of the source
vector s.
Ideally, P should be empty and T∩Q should con-

tain the identity as a unique element. However, in gen-
eral this is not fulFlled. We then say that source sepa-
ration is possible when the distributions of the sources
belong to the set RP, which is the complement of P.
The sources are then restored up to a trivial trans-
formation belonging to the set T ∩ Q. Solving (22),
i.e. determining P, is generally a very di6cult prob-
lem, except for simple models Q, like linear invertible
mappings.

4.1. Example: linear models

In the case of regular linear models, the transfor-
mation F is linear and can be represented by (4),
where A is a square invertible matrix. In this case it
su6ces to constrain the separating model G to lie in
the subspace of invertible square matrices, and one
has to estimate a matrix B such that y=Bx=Hs has

2 In Eq. (23), \ denotes the di8erence between two sets.

Fig. 2. The mixing-separating system for PNL mixtures.

independent components. The global transform H is
then restricted to the subspace Q of invertible square
matrices.
The set of linear trivial transformations T∩Q is the

set of matrices equal to the product of a permutation
and a diagonal matrices. From the Darmois–Skitovich
theorem [16], it is clear that the set P contains the dis-
tributions having at least two Gaussian components.
Thus we end up with Comon’s well-known theorem
[15]: blind source separation is possible whenever we
have at most one Gaussian source, and the sources can
then be restored up to a permutation and a diagonal
matrix.

4.2. Separability of PNL mixtures

In the post-nonlinear (PNL) model, the nonlin-
ear observations have the following speciFc form
(Fig. 2):

xi(t) = fi


 n∑
j=1

aijsj(t)


 ; i = 1; : : : ; n: (24)

One can see that the PNL model consists of a linear
mixture followed by a componentwise nonlinearity fi
acting on each output independently from the others.
The nonlinear functions (distortions) fi are assumed
to be invertible.
Besides its theoretical interest, this model belong-

ing to the L-ZMNL 3 family suits perfectly for a lot
of real-world applications. For instance, such models
appear in sensors array processing [33], satellite and
microwave communications [37], and in many bio-
logical systems [28].

3 L stands for Linear and ZMNL stands for Zero-Memory Non-
Linearity: it is a separable model with a linear stage followed by
a nonlinear (static) distortion.
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As discussed before, the most important thing when
dealing with nonlinear mixtures is the separability is-
sue. First, the separation structure G must be con-
strained so that:

1. It can invert the mixing system in the sense of
Eq. (5).

2. It should be as simple as possible for reducing the
residual distortions hi, which result from using the
independence assumption only.

Under these two constraints, we have no other choice
that selecting for the separating system G the mirror
structure of the mixing system F (see Fig. 2). The
global transform H is then restricted to the subspace
Q of transforms, which consists of a cascade of an
invertible linear mixture (regular matrix A) followed
by componentwise invertible distortions and again an
invertible linear mixture (regular matrix B). In [40], it
has been shown that these mixtures are separable for
distributions having at most one Gaussian source (the
set P contains the distributions having at least two
Gaussian components), with the same indeterminacies
as linear mixtures (the set of linear trivial transforma-
tions T∩Q is the set of matrices equal to the product
of a permutation and a diagonal matrices) if A has at
least 2 nonzero entries on each row or column.
Separability of PNL mixtures can be generalized

to convolutive PNL (CPNL) mixtures, in which the
instantaneous mixture (matrix A) is replaced by linear
Flters (matrix of Flters A(z)), where each source is
independent and identically distributed (iid) [6]. In
fact, denoting A(z) =

∑
k Akz

−k , and deFning:

s, (: : : ; sT(k − 1); sT(k); sT(k + 1); : : :)T; (25)

x, (: : : ; xT(k − 1); xT(k); xT(k + 1); : : :)T (26)

we have

x = f( RAs); (27)

where f acts componentwise, and

RA =




· · · · · · · · · · · · · · ·
· · · Ak+1 Ak Ak−1 · · ·
· · · Ak+2 Ak+1 Ak · · ·
· · · · · · · · · · · · · · ·


 : (28)

The iid nature of the source samples, i.e. the tem-
poral independence of si(k), i = 1; : : : ; n, insures the
spatial independence of s. Then, the CPNL mixtures
can be viewed as a particular PNL mixtures. For FIR
mixing matrix A(z), (27) corresponds to a Fnite di-
mension PNL mixture and the separability holds. For
more general Flter (IIR) matrix, (27) is an inFnite
dimension PNL mixture, and the separability can be
conjectured.
Moreover, using a suitable parameterization,

Wiener systems 4 can be viewed as particular PNL
mixtures. Consequently, separability of PNL mixtures
ensures blind invertibility of Wiener systems [41].
Theis et al. have studied in [42] separability of a cas-
cade of PNL stages, constituting a structure similar to
multi-layer perceptron networks.

4.3. Other separable nonlinear mixtures

Due to the interesting Darmois’s result for linear
mixtures, it is clear that nonlinear mixtures which can
be reduced to linear mixtures with a simple mapping
should be separable.

4.3.1. A simple example
As an example, consider multiplicative mixtures:

xj(t) =
n∏
i=1

s$ii (t); j = 1; : : : ; n; (29)

where the si(t) are positive independent sources. Tak-
ing the logarithm yields to

ln xj(t) =
n∑
i=1

$i ln si(t); j = 1; : : : ; n (30)

which is a linear model for the new independent
random variables ln si(t). For instance, this type of
mixtures can be used for modeling the dependency
between the temperature and magnetic Feld in Hall
silicon sensor [3], or gray-level images as a product
of incident light and reSected light [18]. Considering
in more details the former example, the Hall voltage
[36] is equal to

VH = kBT$ (31)

4 Restricted to the cascade of a linear time invariant Flter and
a memoryless invertible nonlinear mapping.
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where $ depends on the semiconductor type, since
the temperature e8ect is related to the mobility of the
majority carriers. Then, using two types (N and P) of
sensors, we have

VHN(t) = kNB(t)T
$N(t);

VHP (t) = kPB(t)T
$P (t): (32)

For simplifying the equations, we now drop the vari-
able t out. Because the temperature T is positive but
the sign of the magnetic Feld B can vary, taking the
logarithm leads then to the equations

ln |VHN |= ln kN + ln |B|+ $N ln T;

ln |VHP |= ln kP + ln |B|+ $P ln T: (33)

These equations describe a linear mixture of the two
sources ln |B| and ln T . They can be easily solved even
with a simple decorrelation approach since B appears
with the same power in the two equations. It is even
simpler to directly compute the ratio of the above two
equations:

R=
VHN

VHP

=
kN
kP
T$N−$P (34)

which depends only on the temperature T . For sep-
arating the magnetic Feld, it is su6cient to estimate
the parameter k so that VHNR

k becomes uncorrelated
with R. From this, one can deduce B(t) up to a mul-
tiplicative constant. Final estimation of the values of
B and T requires sign reconstruction and calibration
steps.
Note that the idea of this subsection is usual in ho-

momorphic Fltering [38] of images, for separating il-
lumination and reSectance components of the images,
with a simple low-pass Fltering after a log-transform
of the images.

4.4. Generalization to a class of mappings

Extension of the Darmois–Skitovic theorem to non-
linear functions has been addressed by Kagan et al. in
[27]. Their results have recently been revisited within
the framework of BSS of nonlinear mixtures by Eriks-
son and Koivunen [18]. The main idea is to consider
particular mappings F satisfying an addition theo-
rem in the sense of the theory of functional equations.
As a simple example of such a mapping, consider the

nonlinear mixture of the two independent random vari-
ables s1 and s2:

x1 = (s1 + s2)(1 + s1s2)−1;

x2 = (s1 − s2)(1− s1s2)−1:
(35)

Now, using the variable transforms u1=tan−1(s1) and
u2 = tan−1(s2), the above nonlinear model becomes

x1 = tan(u1 + u2);

x2 = tan(u1 − u2):
(36)

Applying again the transformation tan−1 to x1 and x2
yields

v1 = tan−1(x1) = u1 + u2;

v2 = tan−1(x2) = u1 − u2
(37)

which is now a linear mixture of the two independent
variables u1 and u2. This nice result is due to the fact
that tan(a+ b) is a mapping of tan a and tan b.
More generally, this property will hold provided

that there exists a mapping F and an invertible func-
tion f satisfying an addition theorem:

f(s1 + s2) =F[f(s1); f(s2)]: (38)

Let u∈S be in the range [a; b]. The basic proper-
ties required for the mapping F (in the case of two
variables, but extension is straightforward) are the fol-
lowing:

• F is continuous at least separately for the two vari-
ables;

• F is commutative, i.e. ∀(u; v)∈S2, F(u; v) =
F(v; u);

• F is associative, i.e. ∀(u; v; w)∈S3,F(F(u; v); w)
=F(u;F(v; w));

• There exists an identity element e∈S such that
∀u∈S, F(u; e) =F(e; u) = u;

• ∀u∈S, there exists an inverse element u−1 ∈S
such that F(u; u−1) =F(u−1; u) = e.

In other words, denoting u ◦ v = F(u; v), these
conditions imply that the set (S; ◦) is an Abelian
group. Under this condition, Aczel [1] proved that
there exists a monotonic and continuous function
f : R→ [a; b] such that

f(x + y) =F(f(x); f(y)) = f(x) ◦ f(y): (39)
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Clearly, applying f−1 (which exists since f is mono-
tonic) to the above equation leads to

x + y=f−1(F(f(x); f(y)))

=f−1(f(x) ◦ f(y)): (40)

Using associativity and the above property (39),
setting y=x, one can directly deFne a product? with
integer which can be extended to real variables:

f(cx) = c ? f(x): (41)

Taking the inverse f−1 and denoting f(x) = u, this
yields

cf−1(u) = f−1(c ? u): (42)

Then for any constants c1; : : : ; cn and random vari-
ables u1; : : : ; un, the following relation holds:

c1f−1(u1) + · · ·+ cnf−1(un)

=f−1(c1 ? u1 ◦ · · · ◦ cn ? un): (43)

Finally, Kagan et al. [27] stated the following the-
orem:

Theorem 4.4.1. Let u1; : : : ; un be independent ran-
dom variables such that

x1 = a1 ? u1 ◦ · · · ◦ an ? un;
x2 = b1 ? u1 ◦ · · · ◦ bn ? un

(44)

are independent, and the operators ? and ◦ sat-
isfy the above conditions. Denoting by f the func-
tion de@ned by the operator ◦, f−1(ui) is Gaussian if
aibi �= 0.

This theorem can be easily extended to source
separation, and with such mixtures the separation
algorithm consists of 3 practical steps [18]:

1. Apply f−1 to the nonlinear observations for pro-
viding linear mixtures in si = f−1(ui).

2. Solve the linear mixtures in si by any BSS method.
3. Restore the actual independent sources by applying
ui = f(si).

Unfortunately, this algorithm is not blind since the
function f must be known. If f is not known, a
suitable separation structure is a cascade of identi-
cal nonlinear componentwise blocks (able to approx-
imate f−1) followed by a linear matrix B able to

separate the sources in linear mixtures. This stage is
further followed by identical nonlinear component-
wise blocks (which approximate f) for restoring the
actual sources. We remark that the two Frst blocks of
this structure are identical to the separation structure
of PNL mixtures (in fact slightly simpler, since all the
nonlinear blocks are similar). We can then estimate
the independent distorted sources si with a PNL mix-
ture separation algorithm. After computing f from the
nonlinear block estimates (which approximate f−1),
one can then restore the actual sources.
The PNL mixtures are close to these mappings.

They are in fact more general since the nonlinear
functions fi can be di8erent and unknown. Conse-
quently, algorithms developed for separating sources
in PNL mixtures (e.g. [40]) can be used for blindly
separating these nonlinear mappings, avoiding the
above step 1. Other examples of mappings satisfying
the addition theorem are given in [18,27]. However,
realistic mixtures belonging to this class seem un-
usual, except for the PNL mixtures (24) and the
multiplicative mixtures (29).

5. Prior information on the sources

In this section we show that prior information on
the sources can simplify or relax the indeterminacies.
The Frst example takes into account that sources are
bounded. The second example exploits the temporal
correlation of the sources.

5.1. Bounded sources in PNL mixtures

Let us consider sources whose pdf has a bounded
support, with nonzero values on the edges of the sup-
port. For example the uniform distribution or the dis-
tribution of a randomly sampled sine wave satisfy this
condition. For simplicity, we discuss only PNL mix-
tures (Fig. 2) of two sources, but the results can be
easily extended to more sources. From ps1s2 (s1; s2) =
ps1 (s1)ps2 (s2) we deduct that the joint distribution of
the two sources s is contained in a rectangle. After the
linear mixing A, the joint distribution of e = As lies
inside a parallelogram. After the componentwise in-
vertible nonlinear distortions fi, the joint distribution
of x (the PNL mixtures) is contained in a “distorted”
parallelogram (see Fig. 3).
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Fig. 3. Joint distributions of the signals at di8erent locations in a PNL model.

Babaie-Zadeh et al. [7] proved the following
theorem:

Theorem 5.1.1. Consider the transformation:

x1 = h1(e1);

x2 = h2(e2); (45)

where h1 and h2 are analytic functions. 5 If the
borders of a parallelogram in the (e1; e2) plane are
transformed to the borders of a parallelogram in
the (x1; x2) plane, and the borders of these parallelo-
grams are not parallel to the coordinate axes, then,
there exist real constants a1, a2, b1 and b2 such that

h1(u) = a1u+ b1;

h2(u) = a2u+ b2: (46)

Remark 1. The requirement that the borders of the
parallelograms must not be parallel to the coordinate
axes emphasizes that the sources must be really mixed
before the nonlinear distortion. This means that there
must exist at least two nonzero elements in each row,
or each column of the mixing matrix A, as stated in
Section 4.2.

Remark 2. The existence of the constants b1 and b2,
emphasizes on a “DC” indeterminacy (on the sources)
in separating PNL mixtures. This indeterminacy exists
also in linear mixtures but is generally skipped since
one assumes zero-mean sources. In other words, in
linear as well as PNL mixtures, one only can recover
the “AC” part of the sources with the classical scale
and permutation indeterminacies.

5 A function is called analytic on an interval, if it can be
expressed with a Taylor series on that interval.

Remark 3. The theorem provides another separability
proof for PNL mixtures of bounded sources.

This theorem suggests a 2-step geometric approach
for separating PNL mixtures:

• Find invertible functions g1 and g2 which transform
the scatter plot of the observations to a parallel-
ogram. From the above theorem, this step insures
compensation of the nonlinear distortions.

• Separate the resulting linear mixture, by means of
any linear ICA algorithm.

Details of the algorithm and experimental results
are given in [7]. An important point about this method
is that it proves by using simple prior information,
the nonlinear distortions can be estimated without
using the independence assumption. In other words,
bounded sources provide useful extra information
for simplifying separation algorithms in PNL mix-
tures: the nonlinear and linear parts can be optimized
independently with two di8erent criteria.

5.2. Time correlated sources in nonlinear mixtures

As we discussed in the previous sections, in gen-
eral, applying the independence hypothesis for sepa-
rating the nonlinear mixtures is not su6cient: it may
lead to good solutions where the estimated indepen-
dent components are the trivial mappings of the orig-
inal sources, or to bad solutions where the estimated
independent components are still the mixtures of the
original sources. The interesting question is: how to
distinguish the good solutions from the bad ones? Hos-
seini and Jutten suggest [20] that the temporal corre-
lation between the successive samples of each source
may be used for this purpose.
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5.2.1. A simple example revisited
Let us return to simple example presented in Section

2.3, where we suppose now that the sources s1, s2, y1
and y2 are signals. If the signals s1(t) and s2(t) are
temporally correlated and independent, one can write
that

E[s1(t1)s2(t2)] = E[s1(t1)]E[s2(t2)]; ∀t1; t2: (47)

Consequently, in addition to E[y1(t)y2(t)] =
E[y1(t)]E[y2(t)] many equations can be used and
allow to reject the bad solutions y1(t) and y2(t):

E[y1(t1)y2(t2)] = E[y1(t1)]E[y2(t2)] ∀t1 �= t2:
(48)

It is evident that if y1(t) and y2(t) are the actual
sources (or a trivial mapping of them), the above
equality is true ∀t1; t2. Moreover, if the independent
components are obtained from mappings (14) (this
mapping is a mixing nonlinear mapping, preserving
independence for random variables), the right side of
(48) is equal to zero because y1 and y2 are zero mean
Gaussian variables. The left side of (48) is equal to

E[s1(t1) cos(s2(t1))s1(t2) sin(s2(t2))]

=E[s1(t1)s1(t2)]E[ cos(s2(t1)) sin(s2(t2))]: (49)

If s1(t) and s2(t) are temporally correlated, it is highly
probable it exists t1, t2 such that (49) is not equal to
zero (it depends evidently on the nature of the tem-
poral correlation between two successive samples of
the two sources) so that the equality (48) is false, and
the solution can be rejected. In fact, the two stochas-
tic processes y1(t) and y2(t) obtained from (14), are
not statistically independent although their samples at
each time instant (which are two random variables)
are independent. This simple example shows how, us-
ing the temporal correlation, we can distinguish the
trivial and nontrivial mappings preserving the inde-
pendence, or at least cancel a few nontrivial mappings.
Note that here we used only the cross-correlation (sec-
ond order) of the signals, which is a Frst (but coarse)
step toward independence. We also could add more
equations for improving the independence test, and
consider cross-correlations of order higher than two
of y1(t1) and y2(t2) which must satisfy:

E[yp1 (t1)y
q
2(t2)] = E[y

p
1 (t1)]E[y

q
2(t2)]; ∀t1; t2;

∀p;q �= 0: (50)

5.2.2. Darmois decomposition with colored sources
As we mentioned in Section 2.2, another example

used for illustrating the non-separability of the non-
linear mixtures is the Darmois decomposition proce-
dure. Consider two independent and identically dis-
tributed random signals, s1(t) and s2(t) and suppose
x1(t) and x2(t) are the nonlinear mixtures of them.
Using the Darmois decomposition procedure [16,24],
one can construct new signals y1(t) and y2(t) which
are statistically independent although the underlying
mapping is still a mixing (nontrivial) mapping:

y1(t) = FX1 (x1(t));

y2(t) = FX2|X1 (x1(t); x2(t)):
(51)

Here FX1 and FX2|X1 are respectively the marginal and
conditional cumulative distribution functions of the
observations. If the sources are temporally correlated,
Hosseini and Jutten show [20] that the independent
components y1 and y2 obtained from the above pro-
cedure do not generally satisfy the following equality,
for t1 �= t2, where pY1 and pY2 , are the marginal pdfs
and pY1 ;Y2 is the joint pdf:

pY1 ;Y2 (y1(t1)y2(t2)) = pY1 (y1(t1))pY2 (y2(t2)) (52)

while the trivial transformations of the real sources, in
the forms of y1=f1(s1) and y2=f2(s2), satisfy obvi-
ously the above equality because of the independence
of the two sources. Thus, the above equations can be
used to reject (or at least to restrict) the nontrivial ICA
solutions obtained from the Darmois decomposition.
Of course, this theoretical result does not give any

proof for the separability of nonlinear mixtures of tem-
porally correlated sources, but it shows that even fairly
weak prior informations on the sources can reduce the
typical indeterminacies of ICA encountered in non-
linear mixtures. In fact, with this prior, ICA provides
many equations (constraints) which can be used for
regularizing the solutions and allow blind source
separation.

6. Concluding remarks

In this paper, we have considered ICA and BSS
problems for nonlinear mixture models. It appears
clearly BSS and ICA are di6cult and ill-posed prob-
lems, and regularization is necessary for actually
achieving ICA solutions which coincide to BSS.
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In this purpose, two main ways can be used. First,
solving the nonlinear BSS problem appropriately us-
ing only the independence assumption is possible only
if mixtures as well as separation structure are struc-
turally constrained: for example post-nonlinear mix-
tures, or mappings satisfying addition theorem (4.4).
Second, prior information on sources, for example
bounded or temporally correlated sources, can sim-
plify the algorithms or reduce the indeterminacies in
the solutions. A third way, based on smooth mappings,
is probably suitable, but accurate conditions on the
mappings have to be deFned.
A lot of work remains to be done in studying the

nonlinear ICA and BSS problems. First, regulariza-
tion methods based on constraints can be studied fur-
ther, but other approaches, especially incorporation of
temporal statistics [49] (only sketched in this paper)
and variational Bayesian ensemble learning [45]. Sec-
ondly, remember a better modeling of the relation-
ship between the independent components or sources
and the observations is essential for choosing a suit-
able separation structure and subsequently for study-
ing separability. Finally, up to now, the research has
addressed mainly theoretical problems. The results
will become more widely interesting only if they can
be validated on realistic problems using real-world
data.
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