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Blind Separation of Nonstationary Markovian
Sources Using an Equivariant
Newton–Raphson Algorithm
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Abstract—This letter presents a new maximum likelihood
method for blindly separating linear instantaneous source
mixtures, where source signals are assumed to be mutually inde-
pendent, Markovian and possibly nonstationary. The proposed
approach first extends previous works, by Hosseini et al. to possibly
nonstationary sources using two approaches based on blocking
and kernel smoothing, respectively. Moreover, to reduce time con-
sumption, we propose an equivariant modified Newton–Raphson
algorithm to solve the estimating equations, and we introduce
polynomial estimators for the conditional score functions used
in our method. Experimental results, both for artificial and real
(speech) signals, prove the better performance of our method as
compared to various classical blind separation algorithms.

Index Terms—Blind source separation (BSS), Markovian model,
Newton–Raphson algorithm, nonstationary sources, polynomial
score function estimator.

I. INTRODUCTION

I N linear instantaneous Blind Source Separation (BSS),
we aim at recovering some unknown source signals from

a set of observed linear combinations of these sources. As-
suming samples of observations resulting from the
mixture of unknown sources, we denote, respectively,

and
the observation and source vectors. The linear instantaneous
mixture model, in a noiseless context, is hence defined by

(1)

where is an unknown mixing matrix. Given this
model, the aim of BSS methods is to find an estimate of the
matrix , up to permutation and scale indeterminacies, in order
to then estimate the sources as .

To solve this problem, one of the most commonly used ap-
proaches is the Independent Component Analysis (ICA), where
one achieves separation by assuming the mutual independence
of the sources. To obtain independent signals, three different
features may be exploited: non-Gaussianity, autocorrelation or
nonstationarity of the sources [1].

In [2], Hosseini et al. proposed a Maximum Likelihood
(ML) BSS approach where sources were modeled as -th order
stationary Markovian processes. The Markovian assumption
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helped to improve separation performance by taking into ac-
count the temporal autocorrelation of the sources.

Nevertheless, this method suffers from a high computational
cost, which is due to a cumbersome nonparametric estimation
of the score functions and to slow convergence of the gradient
algorithm used for solving the estimating equations. Moreover,
it is based on the source stationarity assumption, which is obvi-
ously unrealistic for most real signals.

Starting from this idea, we propose in this letter an ML
Markovian method, where we exploit possible source nonsta-
tionarity by adapting two approaches based on blocking and
kernel smoothing, respectively. This method can take into ac-
count higher-order nonstationarities, contrary to most classical
nonstationary BSS algorithms. Furthermore, we propose a
modified equivariant Newton–Raphson algorithm to solve esti-
mating equations and define 3rd-order polynomial Least Mean
Square (LMS) estimators for the conditional score functions.

II. MARKOVIAN BSS METHOD USING EQUIVARIANT
NEWTON–RAPHSON ALGORITHM

Assuming the mixture model (1), we want to estimate a sep-
arating matrix up to a permutation and a diagonal
matrix. In an ML approach, this is done by maximizing, with
respect to the matrix , the joint pdf of all the samples of all the
components of the observation vector , defined by

(2)

Assuming the sources are mutually independent and obey a -th
order Markovian model1, then using the Bayes rule and simpli-
fying the source conditional pdfs as in [2], we can rewrite (2) as

(3)

where is the joint pdf of the first samples of each source
and is the conditional pdf of source , at time .
By maximizing the logarithm of (3), following the same steps

as in [2], we finally obtain the following set of esti-
mating equations

(4)

1The Markovian model can take into account the nonlinear temporal autocor-
relation between the signal samples, which is not the case when using ARMA
models, for example.
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where represents the tem-
poral mean over samples and is the condi-
tional score function of source at time with respect to source
sample , defined as

Contrary to [2], where a gradient ascent scheme is used to solve
(4), we propose to use a faster approach based on a modified
version of the Newton–Raphson algorithm. Thus, we modify
the step size of the classical Newton–Raphson algorithm so that
the new estimate of the separating matrix is proportional
to the previous value of this matrix, following the formula

, where is the identity matrix. This formula-
tion has the advantage of ensuring the equivariance property of
the algorithm [3]. Indeed, post-multiplying the above updating
formula by the mixing matrix , one can easily prove that the
global mixing-unmixing matrix only depends on its initial value.

In the following, we restrict our calculus to the case
for simplicity. The extension of the results to a higher number
of sources is straightforward. Post-multiplying the updating for-
mula by the observation vector , the new source estimate

can be written as a function of its previous value ,
according to . The new estimate is equal to
the actual separating matrix if satisfies (4). We denote

. The diagonal entries of may be set to any arbi-

trary value due to the scaling indeterminacy of ICA. The off-di-
agonal terms and are computed as follows. Using a
first-order Taylor expansion of the score function at the
current value , we obtain after some simplifications the fol-
lowing linear set of two equations with two unknowns and

[4]

(5)

To compute the coefficients of (5), we need the score func-
tions and their derivatives. Since the sources are un-
known, in practice their score functions may be estimated only
via the reconstructed sources , computed at each
iteration of the Newton–Raphson algorithm. This approxima-
tion may be obviously inaccurate at the first iterations of the
algorithm, but it does not usually degrade the convergence to-
wards actual sources. In [2], third-order cardinal spline kernels
are used to compute the estimated conditional score functions
of the sources, . This method is quite accurate but is very

time consuming, and computing score function derivatives in
this case is a difficult task. In the following, we propose a sim-
pler estimator of the score functions based on a polynomial LMS
estimator. Furthermore, we adapt this method to handle possible
source nonstationarity.

III. NONSTATIONARY POLYNOMIAL ESTIMATION
OF THE SCORE FUNCTIONS

A. Polynomial LMS Estimator

In the following, we want to find parametric LMS estimators
for the conditional score functions required to solve (5). First,
each conditional score function may be written as

(6)

Our aim is to estimate each of the joint score functions in the
right-hand term of (6) using two parametric LMS estimators

and
, respectively. Thus, we have for the first estimator

(7)

Using theoretical results in [5], one can prove that the above
estimator satisfies

(8)

The parametric function may be
defined in different ways, but should be easily differentiable to
enable fast estimation of the score function derivatives. There-
fore, we choose to use polynomial functions, which are espe-
cially attractive for their simplicity and their linearity with re-
spect to the parameters. We first write the polynomial function

as

(9)

where and are respectively the
monomial functions and the coefficients. Replacing in
(8) by its polynomial expression, then setting to zero the deriva-
tive of the function to be minimized, one finally obtains the fol-
lowing parameters , which mini-
mize the mean square error of the estimator

(10)

The parameters of the LMS Polynomial estimator
of the second joint score function, denoted

by , can be obtained in a similar manner.
The orders of the polynomials are chosen to ensure ac-

curate estimates in a reasonable running time. Thus, after
some tests, the two polynomial functions were chosen to be
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Fig. 1. Mean SIR as a function of L.

third-order polynomials, which respectively contain all pos-
sible terms in

and
.2

B. Nonstationary Estimation of the Score Functions

The estimations of the coefficients and
require the computation of the expectations

in (10) and in the corresponding equation for .
Nevertheless, this is not possible unless we make some statis-
tical assumptions about the sources. To adapt our method to
realistic sources, we here propose two formulations that take
into account the possible nonstationarity of the source signals
by locally estimating the score functions3. To this end, the two
approaches, first proposed in [6] for nonstationary uncorrelated
sources, are here adapted to our Markovian nonstationary
Newton–Raphson algorithm.

1) Blocking Method: In a blocking approach, the signal, of
length , is split into adjacent subintervals .
Under slow variation hypothesis, score functions are supposed
to be constant within each of the subintervals . Thus, in each

, the score functions do not depend on time, and expecta-
tions in (10) are simply replaced by sample means. For instance,
taking the same length for all sub-intervals, the first set of co-
efficients associated to is computed by

(11)

where and .
2) Kernel Smoothing Method: In the above blocking ap-

proach, we simply assign the same weight to all samples within
a subinterval . This approach is practical but only offers lim-
ited choices for the weighting window. A more natural idea is
to define a sequence of locally varying coefficients which adjust
the weighting around the time point of interest to the smooth-
ness of the signal. Indeed, a common method is to describe
these weights using a kernel function with a chosen window
width adapted to the data. For instance, we here propose to
use the classical Nadaraya-Watson estimator [7] to estimate the
expectations in (10). Thus, if we denote these expectations as

2Using for example a first-order Markovian model, i.e., � � ��� is the
vector ��� �� ���� �� �� � ��� �� ��� � �� �� � �� � �� ����� �� � ��� �� ��� � �� �� �
�� � �� ��� �� �� � ��� �� ����� �� � �� � .

3Taking into account the nonstationarity improves the BSS performance and
makes it possible even for Gaussian, temporally uncorrelated sources [1].

where is a gen-
eral notation for the nonlinear functions in (10), our estimator
may be defined as

(12)

where is a kernel function and the weighting window
width. This estimator should be more accurate than the blocking
algorithm, but it is unfortunately very time consuming, espe-
cially when signals are large-sized. To reduce the time consump-
tion, we can take a sparser estimation such as

where is the first integer greater than and is
chosen so that is an integer, .

IV. EXPERIMENTS WITH ARTIFICIAL AND REAL DATA

A. Artificial Signals

For each of the following experiments, the esti-
mated sources, , are normalized to have the same
variances and signs as the sources, . The output
Signal to Interference Ratio (in dB) is computed by

, where
is the number of sources.
In the first experiment, we want to highlight the relevance

of taking into account the possible nonstationarity of the sig-
nals in BSS problems. Therefore, we compare our nonstationary
blocking Markovian method to the simple case when the non-
stationary sources are supposed to be stationary.

First, we generate two independent, white and uniformly
distributed signals and , that we filter by, respec-
tively, two autoregressive (AR) filters in order to obtain
two 1st-order Markovian sources following the scheme

. The chosen coefficients are
and . Finally, we split the signals into 8

subintervals, then multiply each block by a different coefficient
to obtain the nonstationary source signals .

The mixture is artificially obtained using the mixing matrix

To perform separation, we apply our

blocking Markovian method for different values of the number
of blocks, then we compute the average SIR over 100 Monte

Carlo simulations. For each simulation, we randomly generate
the signals and . The results obtained for
source samples are shown in Fig. 1 as a function of .

The case corresponds to the stationary version of
our Markovian algorithm, and only yields 13-dB mean SIR.
Fig. 1 shows that our nonstationary algorithm outperforms the
stationary one, whatever the number . The best performance
is obtained when , with an average SIR of 37 dB and a
standard deviation equal to 7 dB. Note that the algorithm per-
formance is not considerably degraded by overblocking, unless
we do not have enough samples in each block to accurately es-
timate score functions. Indeed, we still obtain more than 35-dB
SIRs provided .

In the second step of our experiments, we want to confirm the
advantage of taking into account both autocorrelation and non-
stationarity in comparison to Pham’s nonstationary BSS method
[6] which neglects the autocorrelation. Thus, we generate in the
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Fig. 2. Mean SIR as a function of the Gaussian kernel window width.

same way as in the first simulation two artificial AR indepen-
dent 20000-sample signals. The two filter coefficients, and

, are chosen to be equal to 0.9 in order to create, within each
signal, strong temporal autocorrelations which cannot be ne-
glected. These filtered signals are then split into 4 blocks, and
each block is multiplied by a different coefficient to generate
variance nonstationarity. The resulting source signals, , are
then mixed by the same matrix as in the previous experiment.

To separate the obtained mixture, we respectively apply
our blocking Markovian method and the nonstationary
non-Gaussian algorithm proposed by Pham [6]. For each
method, we compute the mean SIR over 100 Monte Carlo
simulations as a function of . Our method leads to more than
51-dB mean SIR for . On the contrary, Pham’s
algorithm leads at best to an SIR of 41 dB.

In the last simulation, we want to verify the advantage
of the kernel smoothing method in cases when the blocking
method cannot perfectly adapt to the signal statistics. Thus,
we generate two independent 1000-sample AR signals. The
resulting Markovian signals are split into 200 blocks, and each
block is then multiplied by a different coefficient to obtain
the sources . Note that, in this case, each stationary block
only contains 5 samples, which is clearly not enough to esti-
mate score functions. The generated sources are finally mixed

by and separation is performed using,

respectively, our blocking method with different number of
blocks , and our kernel smoothing approach with a Gaussian
kernel and a varying window width . The mean SIR over 100
Monte Carlo simulations using the kernel method is shown in
Fig. 2 versus . The best performance is obtained for ,
with an average SIR of 41 dB, whereas the blocking method
leads at best to 35 dB in this case. To have enough samples
in each block for the estimation of the score functions, the
signals should be underblocked, i.e., . Nevertheless,
the blocking algorithm is dramatically faster than the kernel
smoothing approach, especially with long signals: using for
instance two 1000-sample nonstationary Markovian signals
with 8 blocks, the running times for each iteration on a 1.53
GHz AMD-Athlon PC with 500 MB of memory were 0.2
and 25 seconds using the blocking and the kernel algorithms,
respectively. Therefore, in the following, we only use the
blocking algorithm to perform the separation of real speech
signals with very large number of samples.

B. Simulations With Speech Signals

Using the same mixture matrix as in the previous Sub-
section, we first generate ten couples of mixed 100 000-sample

TABLE I
BEST SIRS OBTAINED BY THE BLOCKING MARKOVIAN ALGORITHM AND THE

19 ICALAB ALGORITHMS FOR THE SEPARATION OF TEN COUPLES OF MIXED

SPEECH SIGNALS AND A MIXTURE OF EIGHT SPEECH SIGNALS

speech signals. The mean of the SIRs for these ten couples
is computed using respectively our nonstationary Markovian
method and 19 standard algorithms available in the ICALAB
Toolbox [8]. Note that this Toolbox includes for example the
SONS algorithm, which is a second-order approach taking into
account both nonstationarity and temporal autocorrelation of the
signals. In a second step, we apply our blocking method and the
above 19 algorithms to separate an artificial linear instantaneous
mixture of eight 100 000-sample speech signals. The best results
obtained for both tests are summarized in Table I.

V. CONCLUSION

We presented a new blind Markovian source separa-
tion method which simultaneously takes advantage of the
non-Gaussianity, nonstationarity and autocorrelation of the
source signals. The computational cost is highly reduced thanks
to an efficient modified Newton–Raphson algorithm and a
simple polynomial estimator for conditional score functions
and their derivatives. Our simulations confirmed the relevance
of our approach when compared to methods which neglect ei-
ther nonstationarity or autocorrelation of the signals. Moreover,
the results obtained with speech signals clearly prove the better
performance of our method with respect to all classical algo-
rithms of the ICALAB Toolbox. Applications of this method
in realistic mixture context, especially for one-dimensional
astrophysical signals, will be presented in future works.
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