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Abstract—This paper presents a maximum likelihood approach
for blindly separating linear instantaneous mixtures of images. The
spatial autocorrelation within each image is described using non-
symmetrical half-plane (NSHP) Markov random fields in order to
simplify the joint probability density functions of the source im-
ages. A first implementation assuming stationary sources is pre-
sented. It is then extended to a more realistic nonstationary image
model: two approaches, respectively based on blocking and kernel
smoothing, are proposed to cope with the nonstationarity of the
images. The estimation of the mixing matrix is performed using
an iterative equivariant version of the Newton-Raphson algorithm.
Moreover, score functions, required for the computation of the up-
dating rule, are approximated at each iteration by parametric poly-
nomial estimators. Results achieved with artificial mixtures of both
artificial and real-world images, including an astrophysical appli-
cation, clearly prove the high performance of our methods, as com-
pared to classical algorithms.

Index Terms—Blind source separation (BSS), maximum likeli-
hood approach, nonstationary sources, nonsymmetrical half-plane
(NSHP) Markov random fields.

I. INTRODUCTION

LIND source separation (BSS) methods aim at recovering
B a set of unobserved source signals from several observa-
tions which are the results of some unknown transformation
of these sources. Since this problem is encountered in various
fields, the interest for BSS techniques has increased in the last
two decades, yielding numerous approaches which usually
make some hypotheses on the sources and their transformation,
in order to deal with this ill-posed problem. Many of these
approaches especially assume that the sources are mutually sta-
tistically independent, and so apply an independent component
analysis (ICA) [1] to recover the original signals.

Basic ICA methods also suppose each source is indepen-
dently and identically distributed (i.i.d) and exploit the assumed
source non-Gaussianity to perform separation [1], [2]. Obvi-
ously, these approaches cannot be applied to Gaussian source
signals, and completely ignore some important features that
can dramatically improve source estimation accuracy, for
example, the temporal (resp. spatial) structure of the signals
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(resp. images). Indeed, it has been proven that the ICA problem
may be solved by exploiting non-Gaussianity, autocorrelation
or nonstationarity of the sources,! [4]. Although there are
several methods in the literature that take into account either
source autocorrelation [5]-[10] or source nonstationarity, e.g.,
[11]-[17], most of the proposed approaches only exploit part
of the available information.

In [18], Hosseini et al. proposed a linear instantaneous
BSS method based on a maximum likelihood (ML) approach,
where autocorrelated 1-D stationary sources were modeled as
qth-order Markov sequences. This method provides an asymp-
totically efficient estimator of the mixing matrix and takes into
account both non-Gaussianity and temporal autocorrelation of
the mutually independent sources. Nevertheless, it suffers from
severe limitations which can cause, in some cases, the failure
of the separation procedure. Indeed, this method is based on the
source stationarity assumption which is actually unsatisfied for
most real signals. Moreover, it only applies to 1-D time series
and the computational load of the resulting algorithm critically
increases when rising the number of samples or the order of
Markov models in the source signals.

First inspired from this previous work, we develop in this
paper a new blind image separation method based on an ML ap-
proach, where spatial interactions between neighboring pixels
are modeled using Markov random fields (MRFs). Unlike [18],
the proposed method is especially adapted to image separation.
Furthermore, major modifications are introduced, in compar-
ison to the initial approach, in order to reduce the computational
cost and to adapt the method to nonstationary signals.

Since an initial paper by Geman and Geman [19], MRFs have
been extensively used for modeling the spatial dependence be-
tween neighboring pixels within an image. Applications hence
cover a wide range of fields, including for instance image seg-
mentation, texture classification and feature extraction. In blind
image separation, however, only a few reported BSS methods
take advantage of the image autocorrelation by describing
sources with MRF models [20]-[22]. These approaches still
assume some prior knowledge about the conditional proba-
blility density function (pdf) of the data, for instance a Gibbs
prior [19], [23], which then allows one writing this conditional
pdf in a closed form. In the present work, nevertheless, the
Markov model is only used to provide a qualitative description
of the statistical dependence between pixels. Therefore, we
do not require any prior information about the source image
distributions, so that the model may adapt to most real-life
images.

! Autocorrelation and nonstationarity can also be used to override the inde-
pendence assumption (see, e.g., [3]).
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Furthermore, we only focus our study on causal bidimen-
sional MRF models, which are mainly attractive for their
simplicity and computational efficiency. In particular, two
types of causal MRF models are widely known in the literature:
the Markov mesh random fields (MMRFs) [24]-[26] and the
nonsymmetrical half-plane (NSHP) Markov random fields, also
known as unilateral MRFs [27]-[29]. A comparison between
both models in [30] proved that MMRFs may be classified
as a subset of NSHP-MRF models, and recommended using
NSHP-MRFs when accurate image processing is needed, espe-
cially due to their higher ability to capture the diagonal edge
description in images. Therefore, we adopt an NSHP Markov
model to describe autocorrelation within the source images in
this paper.

The first method presented in this paper supposes that the
sources are stationary. An extension to possibly nonstationary
images is then proposed and two approaches, respectively based
on blocking and kernel smoothing, are proposed to deal with the
nonstationarity of the sources. This improved version operates
in a quasi-optimal manner since it simultaneously exploits the
non-Gaussianity, the autocorrelation and the nonstationarity of
the images. Furthermore, the proposed method is able to take
advantage of pdf nonstationarities, while classical nonstationary
BSS methods only consider the nonstationarity of variance.

The remainder of this paper is organized as follows. In Sec-
tion II, we present the BSS problem, then propose an ML sep-
aration method. The sources are described using NSHP-MRF
models to simplify the log-likelihood function. We then de-
fine conditional score functions and derive the maximum of the
log-likelihood, which yields the estimating equations. Finally,
we propose a modified equivariant Newton-Raphson algorithm
to solve these equations. In Section III, we introduce methods
for estimating the conditional score functions, using parametric
polynomial estimators. A simplified version of this approach as-
suming that the sources are stationary is first presented and ex-
tensions to the possibly nonstationary case are then proposed. In
Section IV, we summarize the main steps of our algorithm. Ex-
perimental results using artificial mixtures of both artificial and
real-world images are presented in Section V and compared to
classical blind image separation algorithms. An application of
the developed methods to Astrophysics is also presented. Con-
clusion and some prospects are finally presented in Section V1.2

II. MARKOVIAN IMAGE SEPARATION METHOD

We consider the blind image separation problem in its sim-
plest form, where the observations are linear instantaneous mix-
tures of the source images. Assume we have K linear transfor-
mations of K source images composed of N = N; X N pixels.
The mixture model in a noiseless context is defined by

X(TLh 712) = AS(TLh 7’L2) (1)
where {ni,n2} € [1...Ny] x [1...N3], x(n1,ns) and
s(n1,ng) are, respectively, the K-dimensional observation
and source vectors, and A is an unknown K x K invertible
mixing matrix. Our aim is then to estimate a separating matrix

2Some of the results developed here have been partly presented in our con-
ference papers [31]-[35].
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Fig. 1. Different sweeping schemes over an image: (a) Horizontal TV scanning,
(b) vertical scanning, (c) diagonal scanning.

B = A~! up to a diagonal matrix and a permutation matrix,
which are classical but, in most cases, not critical indetermina-
cies for BSS methods [1].3

In this paper, we develop an ML approach for estimating this
matrix. We, therefore, want to maximize, with respect to the
separating matrix B, the joint pdf of all the pixels of the images
in the observation vector x, defined by
F=felz1(1,1),... 2k (1,1), ...
T (N1, Na)). (2)
Supposing that the source images are mutually independent, this
joint pdf may be rewritten as

<|det ) Hbe

(b,L-Tx( 1), bl x(Ny, Na))  (3)
where bl is the ith row of B  and
forx(bIx(1,1),...,bI'x(Ny, Na)) represents the

joint pdf of the N pixels of bYx. Rewriting the above equation
as a function of the sources s; = b,L-Tx, Vi = 1,...,K, we

obtain
- (=) Hf”“

where f5,(s;(1,1),...,5;(N1, Na)) represents the joint pdf of
the N pixels of source s;.

Using Bayes rule, we want to decompose this joint pdf and
then simplify it by assuming MRF models for the source images.

,8i(N1,N2)) (4)

A. Bidimensional Markov Model

Contrary to temporal signals, where the natural order for
Bayes decomposition just follows time evolution, there exists
no natural order for the pixels in an image, so that different
schemes my be used to perform this decomposition. Never-
theless, it is obviously more interesting to preserve continuity
when decomposing the joint pdf, which makes it possible to
handle the local interactions between pixels. Some particular
almost continuous sweeping schemes over an image are shown
in Fig. 1.

These sweeping trajectories being almost equivalent for our
approach, we choose the first one, which is a classical horizontal

3The scaling and permutation indeterminacies may be critical in some appli-
cations. This is the case, for example, in some applications related to hyperspec-
tral image separation [21], [36].
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Fig. 2. Sets defined for a NSHP Markov random field: 2,11,12 is the NSHP
associated to the site (121, 22), @y, n,, is the support of (71, n2) which defines
the order of the NSHP Markov model.

TV scanning order. Each source joint pdf f,, in (4) can then be
decomposed using Bayes rule as

T, (8:(1,1)) X fo,(1,2)(5i(1,2)]si(1,1)) x
X fs;(1,8)(8:(1, N2)[si(L, N2 — 1),..., (1, 1))
X fo21)(5i(2,1)]si(1, Na), ..., s:(1,1)) X
X fo:(2,N)(8:(2, N2)[si(2,No — 1),...,8i(1,1)) -
X fsi(Nl,Ng)(Si(vaN2)|Si(N17N2_ )58l 1)) (5)

where each factor represents the conditional pdf of a pixel with
respect to its predecessors, according to the chosen sweeping
scheme. This formulation is particularly interesting since, to
each pixel s;(n1,n2) corresponds a set of predecessors located
in the nonsymmetrical half-plane (NSHP) defined by

annz =
{(k,l)e[l...

N1]><[1...Ng]/(k:nl,l<n2)u(k<n1)}. (6)

Using the decomposition (5) to rewrite the joint pdf

fsi(5(1,1),..., $i(N1, N2)), we obtain the general form
fsi(si(1,1),..., $i(N1, Na))
Ni N
H H fs nl,nz) (n1>n2)|5712n1,12) (7)
77,1—1 ’nz—
where s;,, " is the set of pixel values located in the NSHP

Ynings and fS (n1,n2)(8i(n1,n2)|$iy, ) is the conditional pdf
of the pixel s;(n1,n2), with respect to Sising -

To simplify this function, we suppose that each source
image can be modeled by an NSHP-MREF [27]—-[29], defined as
follows.

Definition: Let s be a random field defined over an Ny x N»
rectangular lattice L. For each couple of coordinates (n1, ns),
called a site of the lattice, we define an NSHP %, ,,, and a
support ©,,, ., C X, in this lattice (see Fig. 2 and (10) below
for an example). s is called an NSHP Markov random field (or
a unilateral Markov random field) if and only if its density f is
such that

f(s(n1,n2)lss, ., )= f(s(n1,n2)lse,,,, )V(n1,n2) € L (8)

where sg,, . is defined as Sig, above.
For simplicity, the support set ©,,,,,, is generally chosen so
that it has the same shape for any site (n1,n2) of the lattice.
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Identifying each source image with an N1 x IV, lattice, we here
suppose that the interactions between pixels are described by an
NSHP Markov random field according to the above definition.
The joint pdf of each image can then be written in the following
form:

(N17N2))

= ﬁ H Jsimimo) (Sz‘(num)lsi@”m). )

ni=1ny,=1

We here assume that the sources are fourth-order NSHP Markov
fields,* since for each pixel s(n1,n2), we define the support set
as

®n1n2 = {(nl,nZ — 1)/ (n1 — 1,77,2 + 1)
(’I”Ll — 1./712)7 (n1 - 17712 - 1)} (10)

This type of support is attractive since it provides a sufficient
description of the dependence between neighboring pixels in
the horizontal, vertical and even in the two diagonal directions.
Moreover, it is proved in [29] that a fourth-order NSHP Markov
model takes into account the autocorrelation between the pixel
and all of its neighboring pixels (see Appendix A).

B. Estimating Equations

Under the fourth-order NSHP Markov model assumption, the
conditional pdf of each pixel given all its predecessors is equal
to its conditional pdf given only its three top neighbors and its
left neighbor. This condition is obviously satisfied anywhere in
the image except for some pixels situated on the left, top and
right boundaries. However, given a quite large number of pixels
N = N; X N, the conditional pdf of the boundary pixels may
be neglected without significant loss in estimation performance.
The joint pdf (9) of each source image may be written in this
case as

fsi(s,i(l, 1) ey Sy (Nl,Ng))

Ny No—1
~ II I Fotmomo (silnimalsic,.,) (D)
n;=2 ny=2
where Onyn, is defined in (10) and
fsi(nl,nz)(si(nl,n2)|3i®”1nz) is the conditional pdf

of the pixel s;(ni,m2) with respect to the pixels located
in the support set ©,,,,,. Taking the logarithm of (4) and
replacing each source pdf by the approximation in (11), the
log-likelihood function takes the form

logF ~ N log(| det(B)|)
K N; No—1

+Z Z Z logfs (n1,n2)

1=1n1=2 no=2
(si(nh n2)|8i@nln2 ) .

4The order of the NSHP Markov random field here corresponds to the number
of pixels in the support pixel set © nyny - following the definition in [27]. In the
literature, the orders of noncausal bidimensional MRFs are generally associated
to the distance between pixels [23]. Using the latter convention, our MRF model
is a second-order bidimensional MRF.

(12)
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Dividing the above function by N and defining the spatial av-
erage operator’Enx[.] = 1/N an 9 27]]\;2;21 [.], we obtain a
simplified expression of the log-likelihood, written as

L= %logF ~ log(| det(B)|)

+EN

K
> 108 fis(nyma) (si(nl,n2)|si@m,12)] . (13)

=1

We aim at maximizing this cost function with respect to the
separating matrix B. This can be done, for example, using a
relative gradient ascent algorithm as in [18]. Nevertheless, this
approach is very time consuming, especially for images with
a large number of pixels. Thus, in the following section, we
propose to use a modified Newton-Raphson algorithm to solve
this problem. This algorithm requires us to compute the gradient
of (13), which reads, using (10)

oL

K
g
T
5B =B N | gg 2108 s (silns m2)

si(n1,m2 — 1), s:(n1 —1,n0 + 1)

si(ny —1L,ma),s:i(ny — 1,ne — 1)) (14)

Defining the conditional score function of source s; with respect
to s;(ny — k,ma — ) by

k1
'l/}si(nl,nz) (’le s ’fLQ)

881;(77,1 — k,n2 _ l) og fS1(n11n2)

(si(n1,n2)|si(n1,ne — 1), s;(ny — 1,ny + 1)

si(n1 — 1,m2),5(n1 — 1,n3 — 1)) 15)
and using the chain rule, we obtain
8L _
LR Y D SR AR
(k,1)eT
0s; —k,mg —1
Dsilm —kma =D )

0B

1), (1,0), (1, 1)}.

— k,ng — 1) reads as a function of B and the

where T = {(0,0),(0,1), (1, —
The pixel s;(n
observations as

si(ny —k,ng —1) = bIx(ny — k,ny — 1) (17
where b? is the i-th row of B. This yields
Osi(n1 — k,na —1
S/(nl 12 ) = XT(Tll — k,ng — l)é,j (18)

T
ob;
where 6;; is the Kronecker symbol defined by

s _ [ ifi=j
27710, otherwise.

5The boundary pixels have been neglected again in this spatial average.
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Then, we can see
0si(ny — k,ng —1)/0B s
. kil

is equal to 1/)51(”1’”2)(77,1, ny).xX
other rows are zero, so that

K
(987;
5[5ty 02 21

=1

that 1/)57’27” n2)(n1,n2).
a matrix whose i-th row
T(ny — k,na — 1) while all its

ny — k'7n2 — l)
0B

= \Ilk’l(n17n2)xT(n1 — k,ng — l)

S

19)

where 5! (ny ny) is a K- dlmensional column vector con-
taining all score functions 1/) ’(n - )(nl,nQ). Inserting this
equation in (16), we obtain

> wl

(k,1)eY

——~BT_ En

B . (20)

(nl—k,ng—l)

nl n2

Considering the case when 0L/0B = 0, then postmultiplying
both sides of this equation by BT, we obtain the set of equations

> wlt

(k,1)eY

EN (n1 — k./TLQ — l) =1 (21)

711 n2

where I is the identity matrix.

It should be kept in mind that source separation is achieved,
at best, up to a diagonal matrix. Therefore, the diagonal entries
in (21) can be replaced by any scaling convention, and only the
off-diagonal terms are important in (21). This finally yields the
K(K — 1) following estimating equations:

EN Z l/} 7-('”1,”2 n17n2)'sj(n1 - k7n2 — l) =0

(k,1)eT

C. Equivariant Newton-Raphson Algorithm

In the classical version of the Newton-Raphson algorithm,
one first assigns an initial value B to the separating matrix B.
Then, the score functions in (22) are estimated around the source
value § = Bx using a first-order Taylor expansion. The aim is,
therefore, to find a matrix A so that B + A is a solution of this
first-order approximation.

It can be verified that the separation performance achieved
with this algorithm depends on the mixing matrix, i.e., the more
the K sources are mixed, the more separation is difficult. A par-
ticularly desirable property is, however, the equivariance of the
separation algorithm [37], which means that the performance
only depends on the initialization conditions and not on the
actual mixing matrix. To derive an equivariant algorithm, we
modify the updating rule B = B+ Aof the Newton-Raphson
algorithm into a serial update, so that the estimated separating
matrix is proportional to its previous value B according to the
formula

B=(1+A)B (23)

where A is some updating matrix defined below.
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In the following, we will only consider the case K = 2 to sim-

plify the notations. The extension of this approach to a higher
number of source images is nevertheless straightforward.
611 012
021 22
terms 612 and d91 are solutions of the following set of linear
equations, where § = Bx (see Appendix B for a proof)

Denoting A = < , we prove that the off-diagonal

EN Z ¢£f(21,n2) 31(n17n2)|§1(n1,n2—1)7...,
(k,)ex
§1(’I’Ll - 1,712 - 1))51(711 - k,’l’bz - l) 521
2 DRSS " )
(kDer (.)ET 881( ny — Z N9 — ,7) 1(n1,n2
(81(%1 n2)|31(n1,n2 — 1) ..... 31(n1 -1 , Ny — 1))
§2(’I’Ll - i,nz —j) .52(77,1 - k,nZ - l) 612
:—EN Z Qﬁgf(lnl n2) sl(nl,n2)|§1(n1,n2—1),...,
(k,1)eY
§1(’I’Ll - 1,712 - 1))52(711 - k,’l’bz - l) (24)
EN Z 1/125’(211”2)(52(711,n2)|§2(n1,n2 - 1),...,
(k,ex
§2(’I’Ll - 1,712 - 1))52(711 - k,’l’bz - l) 512
21 IDREDY : wrmn)
(Cer e O2(m —iima = j) et
(82(%1 n2)|82(n1, Ng — 1) ..... 52( ny — 1 , Ny — 1))
$1(n1 —d,m2 — j) p.81(n1 — kyma — 1) | 621
= EN Z 1/}51;:(21 n2) 52(n1,n2)|§2(n1,n2 - 1), ceey
(k,)eY
§2(’I’Ll - 1,712 - 1))51(711 - k,’l’bz - l) (25)

It can be seen from the above set of equations that the off-diag-
onal entries 612 and ;1 only depend on the vector s. The diag-
onal entries of the matrix A can be set to any arbitrary value,
for example zero, due to the scale indeterminacy of ICA. Thus,
A is only a function of S, which we denote A = ¢(s). Postmul-
tiplying by A the updating rule in (23), then considering the
global mixing-separating matrix C = BA, we can rewrite (23)
in the following form

C =(I+ ¢(Bz))BA
(I+ ¢(BAs))BA
(I+ ¢(Cs))C

(26)
with C = BA.
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It can be easily verified that the global mixing-separating ma-
trix, recursively obtained using the formula in (26), only de-
pends on the initial value of the matrix C, so that the algorithm
satisfies the equivariance property.

Until now, we supposed that the score functions of the sources
were known. Since the sources are not observable, their score
functions can be estimated only via the reconstructed sources
§(n1,m2) = Bx(n1,n9) at each step of the Newton-Raphson
algorithm. This approximation is clearly not accurate at the first
steps of the algorithm. However, our tests show that the algo-
rithm is usually robust to this bad initialization and converges
towards actual sources in a reasonable number of iterations.

In [18], a nonparametric spline kernel estimator, introduced
in [38], was used. On the contrary, we adopt in the following
section a parametric approach to estimate the score functions of
the reconstructed sources and their derivatives. This estimator,
based on third-order polynomial functions, is particularly inter-
esting for its simplicity and computational efficiency,® and the
estimation of the score function derivatives is straightforward in
this case.

III. PARAMETRIC ESTIMATION OF THE SCORE FUNCTIONS

A. Score Function Polynomial Estimators

To simplify the notations, we will denote by
j ln) (éol€1,...,€4) the conditional score function at
3; (n1 ,m2), defined as in (15), and whose explicit notation reads

1/.,; énl n))( (n17n2)|51(n1 ng — 1)
sz(nl - 17”2 + 1),Si(n1 — 177’[,2)

§i(n1 — 1,n2 — 1)) (27)

Using rules for conditional densities, this conditional score
function may be rewritten as

V5 (ol - €a)
= d)gzén)(f(h ce 754) - wszén)(fl? s 754)~
Our objective is to find two parametric least mean square esti-

mates, g n)(&) ..... 54, ) and ug’l(n)(fl, e ,54 V), of the

joint score functions 1/1, (f’o7 ..y &4) and 1/)A () (51 ..... ,€a),
respectively. This ylelds for the first estimator an optimization
problem expressed as

W (3i(n)) = arg min E{[47 (o, - - &)

—g;:’(n (o, - -,

(28)

&1, W2}

This criterion may be simplified using the following theorem,
proved in [39] for univariate functions and extended to multi-
variate functions in [40].7

(29)

%0n a 1.4 GHz AMD-Athlon PC with 512 MB of RAM, the polynomial esti-
mation of the score function using 100 X 100 pixel images is more than 12 times
faster than the estimation obtained with the spline kernel estimator. Moreover,
the spline kernel estimator suffers from critically high memory consumption.
For instance, using a PC with 1 GB of RAM, we do not have enough memory
to compute the kernel spline estimate of a 200 x 200 pixel image, which is not
the case for our polynomial estimator.

TThe proof is based on integration by parts.
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Theorem: For any arbitrary multivariate function
g(y1, ..., yy) that satisfies
lim fy(yl-,-~~qu)g(yla~--;yq):07

(U1,-vestig) — o0

where f, (.) is the joint pdf of the variables (y1, . . .

5 [_alogfy(yl,...7yq)g(y17,..,yq):|

dy;
ag(yh )
Jy;

,Yq), We have

This theorem is actually satisfied by all real-world images. Thus,
we can reformulate the optimization problem (29) as follows:

WHEI(35(n))
= arg Ir‘LAi/n {E [(gsi’én)(fm oy €, W))Q}

_9F 8.922”)(507 - '7547W)] }

St 31)

where ¢80 € {&,..., &)} and represents 3;(n1 — k,na — 1)
according to (15) and (27).8 Note that the parametric estimator
qfén)() may be chosen in different ways. However, polyno-
mial functions seem to be advantageous in this case, due to
their linearity with respect to the parameters in W, the sim-
plicity of their computation and derivation. Therefore, we here
use third-order multivariate polynomial functions to estimate
the joint score functions. The order of the polynomial function
is chosen to provide a low computational cost without degrading
estimation accuracy. The polynomial estimator qfén) (.) can be
written as

95y (b0so - €, W)

= Z u]fl(§L(n))hJ(fo/ P 75’4)
=hTW"(3;(n)) (32)

where h;(&o,...,&4) and wfl(§z(n)) are respectively the

monomial functions and the coefficients. Replacing gs’én) (.)in
(31) by its general polynomial formulation (32), we obtain

W (3i(n)

= arg IIlv‘i,Il{E [hTWk"l(gi(n))[Wk’l(gi(n))]Th]

(33)

It may be shown easily that, setting to zero the derivative
of the above function with respect to the parameter vector
WFEL(3,(n)), the minimum finally reads

oh } L34

Whtso(sit) = (En]) " B[

8This result shows a nice property of score functions: even though we have no
knowledge about them, we can design a least mean square estimator for them.
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Note that the parameters in (34) do not explicitly depend on the
score functions 1%

The estimate ug_’l(n)(fo, ..., &4, V) of the second joint score
function, T/’,{:.’En)(fl ..., &4), can be computed in the same way.

Thus, we define the polynomial estimate ul:l(n) (.) by

ubt (€ €4, V)
=2 Gk &)

= kTV*(3i(n)) (39)
where k;(&1,...,&4) and vf’l (8;(n)) are respectively the mono-
mial functions and the coefficients. Following the same steps as
for the previous estimation, we finally obtain the following for-
mula for the parameter vectors

(36)

Vi o(3i(n) = (B [kK"]) E{ ok }

Ockl

where 50 € {&1,..., &)
The functions h(.) and k(.) required for (34) and

(36) are third-order multivariate monomial  func-
tions, which respectively contain all possible terms
in {17(507"'7€4>7(€07"'764)27(507"'754)3} and
{17(617"'764)7(517'"754)27(617"'764)3}’ where the

exponents correspond to the orders of the monomials. Thus,
the numbers of coefficients we must compute for each
joint score function estimator are Zi:o (5"'7’_1) = 56 and

P
22:0 (4+§_1) = 35, respectively.?

Our experiments show that third-order polynomials insure
fast and accurate estimation of the score functions. Indeed,
while our estimator is faster than Pham’s nonparametric spline
kernel estimator [38], both approaches almost yield the same
performance (see Appendix C). Therefore, using higher-order
polynomials seem to be unnecessary, since it will consider-
ably increase computational cost without probably yielding
significant improvement in estimation performance. For in-
stance, if we use fourth-order polynomials for estimating score
functions, we will need 70 and 35 additional coefficients for
estimating h(.) and k(.), respectively. On the contrary, first-
and second-order polynomials are not enough accurate for
estimating these polynomials as shown by our tests.

B. Estimation for Stationary Images

In a general context, the polynomial coefficients in W*-! and
V! should be estimated at each site (n;,ns2) of the image due
to spatial score function variations. However, the expectations
in (34) and (36) cannot be estimated in this case, since only
one realization of the source images is available. Hence, some
statistical hypotheses should be introduced to circumvent this
difficulty.

In this section, we suppose that the images are stationary, i.e.,
their statistics remain constant all over the images. The pixel
index (n1,n2) can then be omitted all along the previous anal-

ysis and, under ergodicity conditions, the expectations, required
9The numbers of coefficients w*>! and v*! for a given power p, with p €
{0,...,3} correspond to the numbers of possible ways to choose p elements
from 5 and 4 variables, respectively, when repetitions are allowed.
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for computing (34) and (36), are simply replaced by a spatial
average all over the image, yielding the following formula for
Wkt

N1 N2—1

1
WE’JZMSZ(<N1_1 Ny =) Z Z hhT>

ny=2ny,=2

N; Ny-—1
(w2 E ) @

where h is the column vector containing the monomial functions
h,(§1(n1 TLQ), §,‘,(7’Ll, no — 1), §1(TL1 — 1, N9+ 1), §1(7’L1 — 1, ng),
8i(n1 — 1,n2 — 1)) defined in the previous section.

The polynomial coefficients in (36) are computed in the same
manner and are constant all over the image.

C. More Realistic Models Adapted to Nonstationary Images

Even though practical, the stationary image assumption used
above is far from being realistic. In fact, most of real-world im-
ages are clearly nonstationary and the models describing their
statistics should, therefore, depend on the pixel position. Thus,
to get closer to real conditions, we now propose extensions of
the above method to nonstationary source images. To this end,
we adapt two methods, respectively called blocking and kernel
smoothing, which were used in [17] to handle nonstationarity
for temporally uncorrelated 1-D sources.

1) Blocking Method: This approach essentially deals with
slowly varying source statistics. In this case, the image can be
split into M7 X M, sub-images I, so that each resulting sub-
image may be supposed to be stationary. We can then replace
the expectations in (34) and (36) by a local spatial average all
over the sub-image, in the same way as in our above stationary
Markovian approach. Therefore, the coefficients of the polyno-
mial estimators of the score functions do not depend on the pixel
position within each sub-image, and the score functions can be
estimated once in each sub-image I;.

2) Kernel Smoothing Method: In a kernel smoothing
approach, the expectations required for (34) and (36) are
computed in each pixel of the image by locally smoothing
the pixel intensity with respect to its neighborhood. In the
following, we denote for simplicity the expectations in (34),
at each pixel 8;(n1,n2), by E[p(&o(n1,n2),...,&(n1,n2))],
where {fg(nl ng),...,&s(n1,n9)} is the set of pixels
{sl(nl 7’L2) (nl, Ny — 1) $ ( ny — 17’”2 + 1), §1(7’L1 —
1,m2),8;(n1 — 1,ne — 1)} and ¢(.) is a general notation for
the nonlinear functlons contained by h in (34). The estimate of
the above expectation is given by the following nonparametric
estimator

E[p(&o(n1,n2), ..., Ex(n1,n2))] 3
(i% (Nl—nl M2—n2)>
et Yo v
AN M1 — Ny 2 — N2
|Jn§j? uzzj? ( I v >

(38)
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where k(.) is a kernel function and v is a window width
parameter.

This estimator is very time consuming but should be more
accurate than the blocking approach, since the estimates here
are weighted averages around each image pixel, whereas the
blocking method only uses the same sample mean over each
sub-image. Nevertheless, if we modify our blocking algorithm,
so that the supposedly stationary sub-images may be overlap-
ping, both approaches turn out to be very similar. Indeed, using
arectangular kernel, the two methods lead to the same estimate.
However, the kernel smoothing method offers more flexibility
for estimation, since it allows us to modify pixel weights by
changing the kernel distribution and/or the bandwidth param-
eter v.

This estimator being very time consuming, we can reduce its
computational cost by considering a sparser estimator defined

( £ 5

by
Ql —n Qs n -1
1 Lo 2
’ v
li=l11 la=l22

L, Lo Ql —ny lzLQz — Ny
2
DRI e

L=l la=las

llQl ZQQQ llQl lQQQ
¢<0< L2>"“7€4<L1 Lz))

where @)1 = N7 and Q2 = N> — 1. The sparseness parameters
L, and Ly are chosen so that ()1/L; and )2/ L+ are integers,
while l1; and l55 are the first integers such that [;; > 2L1/Q
and 122 Z ZLQ/QQ.

The kernel smoothing estimator of (36) is obtained in the
same way as above.

(39)

IV. SUMMARY OF THE ALGORITHM

According to the previous analysis, the resulting BSS method
operates as follows.
1) Initialize the separating matrix B, for example using B=

I

2) Repeat until B does not change significantly, i.e until

IBis1 — Billoo < €, where ¢ is a threshold parameter

fixed in our tests to 1075:

* estimate the reconstructed source images § = Bx;

 center and normalize the output §, so that each of its
components has unit variance;

* estimate the conditional score functions in each pixel of
the image using the polynomial estimators presented in
Section III. Depending on the image, either stationary or
nonstationary approaches are used to estimate the poly-
nomial coefficients;

» compute the derivatives of the conditional score func-
tions, required for computing the coefficients of the set
of (25);

* solve the set of (25) to compute the off-diagonal entries
of the matrix A, then update the estimated separating
matrix according to B = (I+ A)By.
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V. TEST RESULTS

In the first two parts of this section, we present simulation
results that we obtained with artificial images. In the next step,
tests using artificial mixtures of real-world images are described
and our method is compared to a set of classical approaches. An
application to astrophysical image separation is finally depicted.

A. Combining Autocorrelation and Non-Gaussianity

In the following experiment, we compare our stationary bidi-
mensional Markovian method to two classical BSS methods.
The first one is the Pham-Garat algorithm [39], which uses an
ML approach without taking into account the possible auto-
correlation of the sources. Therefore, to perform separation, all
sources except at most one must be non Gaussian. The second
one is a 2-D extension of the SOBI algorithm [7], which is a
second-order approach. This method, based on a joint diago-
nalization of several covariance matrices evaluated at different
shifts, takes into account the autocorrelation of the sources, but
not their possible non-Gaussianity.

We first generate two 100 x 100 pixel independent, white and
uniformly distributed artificial bidimensional processes. These
images, denoted e;(n1,n2) and es(nq,n2), are then filtered by
two autoregressive (AR) filters, according to the formula

si(n1,n2) = ei(ny,n2) + pg,lsi(nlyn2 -1

+ ol ysi(na —1,np +1)

+ Pi,osi(”l —1,n2)

+pi18i(n1 —1,ng —1). (40)
The coefficients of AR filters are chosen using a method
proposed in [41] which guarantees their stability. Thus,
the coefficients, p;k, are fixed to {—0.5,0.4,0.5,0.3} and
{=0.5,p7 _1,0.5,0.3}, respectively for i = 1 and 2. The
coefficient p%ﬁl of the second filter may change in its stability
interval, i.e., [0.2,0.6]. Note that the generated source images
follow exactly the fourth-order NSHP Markov model in this
case.

The observations are finally obtained using the mixing matrix
1 0.99

A= <0.99 1
reconstructed sources $;(n1, ne) are normalized by convention,
so that they have the same variances and signs as the original
source images. The separation performance is evaluated using
the output Signal to Interference Ratio criterion (in dB) defined
by

. For each BSS algorithm tested here, the

K
1 E[s?(n1,m2)]
SIR = — 101lo e
7 219810 BT g, ng) = e )]

. (@1

In the present test, the number of sources is K = 2. The SIRs
obtained by the three compared algorithms are computed for
100 Monte Carlo runs, where we randomly change the two pro-
cesses €;(n1,n2). The mean SIR is shown in Fig. 3(a) as a func-
tion of the coefficient p%fl of the second AR filter. Note that,
whatever p%,_l, our Markovian algorithm outperforms the other
two. The performance of the Pham-Garat algorithm degrades
while increasing the value of the filter coefficient p%,_l, since
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Fig. 3. Simulation results using (a) AR and (b) FIR filters.
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Fig. 4. FIR filter frequency response.

the autocorrelation within the second source image thus be-
comes more important and this source approaches Gaussianity.
Furthermore, we remark that the SOBI algorithm fails to sepa-
rate the sources when we use the same filter for the two noise
images, i.e pi_l = 0.4. This behavior of the algorithm is not
surprising because the two sources have the same spectrum in
this case.

In the second part of this experiment, we generate similarly,
two white, independent and uniformly distributed bidimen-
sional processes, e1(n1,n2) and ea(n1,ns), but only filter one
of them by a symmetrical Finite Impulse Response (FIR) filter
to obtain the source images s1(n1,n2) and sa(ni,ns2). The
chosen FIR filter is a low-pass one with a tunable selectivity
and an example of its response is shown in Fig. 4. The image
filtering was practically done using a 9 x 9 pixel square mask.
Note that in this case, the fourth-order NSHP MRF model is
no longer satisfied by this source image. i.e., we here test our
approach beyond the framework for which it was designed.

The resulting source images are then mixed by the same ma-
trix A as above, and the mean SIR over 100 Monte Carlo runs is
computed and plotted in Fig. 3(b) as a function of the selectivity
of the FIR filter.

We remark that our algorithm always outperforms the SOBI
algorithm. The Pham-Garat algorithm achieves slightly better
results only when the selectivity is low, since the source images
are nearly white in this case, so that their autocorrelation cannot
be exploited by our Markovian algorithm. However, even in this
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case, we still obtain good performance, with a 50-dB SIR, while
SOBI provides poor performance, i.e., down to 10 dB.

From the results presented above, one can clearly see the ben-
efit of using both non-Gaussianity and spatial autocorrelation
when separating non-Gaussian autocorrelated images. Indeed,
the fourth-order NSHP Markov random fields, that we used in
our algorithm, provide a flexible spatial model, which can suf-
ficiently describe the pixel interactions. The above last exper-
iment especially proves the robustness of our method with re-
spect to this neighborhood choice, since we obtain good sepa-
ration performance even when the images do not exactly fit a
fourth-order NSHP-MRF model.

However, this leaves an interesting question open: why do
we limit our neighborhood to a fourth-order Markovian model?
The relevance of this choice is proved by the following tests,
where we compare the separation performance of our fourth-
order Markovian method to different versions of the same ap-
proach modeling spatial autocorrelation with second- and sixth-
order NSHP MRFs, respectively. The neighborhoods associated
to these two models correspond to the two sets Vi = {s;(n1 —
1,%2), si(nhnz - 1)} and V2 = {si(nl,ng - 1)7 si(nl,ng —
2), 8,‘,(”1 —1,712—1—1), si(nl —1,712), si(nl—l,ng—l), qu(nl—
2,n2)}, respectively.10

The observations are generated in the same way as in the
previous experiments, using two FIR filters of selectivity 0.4
and 0.8, according to Fig. 3. Over 100 Monte Carlo simula-
tions, the fourth-order bidimensional Markovian method leads
to a mean SIR of 48.5 dB, whereas we obtain 40.7 and 50.2 dB
using the second- and sixth-order Markovian approaches, re-
spectively. Note that the sixth-order Markovian method only
yields a slight improvement, lower than 2 dB, with respect to the
SIR obtained by the fourth-order method. On the contrary, the
fourth-order method significantly outperforms the second-order
approach, as it yields an improvement of about 8 dB of mean
SIR. The computation times for the second-, fourth-, and sixth-
order methods, on a 1.16 GHz AMD-Athlon PC with 512 MB
of RAM, were typically equal to 12, 38, and 112 s, respectively,
for each simulation. The time cost of the sixth-order method be-
comes especially critical when the image size increases. Indeed,
switching from the above 100 x 100-sized images to 200 x 200
ones, the simulation times for the above three methods become
32,129, and 15600 s, respectively. Hence, the choice of a fourth-
order model is a good trade-off between computational cost and
performance.

B. Improvement With Nonstationary Algorithm

In the second part of our experiments, we want to highlight
the advantage of the nonstationary Markovian approach with
respect to the stationary one when separating nonstationary
images.

The tests are performed here using the blocking algorithm,
presented in Section III. Following the same steps as in the

10The second- and sixth-order Markovian models are defined here according
to the NSHP-MRF model definition, and so correspond to the number of pixels
in the neighborhoods V; and V5, respectively. Using the same convention as
in noncausal MRF models, these two models are first- and third-order MRF
models.
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Fig. 5. Mean SIR over 100 Monte Carlo simulations versus number of sub-
images for blocking algorithm applied to (a) AR-filtered source images and
(b) FIR-filtered source images.

previous simulations, we generate two 200 x 200 indepen-
dent, white, and uniformly distributed artificial bidimensional
processes, e1(n1,n2) and ez(ni,n2), that we filter using two
AR filters according to the formula (40). The filter coefficients
are chosen in the filter stability domains and are fixed to
{-0.5,0.3,0.5,—0.29} and {—0.5,0.4,0.5, 0.3}, respectively.
The filtered images, denoted ¢i(n1,n2) and ¢a(ny,ng), are
then split into 50 x 50 pixel sub-images, and the intensity of
each such sub-image is multiplied by a different coefficient
ali,, p = 1,...,16 to obtain the final sources s;(n1,n2). Note
that the resulting source images are nonstationary and follow a

fourth-order NSHP Markov model. The observations are finally
1 099

099 1

In the present experiment, the parameters M7 and M of the
blocking algorithm are chosen to be equal and are denoted in
the following by M = M; = M>. Using our nonstationary
blocking method for different values of the parameter M, we
compute the average SIR over 100 Monte Carlo runs, where we
change, for each run, the two random processes e;(n1, n2). The
resulting SIRs are shown in Fig. 5(a) versus the number M? of
sub-images.

The case M = 1 corresponds to our stationary Markovian
method. We clearly see from Fig. 5(a) that neglecting the image
nonstationarity considerably reduces separation performance.
For example, the separation only yields a 22-dB mean SIR when
using a one-block stationary algorithm, whereas it can reach a
99-dB average SIR when the number of blocks considered in the
model is the same as in the actual images, i.e., M; = My = 4.
Furthermore, the separation performance is not degraded by
over-blocking the image,!! unless the number of pixels in each
sub-image is too small to accurately estimate the score func-
tions. For example, with M; = M, = 20, the separation fails
and we obtain a mean SIR of only 3 dB.

‘We note that the nonstationary blocking method has the addi-
tional advantage of reducing memory requirements as compared
to the basic stationary approach, since it operates with sub-im-
ages. For example, for the above simulation the stationary algo-
rithm needs 192 Mbytes of memory when estimating the score
functions, whereas the nonstationary version with M = 4 uses
less than 12 Mbytes.

obtained using the mixing matrix A =

The artificial image is said to be over-blocked when the number of blocks
M? considered in the algorithm exceeds the actual number of blocks in this
image.
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Fig. 6. Evolution of the overall complexity of the algorithms with respect to
the size of images: (a) Mean of elapsed times per simulation for the stationary
(M = 1) and the nonstationary blocking (M = 4) methods versus L = v/N.
(b) Average number of iterations to reach convergence for the stationary (M =
1) and the nonstationary blocking (M = 4) methods versus L = v/N.

The computation time can also be reduced for large sized
images by using the blocking method. For example, repeating
the same experiment as above with 300 x 300-sized images, the
overall running times, on a 1.16-GHz AMD-Athlon PC with
512 MB of RAM, are about 8200 s for the stationary Markovian
algorithm and only 1500 s for the nonstationary version with
M = 4. The mean of overall running time and the average
number of iterations to reach convergence, for the above sim-
ulation with different image sizes, are computed over 100 sim-
ulations!2 and shown in Fig. 6(a) and 6(b), respectively, as a
function of L = \/N , where N is the number of pixels in each
image.

Finally, we note that kernel smoothing algorithm is much
more greedy than the blocking algorithm, even with small-sized
images. For example, considering 50 x 50 images, the blocking
nonstationary algorithm is more than 2000 times faster than the
kernel smoothing approach. For this reason, only the nonsta-
tionary blocking algorithm is used in the following simulations.

In the second part of our experiment, we relax the Markovian
model hypothesis in the simulated source images as in the pre-
vious section. Thus, two 200 x 200 independent, white, and uni-
formly distributed bidimensional processes are generated and
then filtered by two different symmetrical bidimensional FIR
filters. These filters are low-pass ones and are generated in the
same way as in the previous experiments. The images are then
split into 16 square sub-images and each such sub-image is
multiplied by a different coefficient a;. This finally yields two
source images that are nonstationary, but cannot be perfectly
modeled by NSHP Markov fields.

After mixing these sources by the same matrix A as in the
previous test, the blocking algorithm is applied for different
values of the number M? of sub-images and the mean SIR
is computed over 100 Monte Carlo simulations and shown in
Fig. 5(b) as a function of M2. The algorithm leads to very high
performance, with a 140-dB SIR, which proves the robustness
of our approach with respect to the Markov model assumption.
Note that the results obtained here surprisingly outperform those
reported in the previous section. Nevertheless, this can be only
due to the spectral diversity between the sources which is higher
in this second experiment.

12The mean computation times and the average number of iterations were
computed over 100 simulations, except for the stationary method with images
of size 300 x 300, where we only used 6 simulations due to their high compu-
tational cost.
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Fig. 7. Separating an artificial mixture of two real-world images: from left to
right, original sources, observations resulting from an artificial linear instan-
taneous strong mixture, and reconstructed source images using our blocking
method with M? = 100 sub-images.

The advantage of the nonstationary version is again high-
lighted in this case: only 27 dB are obtained as an average SIR
when using a one-block Markovian algorithm, while we can
reach a 140-dB mean SIR with a 16-block nonstationary algo-
rithm, for example.

C. Separation of Artificial Mixtures of Real-World Images

In the previous experiments, the source images were gener-
ated artificially, so that they can fit the blocking nonstationarity
condition. This hypothesis is, obviously, not satisfied when sep-
arating real-world images. Indeed, there is actually no blocking
model which exactly fits the image variations. Nevertheless,
since most real-life images are composed of adjacent homoge-
neous areas or objects, we can suppose the images to be almost
locally stationary in these regions.

In the present simulation, we want to show that our blocking
nonstationary approach is an acceptable first-order approxima-
tion of the image statistics which can model the nonstation-
arity in real-world images. To this end, we apply our blocking
Markovian algorithm for separating an artificial mixture of two
real-life images shown in Fig. 7. These images, available at [42],
are 320 X 440-sized and clearly nonstationary. The mixing is ar-

tificially done with the matrix A = L 0.9 ) . Using dif-

099 1
ferent values for the number of blocks M2, the SIR obtained by
our nonstationary blocking method is computed. For example,
using a number of sub-images M? = 100, we obtain an SIR of
nearly 70 dB, whereas the one-block version of the algorithm,
which does not take into account nonstationarity, fails to sepa-
rate these images. Moreover, the choice of M? is not very crit-
ical, since we still obtain more than 50-dB SIRs for a large range
of numbers of sub-images.

This result is then compared to those achieved by the 15 al-
gorithms available in the 2-D ICALAB Toolbox [2], [43]. Our
blocking method highly outperforms all 15 algorithms, which
only yield 37-dB SIR at best (with SOBI-RO algorithm). Fur-
thermore, our algorithm clearly outperforms the Pham-Garat
[39] and 2-D version of SOBI [7] algorithms, which only yield
13-dB and 25-dB SIR, respectively.

D. Astrophysical Component Separation

In the last experiment, we aim at separating astrophysical
emissions using our Markovian methods.

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on November 6, 2009 at 05:21 from |IEEE Xplore. Restrictions apply.



GUIDARA et al.: MAXIMUM LIKELIHOOD BLIND IMAGE SEPARATION

o b Vg T
o e T
150 St,.;,.‘ &
20 e =

250 "

300 Lt -«

50 100 150 200 250 300

50 100 150 200 250 300

(@) (b) ©

50 100 150 200 250 300

Fig. 8. Original spatial template of the astrophysical components: (a) CMB
radiation, (b) dust emission, (c) Sunyaev-Zel’dovich (SZ) effect.

Since an initial work by Baccigialupi et al. [44], the contri-
bution of BSS methods to separate superpositions of astrophys-
ical components in sky maps has attracted the interest of the
scientific community and many separation methods have been
considered in the literature to deal with this crucial problem
[45]-[49]. This was also motivated by the need for automatically
processing large sets of observations which should be available
in the future, thanks to space missions.

In particular, the Planck space mission, launched recently by
the European Space Agency (ESA), will provide full sky maps
in nine frequency channels in the range [30 - - - 850] GHz using
a resolution of 5 to 30 arcminutes. One of the main objectives
of this mission is to give an accurate description of the tempera-
ture anisotropies of the Cosmic Microwave Background (CMB)
radiation, essentially important to constrain existing cosmolog-
ical theories. Nevertheless, this requires data processing since
the CMB radiation is usually superposed to other astrophysical
components, called foregrounds. Moreover, these foregrounds
have their own interest for astrophysical research, and so some
efficient BSS techniques should be applied to obtain separately
each of the mixed components.

In the present simulation, we limit our interest to the obser-
vations provided by the High Frequency Instrument (HFI) of
the Planck satellite. Equipped with six detectors operating in
six different frequency channels ranging from 100 to 850 GHz,
the Planck HFI will simultaneously provide six observations of
the sky map. In this frequency range, the observations mainly
result from the superposition of only three astrophysical com-
ponents, namely the CMB radiation, the dust emission and the
Sunyaev-Zel’dovich (SZ) effect in clusters of galaxies [47].

To reduce computational cost, the observations are here lim-
ited to 300 x 300-pixel sky patches. The original sources are
the same as in [47] and shown in Fig. 8. Following the mixture
model in [44], the observations are obtained using a noiseless
linear instantaneous mixture of the above three sources, which
means that we neglect the noise contamination and the beam
convolution in the instrument detectors. Even though idealistic,
the results obtained with this simplified observation model are
interesting, since they prove, as a first step, that the method
is robust with respect to working hypotheses, i.e., Markovian
and nonstationary image models, when applied to astrophysical
images.

The mixing matrix coefficients, shown in Table I, correspond
to those expected in the Planck HFI detectors and essentially de-
pend on the source spectral emission and the channel frequen-
cies [47]. The six resulting observations are shown in Fig. 9.
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Fig. 9. Simulated observations from the six Planck HFI detectors with the ex-
pected mixing coefficients, in a noiseless context.

TABLE I
MIXING COEFFICIENTS USED IN OUR PLANCK HFI SIMULATION

Frequency (GHz) 100 143 217 353 545 857

CMB (x10~%) 0.16 0.36 0.712  0.712 0.21 0.0084
Dust (x10—5) 0.02 0.13 0.95 8.79 5631 310.44
SZ (x10~9) -0.24  -0.377 0.0 1.59 1.18 0.0093

To perform separation using our Markovian method, we first
reduce the number of observations to obtain the same as the
number of sources. To this end, we apply Principal Component
Analysis (PCA) [1] to the observations in Fig. 9, and then only
keep the 3 highest-energy principal components.

The Markovian blocking method is then applied to the three
resulting mutually uncorrelated images for different values of
the number M; X M, of sub-images. Whatever the number of
blocks used in the algorithm, the Markovian method leads to
high performance separation, with an average SIR higher than
43 dB, provided a sufficient number of samples in each block
is available for score function estimation. The best performance
is reached with M; = 2 and M, = 3, which yields a 55-dB
average SIR. Nevertheless, the separation performance of the
3 astrophysical components does not evolve in the same way
with respect to the variation of the number of blocks. First,
the restoration of the CMB radiation is more accurate when
using our stationary Markovian version, leading to nearly 59-dB
SIR. Indeed, the separation performance for this component de-
creases a little when the image is split into blocks, due to the
reduction of the number of samples used for score function es-
timation. On the contrary, the estimation of the dust emission
is better when the nonstationary blocking Markovian algorithm
is used, and the SIR improvement compared to that obtained
by the stationary Markovian version is higher than 12 dB when
using 100 x 100-pixel sub-images, for example. Note that this
improvement is plausibly due to the nonstationarity of the dust
component. Finally, the separation of the SZ emission does not
necessarily improve when we use the nonstationary blocking
Markovian algorithm, even though the SZ component is clearly
nonstationary. This is not surprising because of the strong non-
stationarity of the SZ component, which makes it a difficult task
to split the image into stationary blocks with a sufficient number
of samples. Using our kernel smoothing method may be actu-
ally interesting in this case, but the required running time is un-
fortunately too high. Thus, we here restrict our experiment to
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Fig. 10. Recovered source images: (a) dust emission, (b) CMB radiation,
(c) SZ emission.

the nonstationary blocking Markovian method which proved,
however, to be robust with respect to this strong nonstationarity,
since it yields up to 58-dB SIR.

The three estimated components are shown in Fig. 10. Com-
paring them to Fig. 8 clearly proves that separation is quasi-
perfect for all 3 components, since the difference between the
original and estimated sources cannot be visually detected. The
sources are not recovered in the original order, as a consequence
of the permutation indeterminacy of BSS methods.

In the second step, we compare, as in the previous experi-
ment, the results obtained with our method to those achieved by
the 15 algorithms available in the 2-D ICALAB toolbox. The
performance of the latter algorithms is quite poor, with a mean
SIR lower than 13 dB for each method. The best performance
among these algorithms is obtained by the SOBI-RO algorithm.
This again proves the better performance of our method with re-
spect to these classical algorithms.

As we mentioned before, the observed images were simulated
in the above experiment according to an idealistic noiseless mix-
ture model. Nonetheless, the actual observations on the Planck
satellite will be contaminated by a significant level of instru-
mental noise. In the following, we test the robustness of our
method with respect to additive Gaussian noise.

As in the previous simulation, three astrophysical compo-
nents, namely CMB, dust emission and SZ effect, are mixed
according to the coefficients expected on the 6 Planck-HFI fre-
quency channels. Gaussian white noises ¢;, Vi = 1,...,6 are
then added to these observations. The input signal-to-noise ratio
(SNR) is defined, for each channel, as

Elx}(ny,n)]
]

E[2(n1,m2) 2

SNR;(dB) = 10log1g
where z; is the ¢-th noiseless observation and ¢; is the noise
component on the ¢-th channel. Our aim is to study the sep-
aration performance of our blocking nonstationary Markovian
method for different values of the mean input SNR over the 6
frequency channels, defined as

6
1
SNR = 5 Z SNR;

i=1

(43)

First, we reduce the number of noisy observations by PCA, in
the same way as in the previous experiment, in order to obtain
the same number K for the observations and source images.
The blocking Markovian method is then applied to the resulting
images, for different values of the input SNR. This simulation is
repeated for 100 random realizations of the noise components.
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Fig. 11. Mean performance index obtained by our blocking nonstationary Mar-

kovian method as a function of the input SNR.

To evaluate separation performance, we compute the perfor-
mance index for each source image, defined by

2
Cis
IJ(dB) = m?x 1010g10 Z—]c2 5

Cik
k#j

where c;; are the entries of the global separating-mixing matrix
C = BA. The mean performance index for the three astrophys-
ical components is then calculated as

i (45)

and is shown in Fig. 11 as a function of the input SNR. It is worth
noting that our method is, in theory, not adapted to this mixture
model, since it is derived in a noiseless context. However, as we
can see, results for moderate SNR are not so bad. For very low
SNR, however, a noisy mixture model should be used to obtain
good separation performance.

VI. CONCLUSION

In this paper, we presented a quasi-optimal blind image sep-
aration method based on an ML approach, wich deals with the
linear instantaneous image mixture model. The autocorrelation
within images has been described using a nonsymmetrical
half-plane Markov random field model, which helped us to
simplify the formulation of the conditional probability den-
sity function without introducing any prior information. The
score functions were here computed using parametric LMS
polynomial estimators. The estimating equations were then
solved with an equivariant modified Newton-Raphson itera-
tive algorithm. These choices essentially helped us to reduce
the computational load and the memory consumption of our
method.

The proposed Markovian method was developed in two steps.
A simplified stationary approach was first presented, where the
statistics of the source images were supposed to be invariant
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Fig. 12. Equivalence between a fourth-order NSHP Markov model and a non-
causal MRF. 1",11 no 18 the noncausal neighborhood associated to the causal sup-
port set ©,,, », defined in (10).

within the images. Extensions to more realistic nonstationary
images were then proposed. Two different methods using
either blocking or kernel smoothing were proposed to handle
image nonstationarity. The improved nonstationary Markovian
approach is particularly efficient, since it can simultaneously
exploit the non-Gaussianity, autocorrelation and nonstationarity
of the source images. Our experimental results, especially with
artificially mixed real-world images, proved the high perfor-
mance of our methods as compared to the classical algorithms
available in the 2-D ICALAB toolbox.

Our kernel smoothing method is expected to yield high per-
formance, but is very time consuming and some improvements
are still needed to apply it to large-sized images.

The results achieved for the separation of a basic model of
the Planck HFI observations were satisfactory. Therefore, we
are now working on extending our Markovian nonstationary ap-
proach to the separation of noisy linear instantaneous mixtures.
This new version will probably be implemented using the Ex-
pectation Maximization (EM) algorithm, and will be presented
in future works.

APPENDIX A
RELATIONSHIP BETWEEN A FOURTH-ORDER NSHP MARKOV
MODEL AND BIDIMENSIONAL MRFS

Defining for each site (p,q) € L the set (:)pq = Oy U
{(p.)}. and denoting by A,y = {(p,)/(n1,n2) € Oy}
= {(n1,n2), (n1,n2+1), (n1+1,m2 — 1), (n1+1,n2), (n1 +
1,n9+1) } ,itis proved in [29] that a fourth-order NSHP Markov
model with the same support ©,,,,, as in (10) is equivalent to
an MRF model with a noncausal neighborhood defined by

Anlng }

as shown in Fig. 12. This property of the NSHP Markov model
is interesting, since it shows that the NSHP model indeed takes
into account the autocorrelation between the pixel and all of its
neighboring pixels.

Fnl"Q = {([’7-/) 7é (n17n2>7(i7j) € ékl V(kJ) €

APPENDIX B
SOLVING ESTIMATING EQUATIONS

Starting from an initial value B of the separating matrix,
leading to an approximation s = Bx of the actual sources, we
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aim at finding a matrix A such that the new estimate of the sep-
arating matrix B = (I + A)B yields new source estimates

(46)

which satisfy (22).
In the case N = 2, this yields the following two equations:

51(n1,n2) =51(n1,m2) + 01151 (N1, n2)
+ 61252(n1, n2)
Sa(n1,n2) =32(n1,n2) + 62181(n1,n2)

+ 62252(n1, n2). 47

To be independent, the estimated sources 51 and s3 should sat-
isfy (22). Thus, using the above source updating rule to rewrite
the first estimating equation at $;(n1,ns2), we obtain

Z {ﬂsl(nhn)) 51(n1,n2) + 01151(n1,12)
(kDEY

+ 01252(n1,m2)|81(n1, N2 —1)+061151(n1,n2—1)
+ 81282(n1, e — 1),...,
+51{51(711—1,n2—1)+512§2(n1—l,ng—l))}
. {gz(nl —k,no — l) + (521§1(7’L1 —k,no — l)

§1(n1 - 1,77,2 - 1)

+ 522§2(7’L1 — k,?’LQ - l)}] =0. (48)

With a first-order Taylor expansion of the score function

1,/)51’1(”1 m)(.), this equation becomes

En Z {Q/Jf;l(nth)(gl(n17n2)|§1(n1,n2—1)
(k,)ET
gl(’l’l,l — 1,712 + 1) El(nl -1 ’I’LQ)
kl
~ 1 e S1 (n1,n2)
51(n1—1,n2 Z 851 (71—i,m2—3)

(4,5)€Y
(31(n1 n2)|51(n1,n2 — 1) sl(nl -1, , o + 1)

81(711 1 7’1,2) sl(nl — 1,n2 — 1))

- (81151( n1—i;n2—j)+512§2(n1—i;n2—j))}
. {’s}(nl —k,ng — l) + 621§1(n1 —k,ng — l)
+ 522:;2(711 — k7n2 — l)}] = (49)

Neglecting second-order terms, this equation finally yields
linear equations with respect to the entries of the matrix A

(L4 622)d1 + 621J2 + 6113+ 61272 =0 (50)
where
Ji1 = FEn Z 1/}']:;1(”,1 n2) (gl (nl,n2)|§1(n1,n2 — 1)
(k,)ET
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. ,§1(n1 — 1,%2 — 1))§2(n1 — ]{;,nz - l)]

Jo=FEN

Z 1/.,,1(,71 oy (1(n1,m2)[81(n1, 12 — 1)

(k,1)ET

7§1(n1 — 1,n2 — 1))§1(n1 — ]{},’nz — l)] (51)

O3 ms
> | 3 gt

(ke L(i,j)er s1(n1 —i,m2 — j)
(31(n1,m2)[31(n1,m2 = 1), ...
s1(ny —i,m2 —j)] So(ny — kyny — l)]
o
Z [ Z 0% (ny.ma)
(k,)eY L (i,5)eY 881 77;1 — 1, N2 _j)

(51(n1,n2)[51(n1,m2 — 1), ...

§2(n1 — i,ng —J)] gg(nl — k,TLQ — l)]

J3=FEN

,51(n — 1,me — 1))

Ji=FEn

,81(n1—1,m9 — 1))
(52)
022 may be neglected with respect to 1 in (50). Furthermore, the

estimated sources are centered and nearly independent in the
vicinity of the solution, so that for any function ®

En[®(51(n1 — k,na = 1)) - 52(ny — i,m9 — j)]
~ En [®(s1(n1 — k,na —1))]
-En [$2(n1 —i,m2 — )]

is small.
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It follows that §11J3 is negligible with respect to the other
terms in (50). Taking into account all these simplifications, we
obtain the first linear equation defined in (25). The second equa-
tion is then derived by symmetry.

For more than two source images, the estimating equa-
tions are obtained following the same steps as above. Using
a first-order Taylor expansion of the score functions at the
current source values, and after some simplifications, we obtain
K (K — 1) linear equations of the entries of A defined in (46),
which are denoted 6,5, Vi,5 = 1,..., K [see (53), shown at
the bottom of the page]. These equations may be simplified by
considering the sources to be nearly independent at the vicinity
of a solution. Since the sources are centered, for any function
#(.), terms of the form En[¢(si(.))sm(.)]0jm, Ym # i or
En[¢(5:(.)s;(.)8m()]0im, Ym # j are quite small, so that
they can be neglected in (53).

Using these simplifications, we finally obtain, for each couple
of source images s; and s;, two linear equations with two un-
knowns ¢;; and 6;;, defined exactly in the same manner as in
(25).

APPENDIX C
COMPARISON BETWEEN SCORE FUNCTION ESTIMATORS

In the following, we compare the score function estimate
given by our third-order multivariate polynomial estimator to
that obtained by Pham’s nonparametric estimator[38]. The mul-
tivariate conditional score function, ¥ (&o|&1,&2,£&3,&4), for a
100 x 100-pixel real image, is estimated using both approaches,
and then displayed as a function of the first variable &, in Fig. 13.

Fig. 13 shows that the results obtained with both estimators
are quite similar, which confirms the relevance of our estimator.
Indeed, the relative error between both estimates is about 6%.

K
> bimEN
m=1

(k,1)eY

Z 1/)Q (m’m) Si(n1,n2)|8i(n1,ne — 1)

§i(n1 —1,n9 + 1),51'(711 - l,ng)

§,;(7’1,1 — 1,7’L2 — 1))§m(7’1,1 — k‘,ng — l)‘|

kl
1(n1 na)

K
- Z Bim B

(7’L17 Ny — 1)

2. > 5

(k,1)ETY (a /i’)eT

Sm(ny —a,ng — B).5;(n1 — k,

_E]\T

(k,1)EY

(711—1 N9 + ) gi(nl —

ﬂ)(§4”47n2ﬂ

nl—oz ng —

1,712)751-(711 — 17712 — 1))

ng — l)]

Z l/} si(ni,n2) Sl(n17n2)|§i(n17n2 — 1)

Si(n1 — 1,m2 4+ 1), 8;(n1 — 1,n9)

§i(’n1 - 1,712 - 1)).§j(n1 - k‘,’ng - l)]

Vi£ji=1,....K

(53)
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score function estimation for a real image
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Fig. 13. Estimates of the conditional score function ¥(£o(&1, €2, &5, €4 ) versus
&o for a 100 x 100-pixel real image. (a) Polynomial. (b) Pham.
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