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Blind Separation of Parametric Nonlinear Mixtures of
Possibly Autocorrelated and Non-Stationary Sources
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Abstract—In this paper, we present a new method, formulated
in a maximum-likelihood framework, for blindly separating non-
linear mixtures of statistically independent signals. Our method
exploits, on the one hand, the knowledge of the parametric model
of the mixing transformation (with unknown parameter values),
and on the other hand, the possible structure of source signals,
i.e., their autocorrelation and/or nonstationarity. One of the main
advantages of the proposed method is that it can be implemented
even if the analytical expression of the inverse model is unknown.
The method is first addressed in a general configuration, then de-
tailed for two special cases, i.e., a simple bijective “toy” model and
a linear-quadratic model. The study of the toy model is interesting
because of its simplicity and its global bijectivity, which allows us
to focus our efforts on parameter estimation. The linear-quadratic
model is chosen due to its capacity to describe real-world mixing
phenomena. Simulation results, using the toy model and using a
subclass of the linear-quadratic model (i.e., the bilinear model),
show that taking into account the nonlinearity of the mixing trans-
formations and the structure of signals considerably improves sep-
aration performance.

Index Terms—Autocorrelation, blind source separation, inde-
pendent component analysis, maximum likelihood, non-station-
arity, nonlinear mixtures.

I. INTRODUCTION

D URING the last three decades, linear Blind Source Sepa-
ration (BSS), which aims to separate source signals from

their observed linear mixtures, has been largely studied (see
for example the handbook [1]). The main approach to realize
BSS is based on Independent Component Analysis (ICA) and
the related methods which exploit three different features: non-
Gaussianity, temporal autocorrelation or non-stationarity of the
sources [2]. In [3] and [4], we showed how these three features
may be used together to improve linear BSS performance. Non-
linear BSS is a less studied and more difficult subject. Several
algorithms have been proposed for separating general nonlinear
mixtures (see e.g., [5]–[9]) but they are not devoted to a specific
class of mixtures and do not take advantage of possible knowl-
edge of parametric mixing models. It is however well known
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that the independence assumption is not enough for separating
general nonlinear mixtures because of the non-trivial indeter-
minacies leading to the non-uniqueness of the solution of non-
linear ICA [10], [11]. To reduce these indeterminacies, one may
constrain the structure of mixing models [12], [13]. Thus, sev-
eral specific classes of nonlinear mixtures have been studied
in the literature, e.g., post-nonlinear mixtures [11], [14], [15],
linear-quadratic mixtures [16]–[21], linearizable mappings [22]
or nonlinear mixtures encountered with gas or chemical sen-
sors [23], [24] or with quantum sources [25] (see also [12] for a
more general framework and Chapter 14 of [1] for more refer-
ences). Nevertheless, these works do not exploit the possible au-
tocorrelation or non-stationarity of the signals in the separating
procedure.
An attempt to use time correlation for separating nonlinear

mixtures can be found in [8]. In that work, data are first mapped
from input space to a kernel feature space, then the dimen-
sionality is reduced and a second-order temporal decorrelation
BSS algorithm is used, finally an automatic selection proce-
dure is applied to recover the sources. In another work [26],
the authors propose to exploit time correlation by combining
second-order ICA and slow feature analysis which aims at
finding a representation where signal components are slowly
varying. The slowness is measured using the variance of the
first derivative. In [27] and [28], the authors exploit time corre-
lation in the separation of post-nonlinear mixtures. In [27] an
alternating conditional expectation algorithm is applied to ap-
proximately invert the post-nonlinear function, then a temporal
decorrelation algorithm is used to recover the source signals.
In [28], a similar method is proposed which replaces the first
stage by a Gaussianizing transformation. The motivation is
that linearly mixed signals before nonlinear transformation are
approximately Gaussian-distributed.
Even though thesemethodsmake use of time correlation, they

either do not exploit the known structure of the mixing model
or are limited to the special case of post-nonlinear mixtures. In
this paper, we propose a new maximum likelihood (ML) ap-
proach for taking into account the autocorrelation and non-sta-
tionarity of the sources to achieve nonlinear BSS, supposing
that the parametric mixing model is known (but its parameter
values are unknown)1. The ML approach for linear BSS was
initially proposed in [29] and was extended in [30] and [31].
It is closely related to the Mutual Information approach which

1Since the parametric model of the mixing transformation is known except
for some unknown parameters, some authors propose to call this type of
methods semi-blind. However, according to this argument, linear source sepa-
ration methods based on ICA should also be called semi-blind because these
methods also assume that the parametric model of the mixing transformation
is known.
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has been used for separating linear [32], [33] and nonlinear [7],
[12], [34] mixtures in the case of independent and identically
distributed (i.i.d.) signals. We also proposed an ML approach
for separating linear-quadratic mixtures of i.i.d. sources using
recurrent networks [19], [35].
The main advantages of the approach proposed in the current

paper are:
• Exploiting the knowledge of the parametric model of
mixing transformation permits one to constrain the ini-
tially highly ill-posed problem.

• An original use of implicit differentiation allows one to de-
rive the analytical expression of the gradient of the consid-
ered cost function without requiring the knowledge of the
explicit inverse of the mixing model.

• Exploiting the structure of source signals (autocorrela-
tion, non-stationarity) in the ML criterion leads to better
performance.

The remainder of this paper is organized as follows. Our ML
method is explained in Section II. In Section III, we illustrate
the proposed procedure using a simple bijective toy model.
Section IV presents the theoretical analysis of our method
for the linear-quadratic model and its experimental validation
using a subclass of this model, called the bilinear model. We
finally conclude in Section V.

II. METHOD

We consider the parametric mixing model

(1)

where is the vector of indepen-
dent unknown source signals at time ( stands for transposi-
tion), is the vector of observed
signals and is a memoryless parametric
function, defined by the unknown parameter vector , which is
supposed to be differentiable with respect to and .2 In the
following, we only consider the determined case where ,
because our method is only applicable to determined mixtures.
Note that an over-determined mixture ( ) may be reduced
to a determined one by simply ignoring observed signals.
However, to take into account all available data, a better solu-
tion may consist in gathering observations in groups of mem-
bers, then applying our method to estimate a mixing parameter

2Note that our analysis does not hold if this differentiability assumption is
violated (e.g., if takes discrete values).

vector for each group, and finally choosing a single parameter
vector from all these estimates, e.g., by computing their mean
or median.

A. Cost Function

Suppose we are given samples of each observed signal cor-
responding to , and denote by the joint
probability density function (pdf) of corresponding samples
of each source . The joint pdf of all independent source
signals reads . Let be the set of all
parameter column vectors such that the model (1) is bijec-
tive in the variation domain of the sources. The inverse of the
mixing model (1) for each vector will be denoted by

.
The source pdf being fixed, the distribution of the

transformed vector only depends on . This family of
distributions is used as a parametric model for the pdf of obser-
vations3 and is denoted by .
The likelihood that the samples of the observed signals
are drawn with a particular pdf is given by

(2)

Let’s denote by the Jacobianmatrix of the global
transformation relating samples of sources to samples
of mixtures, defined by (3) at the bottom of the page. We also
denote by the Jacobian of this global transforma-
tion, and by its value evaluated at and . Then,
thanks to the assumed bijectivity of the mixture, we can write

(4)

Since themixing transformation (1) is memoryless, the Jacobian
matrix is block-diagonal. As a result, the Jacobian can
be written as

(5)

3This parametric pdf is equal to the actual observation pdf if .

(3)
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where is the Jacobian of the mixing transformation
(1) at time , i.e., the determinant of the Jaco-

bian matrix with the generic entry

. We also denote by the value of

evaluated at and .
The maximum likelihood estimate of the actual parameter

vector is obtained by maximizing the likelihood (4) with re-
spect to . Equivalently, we can minimize the cost function

which can be rewritten using (5) as

(6)
Depending on the possible autocorrelation and/or non-station-
arity of the sources, four different cases may be considered:
1) Each source is an i.i.d. signal (i.e., stationary and
with independent samples). In this case, we can write

, where
is the marginal pdf of the source which does not

depend on . Thus, the cost function (6) can be rewritten
as

(7)

2) Each source has independent samples but is possibly non-
stationary. In this case, we have

(8)

where is the marginal pdf of source at time ,
which depends on . A special case which often occurs
in practice is when the sources are nearly piecewise sta-
tionary. In this case, the pdf is nearly constant on
an interval of samples.

3) Each source is stationary but possibly autocorrelated. In
this case, we need to model the autocorrelation if we want
to simplify the cost function (6). A general and practical
solution consists in assuming the sources to be -th order
Markov processes such that

(9)

where (respectively ) denotes the condi-
tional pdf of source given (respectively ) previous
samples. TheMarkov model can take into account the non-
linear correlation between the signal samples. Thus, we can
write using the Bayes rule

(10)

where the pdf do not depend on , thanks to stationarity.
Consequently, we have

(11)

4) Each source is possibly non-stationary and autocorrelated.
Using the Markov model, we can write

(12)

where denotes the conditional pdf of the source
at time given previous samples, which depends on
. Once more, a special case is when the sources are piece-
wise stationary on intervals of length .

In the following, we develop our proposed method for the last
case because the other cases may be considered as special cases
of this one. We suppose that all sources are -th order Markov
processes and piecewise stationary on intervals of length .

B. Gradient and Hessian of the Cost Function

Minimizing the cost function (12) typically involves the com-
putation of its gradient with respect to the parameter vector .
Note that the term in
(12) depends on the samples
so that its gradient with respect to reads

(13)

Let’s define the conditional score function of source at time
with respect to the sample as follows:

(14)

We also suppose so that the first term in (12), corre-
sponding to the joint pdf of the first samples of each source,
is negligible compared to the second term. We also assume that
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the gradient of the first term is negligible compared to the gra-
dient of the second term. Since , the gradient

reads

(15)

According to and considering as the inde-
pendent variable and as a function of this variable, we can
write using implicit differentiation

(16)

which implies

(17)

where “ ” stands for “ is constant”. In the above expres-

sions, is the Jacobian matrix of the mixing

model, with the generic entry

and the entry of the matrix (respectively

) is (respectively ). Inserting the

entries of (17) evaluated at times in (15), we
get the expression of the gradient which may be used for mini-
mizing the cost function using e.g., a gradient descent algorithm

(18)

where is a positive learning rate4. This learning rate may be
chosen using a line search algorithm satisfying the Armijo con-
dition. In our simulations, we used a small constant learning rate
ensuring convergence (the convergence was visually checked).
The above approach based on implicit differentiation does

not require the knowledge of the explicit inverse of the mixing
model. According to (15) and (17), we only need to know the
parametric expression of the mixing model (and not its in-
verse) in order to obtain the analytical expression of the gradient
, up to the approximation made in (15).

Nevertheless, to calculate the numerical value of the gra-
dient from expression (15), we need the signal samples

for the current value of at each iteration of the
gradient descent algorithm. These samples may be computed by
solving the equation at each time using
e.g., a numerical algorithm.
To avoid the convergence issues related to the choice of

learning rate in the gradient descent method, we may prefer
to use Newton’s algorithm. From (15), the entry of the

4We may also use a momentum term to improve the convergence of the gra-
dient algorithm.

Hessian matrix , up to the approximation made in (15), can
be computed as follows:

(19)

Then, the Newton’s update rule reads

(20)

assuming the invertibility of . If is close to a non-invertible
matrix, we can modify it e.g., by adding a correction matrix
so as to make positive-definite. A common choice of ,
used in the Levenberg-Marquardt algorithm, is a scaled identity
matrix.

C. Score Function Estimation

In practice, the conditional pdf and the conditional
score functions of the actual sources are usually un-
known. Like in linear BSS [4], [30] we can replace them by the
estimated score functions of the signals , determined as
mentioned above, in each iteration of the gradient algorithm.
These score functions may be for example estimated using

the approach proposed in [4] (and inspired from [30] and [36]).
In this approach, each conditional score function is first written
as the difference of two joint score functions as follows:

(21)

The first joint score function in (21) may be estimated by writing

(22)

where are some basis functions, and by computing the
coefficients which are the solutions of the following equation
(see [4] and [30] for details):

(23)

where , with denoting the expec-
tation operator, , and its derivative with
respect to . These derivatives may also be used for
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estimating the score function derivatives required in Newton’s
method.
As can be seen, the estimation of the coefficients requires

the computation of some expected values. Nevertheless, this
is not possible unless we make some statistical assumptions
about the sources. If the sources are stationary (and ergodic),
the expected values may be replaced by sample means. If the
sources are non-stationary but piecewise stationary, we can use
the blocking method mentioned in [4] (and inspired from [37]).
In this method, the piecewise stationary signal, of length ,
is split into adjacent intervals , , each one
containing samples. Under the piecewise stationarity
(i.e., slow variation) hypothesis, score functions are supposed to
be constant within each of the intervals . Thus, in each , the
score functions do not depend on time and the expected values
may be replaced by sample means on the intervals.
The second joint score function in (21) may be estimated in

the same manner using other basis functions and coefficients,
thus providing, using (21), an estimate of conditional score
functions on each interval.

D. Overall Algorithm

In summary, we propose the following algorithm for blindly
separating a parametric nonlinear mixture of possibly non-sta-
tionary and autocorrelated sources:
1) Initialize the mixing parameter estimates (with random
values if there is no information about them).

2) Repeat the following steps until convergence (i.e., until the
mixing parameter estimates do not significantly change):
• Use the current estimate of the mixing parameters for
computing a new estimate of the sources, , for each

by solving (analytically or numerically) the
mixing equation .

• Estimate the conditional score functions of the estimated
sources on intervals of length .5

• Compute the gradient using (15) and (17), and possibly
the Hessian using (19).

• Update the mixing parameter estimates using an op-
timization algorithm like gradient descent or Newton’s
algorithm.

Note that if the signals are stationary, we can apply the above al-
gorithm by choosing (i.e., ) and if each signal has
independent samples, we can apply the algorithm by choosing

(i.e., a zero-order Markov model).
The main hypotheses under which our method can be applied

are listed below.
1) The sources must be independent.
2) The parametric model of the memoryless mixing transfor-
mation must be known except for some unknown param-
eter values.

3) The mixing model must be bijective in the variation do-
main of the sources.

4) The mixing model must be differentiable with respect to
the sources and the mixing parameters.

5The optimal length of these intervals depends on the nature of the sources.
For example, it is well known that speech signals are relatively stationary on
short intervals of 10–20 milliseconds.

In the following two sections, we theoretically illustrate this
proposed algorithm for a bijective toy mixture and a general
linear-quadratic mixture, and we present some simulation re-
sults using the toy model and using a subclass of the linear-
quadratic model called the bilinear model.

III. A SIMPLE BIJECTIVE “TOY” MODEL

The first example studied in this paper is a simple “toy”
mixing model with known inverse which is globally bijective.
While this model does not fit any known physical system, its
study will be useful because of its simplicity and its global
bijectivity which allows us to focus our efforts on parameter
estimation.
The 2 2 mixing model is defined by a single parameter :

(24)

In the following, we compute its inverse, omitting the time index
for simplifying the notation. The mixing (24) yield

(25)

which can be solved using Cardano’s formula with respect to
to obtain one of the separating equations. Let’s denote

, and . If , then so
that the cubic (25) has a unique real root defined by

(26)

The other source may then be obtained using

(27)

If , then the mixing (24) has a unique real solution
. Thus, the mixture is globally bijective

everywhere in .
In the following, we successively study the case of i.i.d.

sources and that of non-i.i.d. sources, then present some simu-
lation results.

A. Case of I.I.D. Sources

The Jacobian of the mixing (24) reads

(28)

Replacing in (7), we obtain the cost function to be minimized.
From (15), the gradient of this cost function is equal to (see
Appendix A for the computational details):

(29)
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Fig. 1. Cost function using known pdf.

B. Case of Non-I.I.D. Sources

When sources are not i.i.d., the gradient (15) of the general
cost function (12) can be computed in the samemanner as above
but by choosing in (15) and score functions possibly
depending on . For example, in the case of non-stationary 1st-
order Markov sources ( ), this gradient reads:

(30)

C. Simulation Results

1) Separating I.I.D. Sources Supposing Known Source PDF:
In the first experiment, we generated two unit-variance i.i.d and
mutually independent Laplacian sources of ,
then mixed them using the mixing model (24) with .
Fig. 1 shows the cost function (7) using the actual value of

, i.e., for where
and are computed from (26), (27) and (28) replacing

by . As can be seen, this function has two local minima but
only one of them (which is also the global minimum) corre-
sponds to the actual value of the parameter and provides the
independent components corresponding to the actual sources.
When initialized with negative values of , the optimization al-
gorithms like gradient descent or Newton converge towards this
spurious local minimum. However, this value may be rejected a
posteriori using an independence test.
2) Separating I.I.D. Sources Supposing Unknown Source

PDF: The above experiment was repeated supposing that the

Fig. 2. Cost function using unknown pdf: (a) with pdf shape re-estimated for
each value of , (b) with pdf shape estimated for .

source pdf are unknown. Thus, the actual score functions were
replaced by the estimated score functions of the signals
using the method described in the previous section. In this
case, maximizing the likelihood is asymptotically equivalent to
minimizing the mutual information between the output signals

.
The cost function (7), but using instead of , is

shown in Fig. 2(a) as a function of . Once more, the cost
function has a global minimum corresponding to the actual
parameter value and another, spurious, local minimum which
may be rejected using an independence test. Fig. 3 shows the
scatter plots of the mixtures and of the output components
corresponding to these minima. Note also that in practice, at
each iteration of an optimization algorithm, one first estimates
(using the current value of the parameter ) the coefficients
in (23) which determine the shape of score functions (and

related pdf), then freezes them and performs a minimization
step for the cost function related to these pdf with respect to
. Since the estimated pdf change during successive iterations,
the shape of the function to be minimized changes too. For
example, Fig. 2(b) shows the cost function as a function of
in the above example (i.e., with ) corresponding to the
coefficients estimated using the value . As can be
seen, this function is not the same as in Fig. 2(a). The practical
optimization is therefore more difficult than what may be
suggested by Fig. 2(a) because the shape of the function to be
minimized changes at each iteration of the gradient algorithm.
This example also shows the sensitivity of the method to the
estimation of score functions: if the estimated score functions
are not updated in the following iterations, the optimization
algorithm converges towards the minimum of Fig. 2(b), i.e.,

.
3) Simulations Using Autocorrelated Sources: In this exper-

iment, we want to show that when each source is autocorrelated,
better performance can be obtained by taking into account this
autocorrelation using a Markov model.
We generated two mutually independent i.i.d. signals

and uniformly distributed over , that we fil-
tered by two autoregressive filters in order to obtain two sta-
tionary 1st-orderMarkov sources following the scheme

. The chosen coefficients were and
. The sources were then normalized to have unit vari-

ances. The mixture was generated using the model (24) with
.
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Fig. 3. scatter plots of (a) sources, (b) mixtures, (c) output components corre-
sponding to the desired local minimum, (d) output components corresponding
to the spurious local minimum.

TABLE I
MEAN AND STANDARD DEVIATION OF SIR, AND MEAN OF COMPUTATION
TIME, WITHOUT AND WITH TAKING INTO ACCOUNT THE COLOR OF SOURCES

We used the algorithm proposed in the previous section for
separating the sources using gradient descent, first ignoring the
time structure (i.e., using the gradient (29) to minimize the cost
function (7) which is optimal, in the ML sense, only for i.i.d.
sources), then taking into account this structure using the gra-
dient (30). In each case, we performed 100 Monte Carlo simula-
tions corresponding to 100 different initial values of the random
source generator and of the parameter . For each simulation,
the Signal to Interference Ratio (SIR) was computed by

(31)

where is the final estimate of after normalizing it
so that it has the same variance and sign as , and .
The mean and the standard deviation of SIR over 100 Monte
Carlo simulations for source samples are shown
in Table I. As can be seen, performance is better when taking
autocorrelation into account. This table also shows the average
running time of our methods using a non-optimizedMatlab code
on a computer with an Intel core 2 Quad CPU, with a frequency
of 2.8 GHz and a RAM of 4 GB.
4) Simulations Using Non-Stationary Sources: In this exper-

iment, we want to highlight the relevance of taking into account
the possible non-stationarity of the signals in nonlinear BSS.
First, we generated two mutually independent i.i.d. signals

and uniformly distributed over . Then,
we split these signals into two intervals and multiplied the first

Fig. 4. One of the non-stationary sources used in the simulations.

TABLE II
MEAN AND STANDARD DEVIATION OF SIR, AND MEAN OF

COMPUTATION TIME, WITHOUT AND WITH TAKING INTO
ACCOUNT THE NON-STATIONARITY OF SOURCES

TABLE III
MEAN OF SIR AS A FUNCTION OF SAMPLE SIZE WITH TAKING INTO

ACCOUNT THE NON-STATIONARITY OF SOURCES

interval by 7 to obtain the non-stationary source signals .
Finally, the sources were normalized to have unit variances and
mixed using the model (24) with . The first source is
shown in Fig. 4. We used the algorithm proposed in the pre-
vious section for separating the sources using gradient descent,
first ignoring the non-stationarity (i.e., using the gradient (29)
which is optimal, in the ML sense, only for i.i.d. sources), then
taking into account this non-stationarity. In the first case, the
score functions were estimated on the whole signals while in
the second case, they were estimated separately on each interval
using the blocking method described in the previous section.
In each case, we performed 100Monte Carlo simulations cor-

responding to 100 different initial values of the random source
generator and of the parameter . The mean and the standard
deviation of SIR, as well as the average running time, over 100
simulations for source samples are shown in Table II.
As can be seen, performance is very poor when non-stationarity
is ignored, and very satisfactory when it is taken into account.
Finally, Table III shows the mean of SIR as a function of the
sample size in the latter case.

IV. LINEAR-QUADRATIC MODEL

In this section, we study the linear-quadratic mixing model,
which can be represented in the general case by

(32)
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In the context of ICA, such models have been studied in the case
of circular complex sources and strictly over-determined mix-
tures (i.e., more observations than sources) [16], [17], binary
sources and strictly over-determined mixtures [20], two mix-
tures of two i.i.d. sources (without square terms of the sources)
[18], [35], [38]. In this section, however, we study this model in
a general determined configuration (same arbitrary number of
observations and sources) and we suppose that the sources are
arbitrary real signals, possibly autocorrelated and/or non-sta-
tionary. We aim at using the approach presented in Section II
to achieve BSS and to measure the influence of taking into ac-
count the autocorrelation and/or non-stationarity of sources on
performance. The linear-quadratic model has recently been used
to describe physical mixing phenomena like the show-through
effect in scanned documents which yields mixtures of the front
and back images of a thin paper [21], [39], or the multiple scat-
tering of light between surfaces which yields nonlinearly mixed
pixels in multi/hyperspectral remote sensing of non-flat surfaces
[40]–[43]. In the latter case, methods based on sparsity [44] or
non-negativity [45] of data have been proposed to unmix them.
Supposing the signals are independent, we want to es-

timate them up to a permutation and a scaling factor. In order to
define a simple convention to handle the scale indeterminacy of
ICA, we hereafter consider the following normalized equivalent
model

(33)

where , , ,
. The model is defined by an unknown

parameter vector which contains all the coefficients ,
and in (33).

A. Computing the Gradient

Using the mixing model (33), we can compute the entries of

the Jacobian matrix as follows:

(34)
where we use the following notation conventions: and

. Computing the derivatives of (33) with respect
to the parameters, keeping constant, yields

otherwise
(35)

otherwise
(36)

,
otherwise.

(37)

The above three equations thus allow one to compute

. Replacing and by and in the above

expressions of and , then using

(17), we can compute . This derivative, together with the

conditional score functions, allows us to obtain the first term
of the gradient (15). To determine the second term, we need to
compute . Denoting and considering
as the independent variable and as a function of this

variable, we can write

(38)

The entries of the first term in the above equation may be com-
puted as follows with , , and
respectively standing for trace, adjoint matrix, and matrix of co-
factors of [46]:

(39)

For example, to compute the derivative with respect to the pa-
rameter , we know from (34) that

(40)

which yields, denoting by the cofactor of
matrix :

...
. . .

...

...
. . .

...

(41)

The entries of may be computed using

(42)

and noting that, from (34)

(43)
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Replacing , and by , and in the expressions of
and , and using the expression of ,

already computed, we obtain from (38), then the second

term of (15), and therefore the entire gradient .

B. Simulation Results

1) Separating I.I.D. Sources: In a first experiment, we con-
sider a special case of the normalized mixing model (33) with

sources and observations where the coefficients of the
squared terms, , are set to zero. This special model is usually
called the bilinear model. The other coefficients are

(44)

Thus, the mixing model is defined by

(45)

where , and are three 1000-sample i.i.d.
sources, uniformly distributed over . As shown in
Appendix B, this choice of parameter values guarantees the
global univalence of the mixture in . We use the
following algorithm for estimating the mixing parameters and
separating the sources:

– Initialize to an initial value .

repeat

– Compute all using the
observations and the current values of the estimated
mixing parameters .

– Estimate the score functions of .

– Compute the gradient using the formulas presented

in the previous subsection.

– Update the estimated parameter vector using (18).

until convergence (i.e., until the estimated parameters do not
significantly change)

– Set the estimated sources to .

When using an unconstrained optimization algorithm, the
estimated mixing parameters may take unacceptable values
during the optimization procedure, leading e.g., to non-in-
vertible models. In our tests, we could avoid this issue by
initializing the first 6 estimated mixing parameters
(corresponding to the linear contributions of the sources in the

mixture) with their estimates obtained by using a hypothesized
linear model which provides a rough approximation of the ac-
tual values6. In this approach, we first suppose that the mixtures
are generated using the following linear model

(46)

Then, we use the ML linear BSS algorithm of [30] to obtain a
first estimate of the mixing parameters which will be used as
the initial values of in our algorithm. The other pa-
rameters are initialized to small random values in

. To compute from the current values of the
estimated mixing parameters , we have to solve a system of
three nonlinear equations i.e., the system (45) where are re-
placed by and the actual parameters ( ) by their estimates
. By eliminating and , we can obtain a unique equation

which only depends on , the observations , , and the
mixing parameters . It can be checked that this equation in-
cludes the terms containing , , , , and the square
roots of some polynomial functions of . Such an equation
cannot analytically be solved for . Nevertheless, the system
of (45) may be solved numerically. In all the simulations de-
scribed in this section, we used a Gauss-Newton algorithm for
this purpose.
The score functions were estimated using the approach de-

scribed in Section II-C with the basis functions
. Performance was measured using

the SIR defined in (31) with . The algorithm converged
after about 500 iterations and led to a 29.3-dB SIR. The same
experiment, neglecting the quadratic part in the source separa-
tion procedure (i.e., supposing the linear mixing model (46) and
using the ML linear BSS algorithm of [30]) led to a 16.3-dB
SIR. This result confirms the advantage of taking into account
the entire model.
2) Separating Non-Stationary and Autocorrelated Sources:

In another experiment, we first generated three mutually in-
dependent i.i.d. signals , and uniformly dis-
tributed over , that we filtered by three autoregressive
filters in order to obtain three stationary 1st-order Markov sig-
nals following the scheme . The
chosen coefficients were , and .
Then, we split each of these signals into two intervals and mul-
tiplied the first interval by 2 to obtain non-stationary signals. Fi-
nally, the three signals were normalized to be in . The
resulting non-stationary and autocorrelated sources were
then mixed using the same mixing model (45) as in the previous
simulation which guarantees the global univalence of the map-
ping in the variation domain of the sources. We used our algo-
rithm for separating the sources, first ignoring the non-station-
arity and the autocorrelation of signals, then taking these prop-
erties into account. In the first case, we chose when com-
puting the gradient using (15) and we estimated the marginal
score functions on the whole signals. In the second case, we
chose (corresponding to a first-order Markov model) and

6Another solution is to use a constrained optimization algorithm which keeps
the estimated parameters in their acceptable range of variation.
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TABLE IV
SIR RESULTS IN THE SECOND SIMULATION WITH BILINEAR
MODEL: (A) IGNORING THE NON-STATIONARITY AND THE

AUTOCORRELATION OF SIGNALS, (B) TAKING
THESE PROPERTIES INTO ACCOUNT

estimated the score functions separately on each
interval using the blocking method described in Section II-C.
In each case, we performed 50 Monte Carlo simulations cor-

responding to 50 different initial values of the random source
generator. The mean and the standard deviation of SIR over
these simulations for source samples are shown in
Table IV. The bias and standard deviation of coefficients esti-
mated with these two methods are presented in Table V. The
results confirm the better performance of the method taking
into account the autocorrelation and non-stationarity of signals
in nonlinear BSS. The average running time of this method,
using a non-optimized Matlab code on a computer with an Intel
core 2 Quad CPU with a frequency of 2.8 GHz and a RAM of
4 GB, was about 83 seconds. It should be emphasized that in
each iteration of the gradient algorithm, about 68% of the com-
putation time is due to the numerical solution of (45) using a
Gauss-Newton algorithm. By optimally implementing this rou-
tine (using e.g., a C function), the running time may consider-
ably be reduced. Also, about 31% of the running time is due to
the computation of gradient, and only 1% is due to the score
function estimation.
Table VI shows the mean of SIR as a function of the sample

size when taking into account the non-stationarity and auto-
correlation.
We also performed 50 Monte Carlo simulations corre-

sponding to 50 different values of the nonlinear parameters
in the mixing model (45). In each run, these parameters were
randomly chosen from a uniform distribution on the interval

. Once more, this choice guarantees the global univa-
lence of the mixing model when the source values are in the
interval . Using the method taking into account the
autocorrelation and non-stationarity, the mean and standard
deviation of SIR were respectively 30.52 dB and 0.53 dB.
3) Separating Realistic Mixtures of Real-World Spectra: In

another test, we first chose three nearly independent real-world
spectra from a spectral library compiled by
the United States Geological Survey (USGS) [47]. In our tests,
417 wavelengths of each spectrum were used. The reflectance
spectra values were in . As explained in [43], in hyperspec-
tral remote sensing of non-flat landscapes, the mixing model is
linear-quadratic and the mixing coefficients in (32) verify the
following constraints: , , ,

. Thus, in our simulations, we mixed the spectra using the
following realistic values which satisfy the above conditions:

, , , , ,
, , , , ,
, , , ,
, , , ,

, .

Denoting , ,
, the mixing model can be rewritten as in (33) with
and , . Using the same method as in

Appendix B, it can be checked that the three principal minors
of the Jacobian matrix are always positive such that the mixing
model is univalent. Finally, we tried to unmix the mixtures using
the following four methods:
• Method 1: the well-known FastICA method [48] which
is only adapted to linear mixtures and does not take into
account the autocorrelation and non-stationarity of spectra.

• Method 2: the well-known blind nonlinear MISEP method
[7] which uses neither the knowledge of the parametric
model of the mixing transformation nor the structure of
signals.

• Method 3: a version of our method which ignores the
non-stationarity and the autocorrelation of spectra, i.e., we
choose in (15) and we estimate the marginal score
functions on the whole signals.

• Method 4: a version of our method taking into account the
structure of spectra, i.e., we choose in (15) for a
first-order Markov model, and we estimate the conditional
score functions by splitting the signals in intervals
using the blocking method described in Section II-C. This
choice of results from a trade-off between the number of
intervals and the number of samples per interval used for
estimating conditional score functions on each interval.

In the last two methods, the linear coefficients were initialized
using their estimates provided by linear BSS methods as ex-
plained in Section IV-B1. More precisely, we used the non-Mar-
kovian ML algorithm described in [30] for initializing Method
3, and the Markovian ML algorithm explained in [4] for initial-
izing Method 4. The nonlinear parameters were initialized to
random values in . Table VII shows the SIR obtained by
these methods and Fig. 5 compares the original and estimated
signals. The results are shown after applying some post-pro-
cessing to obtain zero-mean, unit-variance signals. This post-
processing is not necessary for our methods and was essentially
performed in order to compare our results with those of Fas-
tICA which provides centered and normalized signals at its out-
puts. As can be seen, the last method provides the best results,
which confirms the usefulness of taking into account the non-
linear terms and the structure of model and spectra in the un-
mixing procedure. For example, the other three methods pro-
vide a false peak in the first estimated spectrum (just before the
300th sample) and in the second estimated spectrum (just before
or after the 300th sample) while these false peaks do not appear
in the spectra estimated by the last method. It is worth men-
tioning that the constraints on mixing coefficients (especially
the sum-to-one constraint on linear coefficients) were not used
in our unmixing methods, except a partial use of the non-nega-
tivity constraint. In fact, in our methods, at each iteration of the
gradient algorithm, we replaced the estimated negative coeffi-
cients by zero.
It should also be emphasized that the unmixing using our

method is possible only when the source spectra are indepen-
dent and the mixing model is bijective in their variation domain.
In practice, real-world remote sensing spectra are not often sta-
tistically independent, especially when they correspond to sim-
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TABLE V

BIAS AND STANDARD DEVIATION OF ESTIMATED MIXING COEFFICIENTS IN THE SECOND SIMULATION WITH BILINEAR MODEL. (A) REFERS TO THE BSS METHOD
IGNORING THE NON-STATIONARITY AND THE AUTOCORRELATION OF SIGNALS WHILE (B) REFERS TO THE METHOD TAKING THESE PROPERTIES INTO ACCOUNT

Fig. 5. Dashed lines: original spectra, solid lines: estimated spectra. First row: method 1 (FastICA), second row: method 2 (MISEP), third row: method 3 (this
paper), fourth row: method 4 (this paper). Each column corresponds to one spectrum.

TABLE VI
MEAN OF SIR AS A FUNCTION OF SAMPLE SIZE WITH TAKING INTO
ACCOUNT THE NON-STATIONARITY AND AUTOCORRELATION OF SOURCES

TABLE VII
SIR OBTAINED IN TESTS USING REAL-WORLD SPECTRA

ilar materials. Moreover, the mixture being usually over-deter-
mined, it must first be reduced to a determined mixture as men-
tioned at the beginning of Section II.

V. CONCLUSION

In this article, we proposed a new method for separating non-
linear mixtures of independent signals. Our method, formulated

in a maximum likelihood framework, exploits on the one hand
the knowledge of the parametric model of the mixing trans-
formation, and on the other hand the possible autocorrelation
and non-stationarity of signals. Its implementation does not re-
quire the knowledge of the explicit inverse of the mixing model.
Our simulation results using a bijective toy model and a bilinear
model showed that taking into account the non-linearity of the
mixing transformation and the structure of signals considerably
improves the performance of BSS. We also showed in our simu-
lations with the toy model that a good estimation of score func-
tions is critical to achieve BSS.
Several possibilities may be proposed to continue this work.

At first, in most of the development of our method, we did
not use the possible information about the sources or mixing
parameters. For example, in the case of linear-quadratic mix-
tures of real-world spectra in urban spectral unmixing, it is well
known that the sources and mixing parameters are non-nega-
tive and their domains of variation are usually known. More-
over, the sum of linear mixing parameters is equal to one. Such
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constraints may be applied either implicitly, using e.g., a pro-
jected gradient method, or explicitly by adding some regular-
ization terms to the cost function.
The separability issue of nonlinear ICA is another interesting

subject. As shown in [49], taking into account the time struc-
ture may reduce the indeterminacies involved in nonlinear ICA.
However, it is worth studying this issue for each mixing trans-
formation to determine the conditions under which ICA gives
a unique solution up to classical indeterminacies. In the case
of linear-quadratic models, the separability issue have been ad-
dressed in some special configurations in [50] and [21].
Finally, it would be interesting to apply our proposed ML

method to other real-world nonlinear mixing models and pos-
sibly to real-world data, although the performance evaluation
in the latter case requires the knowledge of the actual sources
which are generally unknown. Moreover, in this case the obser-
vation noise can also have an impact on the performance of the
proposed method.

APPENDIX A
DERIVATION OF EQUATION (29)

From (24) and using (17), we have

(47)

Moreover, from (28) and (47):

(48)

Inserting the above equations in (15), by choosing and
considering the stationary case where score functions do not
depend on , leads to (29).

APPENDIX B
GLOBAL UNIVALENCE OF THE MIXTURE USED IN THE

SIMULATIONS OF SECTION IV-B1

According to the fundamental global univalence theorem
[51], a differential mapping , where
is a rectangular region in , is globally univalent in if its
Jacobian matrix at is a -matrix7 for every . Consid-
ering the mixing parameter values used in our simulations of
Section IV-B1 with the bilinear mixture described by (45), and
using (34), the Jacobian matrix reads (omitting the index due
to space limitation):

(49)

7A matrix is called a -matrix if every principal minor of is positive.

and its three principal minors are

(50)

Since , and belong to , it can easily be verified
that the first term in each of the above expressions is always
positive and the second term is always negative so that the three
minors are always positive over .
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