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Linear–Quadratic Mixing Model for Reflectances
in Urban Environments
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Abstract—In the field of remote sensing, the unmixing of hyper-
spectral images is usually based on the use of a mixing model. Most
existing spectral unmixing methods, used in the reflective range
(0.4–2.5 μm), rely on a linear model of endmember reflectances.
Nevertheless, such a model supposes the pixels at the ground
level to be uniformly irradiated and the scene to be flat. When
considering a 3-D landscape, such a model is no longer valid as
irradiated and shadowed areas are present, as well as radiative
interactions between facing surfaces. This paper introduces a new
mixing model adapted to urban environments and which aims to
overcome these limitations. This model is derived from physical
equations based on radiative transfer theory, and its analytic
expression is linear–quadratic. Similar models have already been
used in the literature for unmixing purposes but without being
justified by physical analysis. Our proposed model is validated
using a synthetic but realistic European 3-D urban scene. Then,
simplifications are introduced, based on a study of the different
radiative components contributing to the signal in a way to make
the model easy to use for spectral unmixing. This paper also shows
that the quadratic term cannot be neglected in many cases in
urban environments since it can, e.g., range from 15% to 20% of
the reflectances in canyons.

Index Terms—Linear–quadratic mixing model, physical model-
ing, reflectances, spectral unmixing, urban images.

I. INTRODUCTION

B ECAUSE of the low spatial resolution of hyperspectral
image sensors compared to panchromatic ones, a pixel

rarely represents a homogeneous surface, and the signal inci-
dent to a sensor into its instantaneous field of view (IFOV) often
results from contributions of several materials. For example,
in [1], the authors found that, in HyMap images acquired
over Dresden, Germany, 52% of the pixels comprise spectral
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Fig. 1. Contribution of the reflections due to the neighborhood, with ρi
denoting the reflectance of surface i (where i can be k or m) and Lenv denoting
the radiance due to these reflections.

mixtures. In the case of mixed pixels, it is possible to retrieve
the constituent components of a given pixel using spectral
mixture analysis techniques owing to the spectral richness of
the data. This process of subpixel retrieval is called spectral
unmixing.

Our work is focused on the reflective domain (wavelengths
from 0.4 to 2.5 μm). Most available unmixing methods in this
domain rely on linear mixing models for reflectances (see,
e.g., [2]–[9] and the references therein), where the mixing
coefficients are the abundances. Such an assumption is valid
when the scene is flat with a homogeneous incident irradiance.

In this paper, we aim at deriving a mixing model of re-
flectances adapted to urban images. This involves a more
complicated model because towns are characterized by a high
spatial variability at a meter scale which implies different
illumination levels (sunny and shadowed areas). Moreover, the
3-D structure of such environments induces multiple scatterings
of light between surfaces (see Fig. 1). As a consequence,
the reflectance of one pixel can contain the contribution of
a material reflectance from its neighborhood, even if the sur-
face represented by the pixel does not contain this material.
Then, the linear model is no longer valid since this model
assumes that only the content of the pixel contributes to its
reflectance.

Taking into account multiple reflections of light between
surfaces yields a nonlinear model. Nonlinearity in unmixing
has been considered in previous works (e.g., [10]–[13]), where
the proposed methods essentially make use of neural networks.
However, these methods are presented without an explicit mix-
ing model. These papers show though that considering possible
nonlinearities in the model improves unmixing performance. In
[14], the experimental results obtained with an image acquired
in a laboratory (from a synthetic scene) showed that a second-
order model better describes the mixtures than a linear one, in
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the case of 3-D structures like in urban environments, since it
gives more accurate unmixing results.

Starting from physical equations based on radiative transfer
theory, we derive a new physically based mixing model that
deals with the nonlinearities faced in urban environments. The
derived linear–quadratic model only takes into account second-
order reflections, neglecting higher order interactions, which is
very realistic given the range of values for reflectances (values
between zero and one). Similar models were used in some
unmixing approaches in the literature, for different types of
scenes, but without any physical justification: orchards [15],
[16], forests [17], and scenes composed of vegetation, water,
and soil materials [18]. The assumptions made on the mixing
coefficients are not either physically justified in those works.
In this paper, we propose the justification and validation of
the linear–quadratic model in the presence of 3-D structures.
A substantiation of the possible assumptions concerning the
mixing coefficients is also given. This work thus aims at giving
a realistic model that could be used for unmixing methods.

In Section II, the method used to derive our physical mixing
model for urban scenes is explained. This model is then vali-
dated in Section III, and the relative impact of radiative terms
is evaluated, based on synthetic images. In Section IV, simpli-
fications of this model, using reasonable assumptions, are pre-
sented. This yields an invariant instantaneous linear–quadratic
mixing model. Eventually, in Section V, we finalize this model
to make it more convenient for spectral unmixing. We also
discuss the possible assumptions on the mixing coefficients,
compared to what exists in the literature.

II. PHYSICAL MIXING MODEL

In this section, we show how our physical mixing model
is derived, starting from physical equations based on radiative
transfer theory. The development of this model followed the
same procedure as in [19], developed in the thermal infrared
domain. The approach, originally proposed in [20], consists in
comparing the sensor radiance at a coarse resolution with all the
radiance coming from the different elementary surfaces inside
the coarse pixel.

A. Presentation of the Method Leading to the Model

At a coarse resolution, a pixel often corresponds to a het-
erogeneous surface composed of different elementary homo-
geneous surfaces. Thus, for each pixel, the sensor receives
contributions resulting from reflectances of all these elementary
surfaces. This is illustrated in Fig. 2(a). However, the signal
received by the sensor from this heterogeneous surface can be
considered as the resulting signal coming from an equivalent
horizontal homogeneous flat surface. We thus assume that, at
a coarse resolution, each pixel of the image can be associated
with such a flat equivalent surface at the height of the urban
canopy. Therefore, we attribute an equivalent reflectance 〈ρ〉
(corresponding to the flat equivalent surface) to this pixel [see
Fig. 2(b)]. Then, to derive the equation expressing the equiv-
alent reflectance of a pixel as a function of the contributions

Fig. 2. Mixing principle - the dashed lines define the coarse IFOV Ω, and the
continuous lines define the fine IFOV dωk .

of elementary surface reflectances, the following method is
applied.

1) Express the total radiance of a given pixel as the result of
the contributions of the different materials composing it
at the ground level (Section II-B).

2) Express the radiance of a pixel considering its associated
equivalent surface (Section II-C).

3) Perform a term-by-term radiative identification of the two
preceding expressions to derive the equivalent reflectance
expression for the pixel (Section II-D).

B. Radiance From the Ground Level at a Fine Scale

Assuming that each pixel is composed of N homogeneous
elementary surfaces indexed by k, the total radiance Lmix

received by the sensor, in the field of view delimited by
the solid angle Ω corresponding to a given pixel, can be
expressed as

ΩLmix =
∑
k

LD,kdωk +
∑
k

L↓
atm,kdωk

+
∑
k

Lenv,kdωk +
∑
k

Lcoupling,kdωk

+
∑
k

L↑
atm,kdωk +

∑
k

L↑
diff,kdωk (1)

where
dωk solid angle corresponding to an elementary sur-

face k;
LD,k solar radiance due to the solar irradiance on the

surface k directly reflected toward the sensor;
L↓
atm,k atmospheric downwelling radiance incident on

the surface k and directly transmitted toward the
sensor;

Lenv,k radiance due to the neighborhood of the consid-
ered surface k;

Lcoupling,k radiance due to multiple scatterings between the
atmosphere and the ground;

L↑
diff,k radiance due to the total downwelling irradiance,

incident on the neighborhood of the surface k and
reflected toward the sensor direction;
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L↑
atm,k upwelling atmospheric radiance, reaching the sen-

sor in the solid angle dωk.

By replacing the radiances of interest by their expressions
given in [21], this yields

Lmix =
∑
k

Skt
↑k−c ρ

dd
k (

−→
Us,

−−→
Uc,k)

π
ED,k +

∑
k

SkL
↓
atm,k

+
∑
k

Skt
↑k−c

∫ ∫
m∈Vk

ρddk (
−−→
Ukm,

−−→
Uc,k)

π
gm,k

×
[
ρddm (

−→
Us,

−−→
Umk)

π
ED,m +

ρhdm (
−−→
Umk)

π
Ediff,m

]
dSm

+
∑
k

SkLcoupling,k +
∑
k

SkL
↑
atm,k

+
∑
k

SkL
↑
diff,k (2)

where

Sk = dωk/Ω normalized elementary solid angle over
which the sensor sees an elementary sur-
face k (with

∑
k Sk = 1);

t↑k−c atmospheric transmission from surface k
up to the sensor;−→

Us normalized vector of the sun’s direction
at surface k;−−→

Uc,k normalized vector of the sensor’s direc-
tion with respect to surface k;−−→

Ukm normalized vector defining the direction
between surface k and surface m (vector
linking the centers of these surfaces);

ρddk bidirectional reflectance of elementary
surface k, with the directions being de-
fined by

−→
Us and

−−→
Uc,k (unitless);

ρhdk hemispheric directional reflectance of
surface k depending only on the observa-
tion direction (unitless);

ED,k direct solar irradiance on surface k;
Ediff,m atmospheric irradiance on surface m;
Vk neighborhood of surface k;
gm,k = 〈−→nk,

−−→
Ukm〉·

(〈−→nm,
−−→
Umk〉/r2) geometric factor (named so because it

only depends on the geometry of the
scene), where r is the distance between
surfaces m and k and −→nk is normal to
surface k.

Note that ρhdk , ρddk , and all the reflectances considered in this
work are defined as in [22]; they are thus unitless.

C. Radiance From the Equivalent Surface Level

Let 〈L〉 be the equivalent radiance corresponding to the
equivalent surface, defined at the height of the urban canopy,

and associated with our pixel. This equivalent radiance 〈L〉 is
the radiance measured by a sensor viewing a flat surface

〈L〉=〈Les〉+L↓
atm+Lcoupling+L↑es−c

atm +L↑
diff

=
〈ρ〉
π

EDt↑es−c+L↓
atm+Lcoupling+L↑es−c

atm +L↑
diff (3)

where 〈Les〉 is the radiance at the equivalent surface level
resulting from the reflection of solar irradiance on the equiv-
alent surface. L↑es−c

atm and t↑es−c are the atmospheric upwelling
radiance and transmission from the equivalent surface toward
the sensor, respectively. All other terms are the same as those
in (2) except that they are here defined at the equivalent surface
level (and not for an elementary surface on the ground).

As we can see, the terms due to the environment are not
present here [compared to (2)] because the surface is flat.

The atmospheric upwelling transmission and the atmospheric
upwelling radiance in (2) can be expressed as functions of those
in (3)

t↑k−c = t↑k−es × t↑es−c (4)∑
k

SkL
↑
atm,k =

∑
k

SkL
↑k−c
atm,k

=
∑
k

SkL
↑k−es
atm,k × t↑es−c + L↑es−c

atm (5)

where t↑k−es is the atmospheric upwelling transmission from
a surface k to the equivalent surface and L↑k−es

atm is the atmo-
spheric upwelling radiance from surface k toward the equiva-
lent surface.

D. Identification Leading to the Mixing Model

The total radiance expressions for a pixel defined in (2) and
(3) are equal, i.e., Lmix = 〈L〉. Thus, considering the physical
conservation of radiant flux at every scale, a term-by-term
identification is performed. By identifying the radiative terms
of the same nature in these two expressions, we can easily
eliminate the following terms: L↓

atm, Lcoupling, and L↑
diff . Using

(5), the term L↑es−c
atm can also be eliminated. This leads to

〈ρ〉
π

EDt↑es−c =
∑
k

Skt
↑k−c ρ

dd
k (

−→
Us,

−−→
Uc,k)

π
ED,k

+
∑
k

Skt
↑k−c

∫ ∫
m∈Vk

ρddk (
−−→
Ukm,

−−→
Uc,k)

π
gm,k

×
[
ρddm (

−→
Us,

−−→
Umk)

π
ED,m

+
ρhdm (

−−→
Umk)

π
Ediff,m

]
dSm

+
∑
k

SkL
↑k−es
atm,k × t↑es−c. (6)

We then eliminate t↑es−c, in all terms, using (4). The last
terms L↑k−es

atm,k can be removed, considering that the atmosphere
between the ground and the urban canopy can be neglected.
For the same reason, the atmospheric transmission under the
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canopy level is t↑k−es � 1 (assuming that we are outside a
strong absorption band). We can finally express the equiv-
alent reflectance of a pixel as a function of the elementary
reflectances

〈ρ〉=
N∑

k=1

Sk

[
ρddk (

−→
Us,

−−→
Uc,k)

ED,k

ED
+

∫ ∫
m∈Vk

ρddk (
−−→
Ukm,

−−→
Uc,k)gm,k

×
(
ρddm (

−→
Us,

−−→
Umk)

π

ED,m

ED

+
ρhdm (

−−→
Umk)

π

Ediff,m

ED

)
dSm

]
. (7)

Note that this equation is valid for a pixel totally or partially in
the sun (ED 	= 0).

We now assume, without loss of generality, that reflectances
have a Lambertian behavior in the second additive term (ρk
and ρm do not depend on the sun and sensor directions:
ρhd = ρdd = ρ). This assumption is possible because multiple
reflections tend to make the material behavior Lambertian and
because this term is small compared to the first one. The
reflectances in the latter are therefore denoted ρk and ρm. We
also approximate the integrals by sums assuming that the neigh-
borhood of an elementary surface k is composed of elementary
surfaces m of area ΔS and each one is made up of only one
material. This yields

〈ρ〉 = 〈ρ〉D + 〈ρ〉env (8)

with

〈ρ〉D =

N∑
k=1

Sk
ED,k

ED
ρddk (

−→
Us,

−−→
Uc,k) (9)

〈ρ〉env = 〈ρ〉env,D + 〈ρ〉env,diff (10)

with⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈ρ〉env,D =
N∑

k=1

∑
m∈Vk

Sk
gm,k

π ΔS
ED,m

ED
ρkρm

〈ρ〉env,diff =
N∑

k=1

∑
m∈Vk

Sk
gm,k

π ΔS
Ediff,m

ED
ρkρm.

(11)

This is our physical mixing model in a general case. The first
term on the right-hand side of (8) gives the linear mixing of the
pixel’s own components ρk [see (9)]. The second term, which
is quadratic with respect to the reflectances [see (10) and (11)],
is due to the reflections from surfaces in the environment of
each elementary surface. If the landscape is flat and the incident
irradiance is homogeneous, the second term vanishes, and the
well-known linear mixing model is obtained.

Equation (8) is valid for one wavelength and one pixel. All
the irradiances depend on both wavelength and pixel location.
Reflectance only depends on wavelength if it is considered
Lambertian. The other terms are due to the geometrical layout
and only depend on pixel location.

Note that
∑N

k=1 Sk = 1, but we also have another important
property. The incident flux conservation at a pixel permits us
to write ΩED =

∑N
k=1 dωkED,k. This leads to the following

property:

N∑
k=1

Sk
ED,k

ED
= 1. (12)

This flux conservation property will be verified with simula-
tions in the next section.

For the sake of simplicity, the reflectances in (9) are also
assumed to be Lambertian hereafter. Equation (9) then becomes

〈ρ〉D =

N∑
k=1

Sk
ED,k

ED
ρk. (13)

III. VALIDATION OF THE PHYSICAL MODEL

In this section, a “validation” of the aforementioned model is
presented using several synthetic multispectral images. These
images were simulated with the 3-D radiative transfer code
AMARTIS V2 [21], which is described hereafter.

A. AMARTIS Description

AMARTIS is a radiative transfer code specifically dedicated
to urban areas. It allows simulating airborne and spaceborne
multiangular acquisitions, in the [0.4; 2.5 μm] domain, over
scenes defined by their 3-D geometry, the optical properties of
every material composing the scene, the atmosphere conditions,
and the viewing geometry of the sensor.

The synthetic 3-D scene is composed of uniform triangular-
shape facets considered as homogeneous in terms of reflectance
which can be either Lambertian or bidirectional. The atmo-
spheric radiative properties are modeled thanks to the radiative
transfer code 6S [23]. The aerosols can be modeled by the stan-
dard models of 6S, by their physical properties (with notably
Junge or multimodal distributions), or directly by their optical
properties (spectral optical thickness, single-scattering albedo,
and phase function). The gaseous atmosphere is modeled by
the standard models of 6S. AMARTIS allows the simulation
of airborne or satellite sensors. The sensor is defined by the
following parameters: its zenith and azimuth viewing angles
defined by the optical axis orientation pointed at the center
of the scene, its pixel matrix (number of pixels by rows and
columns and pixel size), its spatial resolution, the wavelengths
of observation, and the focal length of the instrument. The
altitude of the sensor is deduced from the previous geometrical
parameters.

In remote sensing, a flat-ground assumption is usually made
to model the signal at ground and sensor levels. However, in
cities, at very high spatial resolution, this hypothesis is no
longer valid because of the complexity introduced by the relief
which induced specific radiative effects. Thus, AMARTIS has
been developed to overcome these limitations. It is able to
model independently all the radiative contributors at ground
(irradiance unit) and sensor (radiance unit) levels (Fig. 3). The
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Fig. 3. Description of the different modeled radiative contributors. (a) Irradi-
ances at the ground level. (b) Radiances at the sensor level.

irradiance at the ground level (Etot) is the sum of four com-
ponents [Fig. 3(a)]: the direct irradiance (ED), the scattered
and diffused irradiance (Ediff), the earth–atmosphere coupling
irradiance (Ecoupling), and the downward-reflected irradiance
(Eenv). The radiance at the sensor level (Ltot) is the sum of
the different components defined in (1) and (2) [see Fig. 3(b)].
The analytic expression of each radiative component is detailed
in [21]. Due to the strong heterogeneity of the scene, Ecoupling,
Eenv, and Lenv are solved using ray tracing and Monte Carlo
methods.

The outputs of AMARTIS are radiance images at the sensor
level (total, direct, and due to the neighborhood and all other
terms present in our equations) and irradiance images at the
surface level (total, direct, and diffused).

The AMARTIS results are reliable and have already been
validated; however, the code has two little disadvantages that
can induce some artifacts in our results.

1) AMARTIS uses a Monte Carlo process to estimate the
radiative terms due to reflections, which induces sta-
tistical fluctuations, essentially in shadowed areas. As
this method needs a lot of photons to converge well, its
convergence is less reliable in partly shadowed regions.

2) Before AMARTIS calculation, a triangulation of the 3-D
scene is made. A hyperfine meshing is needed to achieve
a good accuracy. Unfortunately, we are limited by com-
putational cost and memory size, and the used mesh size
often implies triangles bigger than our small elementary
surfaces (three or four times bigger). This can induce
some artifacts on the computed radiances, mainly around
the shadow/light transitions.

B. Methodology

For each studied image at a coarse resolution X , the same
image at a high resolution x is used, whose pixels would be
used as the elementary surfaces k and m in our mixing model.

To validate our model, we first proceed as follows
(Section III-D1).

1) Compute an image of reflectances 〈ρ〉 for pixels at a
coarse resolution X [by applying our mixing model in

(8), (13), (10), and (11)] using values provided at a fine
resolution x for the elementary surfaces.

2) Compute the total radiance image 〈L〉 [defined in (3)] at
resolution X using the obtained image of reflectances 〈ρ〉.

3) Compare our computed image 〈L〉 with the total radiance
image L given by AMARTIS at resolution X .

We then focus on 〈Les〉 [in (3)]. Due to (8), it
can be defined as 〈Les〉 = 〈L〉D + 〈L〉env, with 〈L〉D =
(〈ρ〉D/π)EDt↑es−c [with 〈ρ〉D defined in (13)] and
〈L〉env = (〈ρ〉env/π)EDt↑es−c [with 〈ρ〉env defined in
(10)]. [This corresponds to (2).]

4) Compare our computed image 〈L〉D with the radiance
image LD given by AMARTIS at resolution X . Both cor-
respond to the solar radiance due to the solar irradiance on
the surface directly reflected toward the sensor.

5) Compare Lenv given by AMARTIS for the resolution X
with our computed 〈L〉env. These terms correspond to
the radiance due to the neighborhood of the considered
surface (induced by reflections).

To show the discrepancy that we get when comparing our
results with AMARTIS’ ones, we define what we will call
“errors” hereafter:

• a global absolute error in radiance units

ErrL(Z) =

√
meani (〈Z〉i − Zi)

2 (14)

• a global relative error in percentage

Err%(Z) =

√
meani (〈Z〉i − Zi)

2

meani (Z2
i )

× 100 (15)

• an error in radiance units computed at a pixel i (difference
between the two images)

errLi
(Z) = |〈Z〉i − Zi| . (16)

In all these definitions, Z stands for L, Lenv, or LD, and i
corresponds to a pixel in the area of interest.

In a second step, a further analysis is proposed to show
the usefulness of taking into account the environment radiative
component (Section III-D2).

1) Study the proportion of the terms due to the environment
not only in radiances but also in reflectances (nonlinear
part in the mixed reflectance).

2) Compare the importance of the term due to the direct
irradiance 〈ρ〉env,D to that of the one due to the diffused
irradiance 〈ρ〉env,diff in reflectances [see the definitions
in (11)].

We finally validate, in Section III-D3, the flux conservation
property earlier discussed at the end of Section II-D.

C. Data Description

We start our analysis with simple geometric scenes; then, a
synthetic urban scene is used. The images used in this study
are noise free. For each studied image at a coarse resolution X ,
the same image at a high resolution x = 0.2 m is used, whose
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Fig. 4. Reflectance spectra of the materials present in our scenes.

Fig. 5. Simple geometric scenes (canyon shape).

pixels would be used as the elementary surfaces k and m in our
mixing model.

All used images have been generated with the following
atmospheric conditions: urban aerosol model with a visibility
of 23 km and midlatitude summer atmosphere.

This study concerns the reflective range (0.4–2.5 μm). The
selected wavelengths are 480, 550, 670, 740, 870, 1600, and
2200 nm.

Fig. 4 shows the reflectance spectra (coming from the
MEMOIRES database [24]) involved in our images. The dashed
lines correspond to the seven studied wavelengths.

1) Simple Geometric Scenes: Fig. 5 represents a scene with
a canyon (between two buildings), which is the most common
geometrical shape in urban environments. From this scene, four
images are generated. In these images, the roofs are made up
of tiles, and the bottom of the canyon is covered by gravel on
the left half and by asphalt on the right half. Walls are made
up of bricks, except for one image where aluminum is used
instead.

In order to perform a general investigation, also to see how
the proportion of the nonlinear term (the contribution of the
reflections on the environment of a pixel) can vary depending
on the sun direction, several cases of irradiation are studied.
We also aim at seeing the effect of having walls covered
with aluminum instead of bricks (modern buildings are often
covered with very reflective surfaces: glass, aluminum, etc.)
with unchanged solar conditions. Our four images are presented
in Table I, where the solar angles, the percentage of induced
shadow in the canyon, and the material covering the walls are
given.

TABLE I
DESCRIPTION OF THE FOUR GEOMETRIC SCENES (GENERATED FROM

THE SIMPLE SCENE): SOLAR ANGLES, PERCENTAGE OF SHADOW IN

THE CANYON, AND MATERIAL COVERING THE WALLS

Fig. 6. Urban scene. (a) Perspective view. (b) Top view.

For all these cases, the studied images have a coarse resolu-
tion of X = 5 m. In the coarse-resolution images, the canyon
width corresponds to two 5-m pixels.

2) Urban Scene: A second more complex and realistic ur-
ban scene is also simulated (Fig. 6), which contains different
kinds of building configurations that are common to European
towns. The road is covered with asphalt, two small gardens
include vegetation and bare soil, walls are mostly bricks with
some comprising aluminum cover (the gray walls in Fig. 6),
and, finally, sloped roofs are covered with tiles with flat ones
covered with gravel. As the effect of solar angles is studied with
the simple geometric scenes, we here consider only one config-
uration: solar zenith angle = 26◦ and solar azimuth angle =
227◦. These angles were chosen because they permit having no
pixels entirely shadowed, as our model is not valid for entirely
shadowed pixels.

From this scene, of size 100× 80 m2, two images with
different coarse resolutions have been generated to be studied
separately: one with a resolution X = 4 m (size 25 × 20 pixels)
and one with a resolution X = 5 m (size 20 × 16 pixels).

Fig. 7 represents the total radiance images for this urban
scene at resolutions of 0.2 and 5 m.

D. Results and Discussions

1) Global Analysis:
a) Simple geometric scenes: Results correspond to values

of radiances obtained only for the pixels inside the canyon
(two columns of 5-m pixels), since neighboring reflections can
occur only in the bottom of the canyon, contributing then to the
nonlinear term of the equivalent reflectance. In Tables II and III,
the results are presented for the seven studied wavelengths.
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Fig. 7. Urban scene - total radiance images at resolutions of (a) 5 m and
(b) 0.2 m - with a wavelength of 670 nm.

TABLE II
SIMPLE SCENES-TOTAL RADIANCES 〈L〉

(IN W/m2/sr/μm) AND ERRORS

TABLE III
SIMPLE SCENES-〈L〉env (IN W/m2/sr/μm) AND ERRORS

Scene C1 is not considered in these tables. As the solar
irradiation direction is almost parallel to the walls, they yield
no reflections in this scene. The term due to the environment is
negligible, and the well-known linear model remains valid. The
results show a good agreement between L and 〈L〉.

In these tables, the mean value of the radiances of interest is
presented to have an idea of the global level of values. We also
show the discrepancy that we get when comparing our results
with AMARTIS’ ones.

Table II shows that, globally, errors are very low compared
to the mean values of 〈L〉 (the corresponding Err%(L), shown
in Table II, varies globally from 0% to 3%).

To understand the source of errors, it is interesting to com-
pare the error values ErrL in the two tables (Table II for 〈L〉
and Table III for 〈L〉env): They are almost the same. This means
that errors seen for 〈L〉 are essentially due to errors obtained
with 〈L〉env. Moreover, errors for 〈L〉D are negligible. Note that
we only compute 〈L〉env and 〈L〉D with our equations (other
radiance terms are provided by AMARTIS and do not play any
role in this study).

Fig. 8. Scene C3 (zoom of the canyon) - comparison of Lenv and 〈L〉env (in
W/m2/sr/μm) at 670 nm. (a) Lenv. (b) 〈L〉env .

We now focus on Table III. When comparing the three
scenes, it can be noticed that the values of ErrL for C4 are
higher than those for the other two scenes. With C3, the errors
are a little higher than those for C2 (essentially when comparing
with the radiance values), but the values remain close to each
other. These differences in errors between the three scenes are
linked to the differences for the values of 〈L〉env: ErrL is higher
for higher values of 〈L〉env, whereas the percentages (Err%) are
globally stable from one scene to another.

In spite of these errors that will be explained hereafter, the
results show that our model correctly describes the reflection
phenomena in this simple canyon case. Indeed, the errors are,
in the worst case, equal to 0.7 W/m2/sr/μm and, in most
cases, below 0.3 W/m2/sr/μm. This means that our errors are
noticeably on the order of the instrumental noise level, which
is about 0.2 W/m2/sr/μm for airborne sensors (see, e.g., [25]).
Therefore, most errors are reasonably weak even if errors in
percentages can look high. Furthermore, most errors are due to
artifacts induced by the simulation process, as explained in the
following.

Fig. 8 shows an example of an image of Lenv from
scene C3, at 670 nm. The image of Lenv (left one) can be
compared with the image of 〈L〉env (right one). It can be seen
that there is more discrepancy for column 9 than for column 10.
The obtained results, for the three scenes, showed that the errors
are essentially localized in column 9 (about 33% of error), while
the errors are much lower in column 10 (maximum of 13%).
Note that column 9 contains a certain percentage of shadow
(80% of the column area for scene C3), while in column 10, the
pixels are totally irradiated by the sun. These errors are artifacts
due to the AMARTIS code already explained in Section III-A.

1) The result of the Monte Carlo process in partly shadowed
regions. The induced effect can be seen in the AMARTIS
image [Fig. 8(a)]: The values along column 9 are not
homogeneous as they should be, with fluctuations around
16% of the radiance values.

2) The scene triangulation. This induces some artifacts on
the computed radiances, mainly around the shadow/light
transitions. These errors can hardly be quantified. How-
ever, a simulation made on the smallest scene showed
that, by increasing the number of triangles, the global
error ErrL decreases by 28%.
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Fig. 9. Urban scene at 4-m resolution - 〈L〉 (in W/m2/sr/μm). (a) Wave-
length of 670 nm. (b) Wavelength of 870 nm.

For these reasons, we consider that the errors mainly re-
sult from the simulation process itself rather than from our
modeling. Furthermore, the errors are globally low, and if we
consider that a great part of these errors are due to simulation,
the residual errors become very close to the instrumental noise
level. We thus consider the results as satisfactory.

b) Urban scene at 4-m resolution: The ground pixels1

are all pure at this resolution except for the two gardens,
since building dimensions have been chosen as multiples of
4 m. This will permit us to isolate the effect of reflections to
better see their behavior and easily localize causes of errors.
The presented results, for the urban scenes, correspond only
to the pixels where 〈L〉env is higher than 0.2 W/m2/sr/μm
(instrumental noise level), therefore only for the pixels where
the environment plays a role.

Using the errors defined in (14) and (16), the results ob-
tained pixel by pixel (over all the studied wavelengths) can
be summarized as follows for the pixels of interest (47%
of the image pixels). For LD, the mean error ErrL(LD)
is equal to 0.2 W/m2/sr/μm, and for the total radiance,
we have 0.3 W/m2/sr/μm. Concerning Lenv, ErrL(Lenv) =
0.2 W/m2/sr/μm. For this term, Fig. 11(a) shows the his-
togram of all obtained errors errLi

(Lenv) (over all the wave-
lengths). The maximum value is 1.3 W/m2/sr/μm, but 95%
of the values are below 0.4 W/m2/sr/μm. The errors are
globally low compared with the instrumental noise level
(∼0.2 W/m2/sr/μm).

Fig. 9 shows two images of the total radiance 〈L〉 at 670
and 870 nm. By comparing the aforementioned values of errors
(ErrL � 0.2 W/m2/sr/μm for all terms) with the radiance
values in the images presented in this figure, it can be seen that
the errors are generally very low.

However, some pixels yield high errors for 〈L〉env. In Fig. 10
are given the images of 〈L〉env (left image) and the difference
between the images of Lenv and 〈L〉env (right image), at
670 nm. It can be seen that most errors are low but higher
errors exist for some pixels (the brightest ones). Most of these
errors are due to the same reasons as detailed previously
(Section III-D1a). However, another type of errors occurs in
this scene, which concerns some pixels at the canyon crossings.
This is due to our aggregation algorithm [when computing (8)]:

1Surface on the ground corresponding to the pixel projection.

Fig. 10. Urban scene at 4-m resolution - 〈L〉env and error (in W/m2/sr/μm)
at 670 nm. (a) 〈L〉env. (b) Error: |〈L〉env − Lenv|.

Fig. 11. Urban scenes - histograms for error errLi
(Lenv) (in W/m2/

sr/μm) over all the wavelengths. (a) Four-meter-resolution image. (b) Five-
meter-resolution image.

For simplification, we assumed that a surface on the ground
can only receive reflections from walls of the same canyon.
This induces an underestimation of 〈L〉env for some pixels
on the corners. The maximum error obtained in such pixels
is 0.9 W/m2/sr/μm, for pixel (row = 24, col = 8), because
we ignored their contributions due to reflections on aluminum
which are not negligible. Considering the pixels around the two
canyon crossings, the maximum error is 0.6 W/m2/sr/μm for
pixel (row = 10, col = 8). These errors are thus well identified,
and we just have to keep in mind that they are not due to our
model.

c) Urban scene at 5-m resolution: We here face a more
realistic case: A ground pixel can be a mixture of two or three
materials.

The global results over all the wavelengths for the pix-
els of interest (here, 51% of the image pixels) gave, for L,
a mean error ErrL(L) of 0.2 W/m2/sr/μm. For LD, we
have ErrL(LD) = 0.1 W/m2/sr/μm. Finally, ErrL(Lenv) =
0.1 W/m2/sr/μm. Fig. 11(b) shows the histogram of all errors
errLi

(Lenv). The maximum value is here 0.7 W/m2/sr/μm,
and for 95% of the pixels, the values are below 0.4 W/m2/
sr/μm. Most of the error values are low compared with the
level of sensor noise. Furthermore, comparing the level of the
errors with the values of the total radiance faced in our images
(see Fig. 12), we can note that they are globally low. Fig. 13
shows our computed image of 〈L〉env (left) and the difference
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Fig. 12. Urban scene at 5-m resolution - 〈L〉 (in W/m2/sr/μm). (a) Wave-
length of 670 nm. (b) Wavelength of 870 nm.

Fig. 13. Urban scene at 5-m resolution - 〈L〉env and error (in W/m2/sr/μm)
at 670 nm. (a) 〈L〉env. (b) Error: |〈L〉env − Lenv|.

between Lenv and 〈L〉env (right), at 670 nm. The pixels with the
highest errors are due to the same reasons as previously noted
(in Sections III-D1a and b).

Through all these simulations, it can be concluded that the
main errors are due to the generation of the synthetic scenes
or to our aggregation algorithm. Moreover, these errors are
comparable in level to the radiometric sensitivities of airborne
sensors. We can thus consider that our model defined by (8),
(13), (10), and (11) is validated.

2) Analysis of the Different Terms: In this section, we evalu-
ate the relative importance of the terms related to the reflections
using the same simulated data. For the urban scene, only the
5-m image is considered here since it is a more realistic example
that includes pixel mixtures.

a) Simple geometric scenes: Fig. 14 shows that the pro-
portion of 〈L〉env depends on the sun direction (see the dif-
ferences between scenes C3 and C2), which induces different
levels of irradiances on the walls (higher values of irradiance
when the sun direction is perpendicular to the surface). Further-
more, when the proportion of shadow increases, the amount of
direct radiance is lower, so the radiance due to the environment
takes a more important proportion.

The proportions of Lenv depend also on the wavelength
(Lenv has lower importance in the blue domain). Finally, it
is obvious that the materials present in the scene play an
important role too (more reflections with aluminum for scene
C4 compared with scene C3 which is characterized by the same
sun direction).

Fig. 14. Simple scenes - percentages of 〈L〉D and 〈L〉env compared with
the total radiance, for the seven studied wavelengths (in nanometers): (1) 480,
(2) 550, (3) 670, (4) 740, (5) 870, (6) 1600, and (7) 2200. (a) C2. (b) C3.
(c) C4.

Fig. 15. Simple scenes - percentages of 〈ρ〉D , 〈ρ〉env,D , and 〈ρ〉env,diff in
the total reflectance 〈ρ〉 for the seven studied wavelengths (in nanometers):
(1) 480, (2) 550, (3) 670, (4) 740, (5) 870, (6) 1600, and (7) 2200. (a) C2.
(b) C3. (c) C4.

Similar comments can be made concerning the proportion
of 〈ρ〉env in the total reflectance, presented in Fig. 15. The
percentages are higher than 5% in most cases (and higher
than 10% when looking only at scenes C3 and C4). Such
proportions cannot be reasonably neglected in a mixing model
for reflectances. We also notice that the reflections induced
by the direct radiance 〈ρ〉env,D are more important than those
induced by the diffused radiances 〈ρ〉env,diff and that the lat-
ter term is almost equal to zero for wavelengths higher than
1600 nm.

b) Urban scene at 5-m resolution: In this section, we
focus only on the reflectance terms, which are the terms of main
concern in this paper, since the values of radiance essentially
helped us to validate the model with AMARTIS. Fig. 16 con-
tains two images that represent 〈ρ〉env percentages in 〈ρ〉 for
wavelengths of 670 and 870 nm. We thus can see, as previously
(in Section III-D2a), that the importance of the term due to
reflections depends on the materials present in the scene, on the
presence of shadow, and on the area in the scene (the geometry
and orientation of buildings toward the sun, etc.). It seems, e.g.,
obvious that 〈ρ〉env is higher for pixels situated near the walls
irradiated by the sun and the percentages of 〈ρ〉env are higher
where walls are covered with aluminum (see Fig. 6 to localize
the concerned zones). Note that the white pixel in the images
corresponds to a surface with a high proportion of shadow,
which explains this high percentage of 〈ρ〉env.

Table IV shows the mean value of the percentages of 〈ρ〉env
as a function of the wavelength for one zone in the image:
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Fig. 16. Urban scene at 5-m resolution - images of the percentage of 〈ρ〉env
in 〈ρ〉. (a) Wavelength of 670 nm. (b) Wavelength of 870 nm.

TABLE IV
FIVE-METER URBAN SCENE-PERCENTAGES OF 〈ρ〉env,D AND 〈ρ〉env IN

〈ρ〉, FOR ONE ZONE IN THE IMAGE (DESCRIBED IN THE TEXT)

the canyon situated in the bottom of the image (rows 10–18
and columns 7 and 8). As previously (for the simple scenes
in Section III-D2a), the importance of the term due to the
environment cannot be neglected (all values higher than 5%).
It can be noticed again that 〈ρ〉env is less important in the
blue domain. It is also clear, as for the simple scenes, that the
reflections induced by the direct radiance 〈ρ〉env,D have
the highest percentage (between 75% and 100% of 〈ρ〉env), and
this will be useful for the next section.

3) Verification of the Flux Conservation Property: To en-
tirely validate our model, it is necessary to verify the prop-
erty of incident flux conservation, at a pixel level, cited in
Section II, by validating (12). A new image at 5-m resolution is
simulated, with only a part of our urban scene (rows 1–10 and
columns 1–7). Taking a smaller scene permits a finer triangula-
tion and, thus, better accuracy in the results. Note that all pixels
in this image do not correspond to flat homogeneous surfaces,
so the assumptions of the classical linear model are not met
here. The sum-to-one property is obtained: The left-hand term
of (12) has a mean value of 0.999 over the whole image and a
standard deviation of 0.01. Property (12) is then true. This result
is very important for the unmixing community as we will see
in Section V.

IV. DERIVATION OF A SIMPLIFIED MIXING MODEL

As explained previously (in Section I), the aim of this work
is to derive a mixing model for reflectances, valid in urban
environments, and that could be used for spectral unmixing.
However, the mixing model defined by (8), (13), (10), and
(11) is not convenient yet for unmixing methods. It is a bit
complicated because of the dependence of the irradiance terms
on the wavelength.

By rewriting the model by highlighting the previously de-
fined dependences of the different terms versus the 2-D pixel

Fig. 17. Histogram of the values of ED,k/ED in the linear and quadratic
parts of our model. (a) In the linear part. (b) In the quadratic part.

position y and the wavelength λ, we have

〈ρ〉(y, λ) =
N∑

k=1

Sk(y)
ED,k

ED
(y, λ)ρk(λ)

+

N∑
k=1

∑
m∈Vk

Sk(y)
gm,k(y)

π
ΔS

×
(
ED,m

ED
(y, λ) +

Ediff,m

ED
(y, λ)

)

× ρk(λ)× ρm(λ). (17)

Using the source separation terminology [26]–[29] and con-
sidering wavelength-dependent sources, this model is an in-
stantaneous (or memoryless) one since each mixture at one
wavelength only depends on the sources (reflectances here)
and the mixing coefficients at the same wavelength. It is a
linear–quadratic model with respect to the reflectances (our
sources), but the mixing coefficients include terms with a
double dependence on the position and on the wavelength:
the irradiance ratios (i.e., ED,k/ED, . . .). This makes the
model difficult to use for unmixing. Therefore, a study of the
spectral behavior of these terms is necessary to see if some
simplifications are possible. To do this, we use the urban scene
at 5-m resolution described in Section III.

A. Results

1) Terms ED,k/ED: Although ED and ED,k depend on
the wavelength, the ratios ED,k/ED only depend on the scene
geometry. As shown in [21], these terms can be reduced to
ratios of cosines, so they do not depend on the wavelength.

These terms are equal to one when the surface is flat, i.e.,
when the linear mixing model is valid. This is not the case here
because of the 3-D structures, so it is interesting to see which
values can be encountered. As an example, Fig. 17 shows the
histogram of the values of these ratios in our urban image, and
here is a summary of the results.

• ED,k/ED in the linear part of our model: Almost all the
values are between zero and five; 54% of the values are
almost equal to one (with a precision of 0.01). These terms
are often different from one, which is not the case when the
surface is flat.
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Fig. 18. (a) Ediff,m/ED versus wavelength (in nanometers). (b) log(Ediff,m/
ED) versus wavelength (in nanometers).

• ED,m/ED in the quadratic part of our model (where m
here corresponds to elementary surfaces irradiated by the
sun): Almost all the values are between 0.3 and 5; 94% of
the values are lower than two. Note that the values are high
when ED corresponds to partially shadowed pixels.

2) Terms Ediff ,m/ED: Fig. 18 graphs Ediff ,m/ED ver-
sus the wavelength for different elementary surfaces m and
different pixel positions. Fig. 18(a) shows that these terms
vary very slowly in the infrared domain but they significantly
depend on the wavelength in the visible domain. Looking at
these curves in a semilog scale [Fig. 18(b)], we can notice
that all curves look like translated versions of one curve. This
means that, in a linear scale, these curves are proportional. This
property can be verified by computing the cross-correlation
coefficients between all couples of curves, which are always
higher than 0.98. We thus can approximate all our curves
by one curve multiplied by a scalar factor: uk(λ) � akv(λ),
with v(λ) being the curve chosen as a reference and ak =
meanλ(uk(λ)v(λ))/meanλ(v(λ)

2).
To check the proportionality of our curves, we also compute

the following normalized root-mean-square error:

error =

√√√√meanλ

(
(uk(λ)− akv(λ))

2
)

meanλ (u2
k(λ))

.

We obtain the following results. The maximum encountered
error is 8%, and we have a mean error of 4%, for all curves.
The errors are lower than 6% for more than 90% of the curves
and lower than 7% for 98% of the curves. The errors obtained
with this approximation are thus very low, so we can consider
that these curves are almost proportional. This result is very
interesting considering the fact that, whatever the materials and
the geometric conditions are, the terms Ediff ,m/ED have the
same spectral behavior.

B. Resulting Simplifications and the Obtained Model

The above study yields very interesting results: We have
separability between the dependency of the irradiance ratios vs.
the wavelength and vs. the spatial position, and ED,k/ED does
not depend on λ. We can thus write

ED,k

ED
(y, λ) =αk(y) (18)

Ediff,m

ED
(y, λ) =βm(y)f(λ). (19)

This allows us to derive a simplified mixing model from (17)

〈ρ〉(y, λ) =
N∑

k=1

Sk(y)αk(y)× ρk(λ)

+
N∑

k=1

∑
m∈Vk

Sk(y)
gm,k(y)

π
ΔS

× (αm(y) + βm(y)f(λ))× ρk(λ)ρm(λ). (20)

By grouping all coefficients depending only on the spatial
position together, we finally obtain

〈ρ〉(y, λ) =
N∑

k=1

bk(y)× ρk(λ) +

N∑
k=1

∑
m∈Vk

× (ck,m(y) + dk,m(y)f(λ))× ρm(λ)ρk(λ)

(21)

with bk(y)=Sk(y)αk(y), ck,m(y)=Sk(y)(gm,k(y)/π)ΔSαm(y),
and dk,m(y) = Sk(y)(gm,k(y)/π)ΔSβm(y).

This is our general mixing model for urban environments,
without notable approximation. It is a spectrally variant
linear–quadratic model, because of the term f(λ), in the last
mixing coefficients, which still depends on the wavelength.
Quantifying the error induced on 〈ρ〉 by this approximation is
not easy. However, we can be sure that it is globally lower than
3%, which corresponds to the maximum expected proportion of
〈ρ〉env,diff in 〈ρ〉 (see the results in Fig. 15 and Table IV).

C. Obtaining the Invariant Linear–Quadratic Model

Now, if we want to derive an invariant linear–quadratic
model in which the sources are the reflectances, we need to
neglect f(λ) variations. As noticed in Section III, the con-
tribution of 〈ρ〉env,diff (thus the terms Ediff,m/ED) in 〈ρ〉env
is weak compared to the contribution of 〈ρ〉env,D (the terms
ED,m/ED). Therefore, the approximation that f(λ) is constant
is acceptable and can be made without important consequences.
We then include f(λ) in the definition of the term βm(y).

By grouping together all coefficients depending only on the
spatial position, (21) becomes

〈ρ〉(y, λ)=
N∑

k=1

bk(y)×ρk(λ)+
N∑

k=1

∑
m∈Vk

ck,m(y)×ρk(λ)ρm(λ)

(22)
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with, here, bk(y)=Sk(y)αk(y) and ck,m(y)=Sk(y)(gm,k(y)/
π)ΔS(αm(y) + βm(y)).

It must be clear that this simplification can be made without
demonstrating the separability of the terms Ediff,m/ED versus
wavelength and position (Section IV-A). The error induced by
the simplification made here will be evaluated in the following
section, at the pixel level.

V. TOWARD SPECTRAL UNMIXING

A. Final Mixing Model Adapted to Unmixing

To perform spectral unmixing or source separation, we need
to have the same sources in all the image, so sources have to
be independent of the pixels. In our case, the sources are the
reflectances, so the model assumes that each material corre-
sponds to only one reflectance spectrum. In (22), a reflectance is
associated with each elementary surface k or m, so we regroup
elementary surfaces corresponding to each material together by
associating a reflectance ρj with each material. Our equation,
for one pixel i, thus becomes a sum over all M materials

〈ρ〉i(λ) =
M∑
j=1

aj(i)× ρj(λ) +
M∑
j=1

M∑
�=j

aj,�(i)× ρj(λ)ρ�(λ)

(23)

with, for example, aj(i) =
∑

k∈Dj
bk(y), with Dj being el-

ementary surfaces composed of material j. We thus have an
invariant instantaneous linear–quadratic mixing model with M
sources that are the reflectances of the materials present in the
image. This model, already used in the literature for unmixing
(see, e.g., [15]–[18]), is now justified by our physical equations.

B. Possible Assumptions About the Mixing Coefficients

The aforementioned linear–quadratic model has been used,
in the literature, for unmixing, with different assumptions con-
cerning the mixing coefficients aj(i) and aj,�(i).

In [15], it is considered that the sum of all coefficients [aj(i)
and aj,�(i)] is equal to one, which does not have a really
physical meaning. In [16], different possibilities are proposed
for aj,�(i), not justified either. The approach in [17] assumes
that aj,�(i) = aj(i)a�(i), which means that a surface not seen
by the sensor for the considered pixel cannot contribute by
reflections to its reflectance, and this is often not true (see
Fig. 20 and the discussed examples in the following).

Concerning the linear coefficients aj(i), most works keep the
assumption used for the linear model [17], [18], considering
that aj(i) denotes the abundances (proportion of each material
in a pixel) and then

M∑
j=1

aj(i) = 1 0 ≤ aj(i) ≤ 1.

In Section II, we showed that this assumption (12) is true
for our general model, i.e., even if surfaces are not flat and

Fig. 19. Histogram of the values of aj,�(i) - urban image at 5-m resolution.

Fig. 20. Values of aj,�(i) for five chosen pixels in the used urban image [the
top left corner of the image in Fig. 7(a)]. (a) ED image, with the pixel locations.
(b) Values of aj,�(i) for the five pixels.

homogeneous. This was confirmed by simulation results in
Section III-D3. In fact, we can write for a pixel i

M∑
j=1

aj(i) =

N∑
k=1

Sk
ED,k

ED
= 1.

For the classical linear model, which is valid when the surface
is flat and homogeneous, the terms ED,k/ED are equal to
one, and we obtain the classical sum-to-one assumption for the
abundances.

Concerning aj,�(i), related to the quadratic part of the mixing
model, Fig. 19 shows a histogram of the nonzero coefficients
obtained with our urban image at 5-m resolution. It may appear
that most values are low (72% of the values are below 0.1), but
this is normal since our urban image is, in some areas, not very
representative of towns: There are no buildings on the edges of
the image; thus, there are no possible multiple reflections there.
Focusing on the previously chosen canyon (rows 10–18 and
columns 7 and 8), the values of aj,�(i) have another distribution,
which is more representative of urban environments:

1) aj,�(i) ∈ [0, 0.1] for 49% of the values;
2) 0.1 < aj,�(i) < 0.2 for 16% of the values;
3) 0.2 < aj,�(i) < 0.25 for 35% of them.

Next, we analyze the values of aj,�(i) for some chosen pixels
in the urban image. To this end, we use the same image as
in Section III-D3 (a 5-m image obtained by simulating one
zone of our urban scene with a finer triangulation than that of
the entire scene). Fig. 20(a) shows a 0.2-m-resolution image
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Fig. 21. Values of aj,�(i) versus wavelength - urban image at 5-m resolution.

of the used scene (image of direct irradiance ED), with a
grid showing the 5-m pixels. This figure highlights the surface
orientations toward the sun and the shadowed areas (in black).
The five chosen pixels are indicated. Fig. 20(b) shows the values
of nonzero aj,�(i) for these pixels. As shown in the figure,
these pixels have been chosen as they correspond to different
configurations including shadow proportion, distance from a
wall, and surface orientation (roof or soil). We can also see
to which materials each coefficient corresponds (to know by
which reflectances it is multiplied in the model). The aim again
is to see which values can be encountered in an urban image.
It is also interesting to see how the position on the scene and
the proportion of the shadow can play a role on the values
of aj,�(i).

• Pixel 1: There are contributions due to reflections between
the roofs (tiles) and to reflections from the wall of bricks
and from the wall of aluminum. However, the total coef-
ficient is not very high since the reflections between roofs
are less important than the reflections due to walls.

• Pixel 2: It corresponds to a surface more distant from the
walls than the surface of pixel 1; however, the coefficient
is higher than that for pixel 1. This shows again that
reflections due to walls give higher contributions than
reflections between roofs (pixel 1). This is due essentially
to the orientation of the involved surfaces.

• Pixels 3 and 4: Pixel 3 has a high coefficient corresponding
to aluminum (the wall on the right of the pixel), which is,
e.g., higher than the coefficient due to the brick for pixel 4;
this can be due to the surface orientation toward the sun.

• Pixel 5: The coefficient corresponding to the brick is
high compared with those of other pixels, due to the
presence of shadow, although the pixel is not close to the
reflecting wall.

The values of aj,�(i) are certainly lower than those for the
terms aj(i), but many of them cannot be neglected if we intend
to perform unmixing with a good precision for urban images.

There is one last point that must be treated now: the pos-
sible error on the model induced by the approximation in
Section IV-C. It has been assumed that the aj,�(i) coefficients
do not depend on the wavelength. Note that the aforementioned
results concerning these coefficients were obtained at the wave-
length of 670 nm. Fig. 21 shows the actual variations of the
terms aj,�(i) versus the wavelength. As it can be seen, the
coefficients vary at the beginning of the wavelength interval
but are almost stable beyond 800 nm. To see the effect of
this approximation, we need to remind that assuming that

the coefficients aj,�(i) are constant (versus the wavelength)
corresponds to an approximation of only the term 〈ρ〉env,diff .
This represents globally 3% in the total reflectance (see Fig. 15
and Table IV) and corresponds to 6% at most (image C4,
for 480 nm). This term is thus globally low compared to the
total reflectance, so the considered approximation is sufficient.
Therefore, neglecting the variations of the terms aj,�(i) versus
the wavelength is a reasonable assumption, and the proposed
model (23) is quite accurate.

VI. CONCLUSION

In this paper, a mixing model for reflectances has been
derived from physical equations based on the radiative transfer
theory. A linear–quadratic model was thus obtained, which was
validated on simulated urban images. It was demonstrated that
the quadratic term cannot be neglected in urban scenes, essen-
tially when there are many buildings and canyons (it can, e.g.,
range from 15% to 20% of the total equivalent reflectances).
We also found that the sum-to-one property used in linear
models for the coefficients is still true for the coefficients of the
linear part of our model. Finally, an invariant linear–quadratic
model adapted to unmixing methods was derived, with some
additional information concerning the mixing coefficients. All
our simulations were done without any noise. Future work will
consider synthetic images with noise to analyze its impact on
the importance of the terms due to the environment (quadratic
terms). It would also be interesting to compare this model with
the linear one while unmixing simulated urban hyperspectral
images. Furthermore, we intend to validate the model with real
hyperspectral images. An airborne experiment is planned in the
near future over two French cities (Toulouse and Amiens) with
the ONERA hyperspectral cameras HYSPEX. Finally, note that
this model is true for pixels partially or totally in the sun, and it
would be interesting to also derive a model for the completely
shadowed pixels.
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