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Abstract

While most reported blind source separation methods concern linear mixtures,

we here address the nonlinear case. In the first part of this paper, we introduced

a general class of nonlinear mixtures which can be inverted using recurrent net-

works. That part was focused on separating structures themselves and therefore

on the non-blind configuration, whereas the current paper addresses the esti-

mation of the parameters of this large class of structures in a blind context.

We propose a maximum likelihood approach to this end. The main advantage

of this approach is that it exploits the knowledge of the parametric model of

mixing transformation in the separation procedure while its implementation

does not require the knowledge of the explicit inverse of the model because the

separating structure can be designed using a recurrent network. In particular,

we illustrate in detail the proposed approach for a linear-quadratic mixture by

using an extended recurrent network with self-feedback parameters which guar-

antee its local stability. Simulation results show the very good performance of

the proposed algorithm.
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1. Introduction

Blind Source Separation (BSS) aims at restoring source signals from their

mixtures when the mixing parameters are unknown. The main class of methods

proposed to this end is based on the assumed statistical independence of the

sources and is called Independent Component Analysis (ICA). While linear BSS

has been extensively studied (see for example [1] and references therein), much

less work is available on nonlinear BSS. Several authors have considered general

nonlinear mixtures (see e.g. [2, 3, 4, 5, 6]). These works are not dedicated to a

specific class of mixtures and do not take advantage of possible knowledge of the

parametric model of mixing transformations. For example, the MISEP approach

proposed in [4] tries to invert the mixing model using a multilayer perceptron.

The main problem of these approaches concerns the non-uniqueness of nonlinear

ICA: it is well known that the independence hypothesis is not sufficient for

separating general nonlinear mixtures because of the very large indeterminacies

which make the problem ill-posed [7, 8]. A natural idea for reducing these

indeterminacies is to constrain the structure of mixing and separating models

to belong to a certain set of transformations. This supplementary constraint

can be viewed as a regularization of the initially ill-posed problem [9, 10]. Thus,

several authors have studied specific classes of nonlinear mixing models like

post-nonlinear mixtures [8, 11, 12], linear-quadratic mixtures [13, 14, 15, 16,

17, 18, 19], linearizable mappings [20] or nonlinear mixtures encountered on gas

or chemical sensors [21, 22] (see also [9] for a more general framework). More

references about nonlinear BSS can be found in Chapter 14 of [1].

Consider the mixing equation

x(n) = F(s(n),θ) (1)

where s(n) = [s1(n), · · · , sN (n)]T is the vector of N independent unknown

sources at time n (T denotes transposition), x(n) = [x1(n), · · · , xP (n)]
T is the

vector of P observations and F is a memoryless parametric function, defined

by the unknown parameter vector θ. Even when the mixing model and its
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parameter values are known (i.e. in the non-blind configuration) it is not al-

ways straightforward to create a system which implements the inverse of this

model. In the first part of this article [23], we introduced a general class of

nonlinear mixtures called “extractable-target mixtures” (ETM) which can be

inverted using recurrent networks. In its general form, an ETM is described by

the following mixing equations

xi(n) = f(Ti[s(n)], Ii[s(n)]) ∀i ∈ {1, · · · , P} (2)

where Ti[s(n)] and Ii[s(n)] are, respectively, the target and interfering terms

of the considered model, i.e. the components of xi(n) that we aim at keeping

and removing in the network outputs and f is a quite general function (see [23]

for more details). A particular case of these mixtures, called “additive-target

mixtures” (ATM) in [23], is described by

xi(n) = Ti[s(n)]− Ii[s(n)] ∀i ∈ {1, · · · , P}. (3)

In a simpler configuration, the target terms Ti[s(n)] are equal to the source

signals si(n) up to classical scale indeterminacy: Ti[s(n)] = s′i(n) = kisi(n)

where ki is a constant. In this case, the mixture reads

xi(n) = s′i(n)− Ii[s(n)] ∀i ∈ {1, · · · , P}. (4)

In [23], we explained how recurrent networks may be used to retrieve the sources

from their ETM in a non-blind configuration. In particular, for the mixing model

(4) with N = P = 2, we proposed a recurrent network (see Fig. 1) and showed

that by choosing the “cancellation operators” Ci such that

Ci[s
′(n)] = Ii[s(n)], (5)

the normalized sources s′(n) correspond to a fixed point of the recurrent net-

work. We also proposed an extended structure (see Fig. 2) by adding self-

feedback operators Fi from each output to each input having the same index

i. This extension provides additional flexibility which may be used to improve

the stability of the recurrent network. We especially showed in [23] how the
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stability of the extended network at its main fixed point can be guaranteed

when the observations are linear-quadratic mixtures of the sources with known

mixing parameters.

While Part I of this paper was focused on separating structures themselves

and therefore on the non-blind configuration, the current paper addresses the

estimation of the parameters of such structures in a blind context. Our estima-

tion framework is the maximum likelihood (ML) approach. This approach for

linear BSS was initially proposed in [24] and was developed and completed by

Pham and Garat [25]. Cardoso [26] showed the equivalence between the ML ap-

proach and the Infomax [27] algorithm. It is well known that the ML approach

is closely related to the Mutual Information approach which has been used for

separating linear [28, 29] and nonlinear [9, 4, 30] mixtures.

In a conference paper [16], we proposed an ML approach for blindly sep-

arating linear-quadratic mixtures using a basic recurrent network. The main

drawback of that proposed approach was the possible instability of the network:

during the learning procedure, the network parameters could take values mak-

ing the network unstable. In the current paper, the approach proposed in [16]

is extended from two points of view. First, we propose a general ML approach

for blindly separating any ETM mixtures. A main advantage of our proposed

approach results from an original use of the implicit differentiation, which al-

lows us to derive the analytical expression of the gradient without requiring the

knowledge of the explicit inverse of the mixing model. Second, we propose a

method to avoid the problems related to the use of the recurrent network and, in

particular, to guarantee its stability during the learning procedure when using

it for blindly separating 2 × 2 linear-quadratic mixtures. We also provide new

simulation results which validate the efficiency of this new proposed method.

The remainder of this paper is organized as follows. In Section 2, we ex-

plain how to blindly separate the sources mixed by an ETM using a maximum

likelihood approach. In Section 3, we illustrate the proposed procedure using

a linear-quadratic mixture. Experimental results are reported in Section 4 and

Section 5 concludes this work.

5



2. Blind separation of general ETM

Consider the mixing equation (1). In the following, we suppose that:

1. The mixture is determined, i.e. P = N .

2. Each source si(n) is an independent and identically distributed (i.i.d.)

random signal1 with probability density function (pdf) fSi
(.). As a result,

each observed signal xi(n) is i.i.d. too.

3. The sources are statistically independent so that fS(.) =
∏N

i=1 fSi
(.).

The maximum likelihood principle can be applied as follows. We denote by Θ̂

the set of all parameter column vectors θ̂ such that the model (1) is bijective in

the variation domain of the sources. The inverse of this model for each vector

θ̂ will be denoted by ŝ(n) = F−1(x(n), θ̂).

Once the source pdf fS(.) has been fixed, the distribution of the transformed

vector F(s, θ̂) only depends on θ̂. We use this family of distributions as a

parametric model for the pdf of observations2 and denote it by P = {p
θ̂
, θ̂ ∈

Θ̂}.

Given K samples of the observed signals x(n), the likelihood that these

samples are drawn with a particular pdf p
θ̂
is given by

L =

K
∏

n=1

p
θ̂
(x1(n), · · · , xN (n)), (6)

because the signals are supposed to be i.i.d.3

The mixture being supposed to be bijective, we can write

L =

K
∏

n=1

fS(ŝ1(n), · · · , ŝN (n))

|Ĵ |
=

K
∏

n=1

∏N
i=1 fSi

(ŝi(n))

|Ĵ |
(7)

1As mentioned in [25], this is only a working hypothesis to simplify the likelihood function.

This does not mean that the proposed method cannot be used for separating non-i.i.d. signals

but means we chose not to exploit the time structure of signals in the separating procedure.
2It is clear that this parametric pdf will be equal to the actual observation pdf if θ̂ = θ.
3The above formulation of the ML estimation was used by Cardoso in the case of linear

mixtures [26].
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where Ĵ is the Jacobian of the mixing transformation (1), i.e. det∂F∂s , evaluated

at θ̂ and ŝ(n) = F−1(x(n), θ̂). The maximum likelihood estimation of the ac-

tual parameters θ consists in maximizing this likelihood with respect to θ̂. This

is equivalent to the minimization of C = −1
K logL = −1

K

∑K
n=1 log

∏N
i=1 fSi

(ŝi(n))

|Ĵ|

which can be denoted using the time average operator EK [.] as

C = −EK [
N
∑

i=1

log fSi
(ŝi)] + EK [log |Ĵ |]. (8)

Minimizing this cost function requires that its gradient with respect to the

parameter vector θ̂ vanishes. Defining the score function of the source si by

ψSi
(si) = −d log fSi

(si)/dsi, (9)

and considering that ∂ log |Ĵ|

∂θ̂
= 1

Ĵ
∂Ĵ
∂θ̂

, the gradient reads

dC

dθ̂
= (

N
∑

i=1

EK

[

ψSi
(ŝi)

∂ŝi

∂θ̂

]

)+ EK

[

1

Ĵ

∂Ĵ

∂θ̂

]

. (10)

According to x = F (̂s, θ̂) and considering θ̂ as an independent variable and ŝ

as a dependent variable, we can write using implicit differentiation

0 =
∂ŝ

∂θ̂

∂F

∂ŝ
+
∂F

∂θ̂ |̂s cst

(11)

which yields
∂ŝ

∂θ̂
= −

∂F

∂θ̂ |̂s cst

(
∂F

∂ŝ
)−1. (12)

In the above expressions, “ŝ cst” stands for “ŝ is supposed to be constant”. Note

that ∂F
∂ŝ is the N × N Jacobian matrix of the mixing model, with the generic

entry
(

∂F
∂ŝ

)

i,j
=

∂Fj

∂ŝi
and the entry (i, j) of the matrix ∂F

∂θ̂ |̂s cst

(respectively

∂ŝ
∂θ̂

) is
∂Fj

∂θ̂i |̂s cst

(respectively
∂ŝj

∂θ̂i
). Inserting the components of (12) in (10), we

obtain the expression of the gradient which may be used for minimizing the cost

function using e.g. a gradient descent algorithm

θ̂new = θ̂old − µ
dC

dθ̂
(13)

where µ is a positive learning rate. The main advantage of the above approach

based on the implicit differentiation is that it does not require the knowledge
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of the explicit inverse of the mixing model. In fact, according to (10) and (12),

in order to obtain the analytical expression of the gradient dC
dθ̂

, we only need to

know the expression of the mixing function F and not its inverse.

However, to compute the numerical value of the gradient from the expression

(10), we need the signal samples ŝ(n) = F−1(x(n), θ̂) for the current value of θ̂

at each iteration of the gradient descent algorithm. As mentioned in the previous

section, it is not always straightforward to find the inverse of a mixing function,

but in the case of an ETM, it is possible to design such a “separating” structure

using a recurrent network without the knowledge of the explicit inverse of the

mixing model.

In practice, the pdf fSi
(.) and consequently the score functions ψSi

(.) of the

actual sources are usually unknown. Like in linear BSS [25], we can replace them

by the estimated score functions of the signals ŝi(n) (obtained at the outputs

of the separating structure) in each iteration of the gradient algorithm. Using

this estimation of the score functions, maximizing the likelihood is equivalent

to minimizing the mutual information of the output signals ŝi(n), in the same

manner as in linear BSS [29].

These score functions may be for example estimated using the approach

proposed in [25] which consists in writing ψSi
(ŝi) =

∑M
m=1 cimφm(ŝi), where

φm(ŝi) are some basis functions, and in computing the coefficients cim by solving

the following equation

Gi[ci1, · · · , ciM ]T = gi (14)

where Gi = E[φ(ŝi)φ(ŝi)
T ], gi = E[φ′(ŝi)] with φ(ŝi) = [φ1(ŝi), · · · , φM (ŝi)]

T

and φ′(ŝi) its derivative with respect to ŝi.

At each step of the gradient algorithm, once a new estimate of the mixing

parameters has been computed, it may be used for determining the parameters

of a recurrent network so that its outputs provide a new estimate of the sources

ŝi (see Fig. 1 and 2). Therefore, we can use the following algorithm for blindly

separating an ETM.
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- Initialize the estimated mixing parameters θ̂ (e.g. with random values if

there is no information about them).

repeat

- Initialize the parameters of the separating recurrent network using the

current values of the estimated mixing parameters.

- Iterate this network until convergence to obtain a new estimate of the

sources.

- Estimate the score functions of the estimated sources.

- Compute the gradient.

- Update the estimated mixing parameters.

until the convergence of the estimated mixing parameters

In the following section, we illustrate this proposed algorithm for a linear-

quadratic mixture.

3. Blind separation of linear-quadratic mixtures

In this section, we study a linear-quadratic mixing model which may be

considered as the simplest (nonlinear) version of a general polynomial model.

This model has recently been used to describe the show-through effect in scanned

documents [17, 31, 19]. When both sides of a thin paper are printed, each side is

a mixture of the front and back images due to transparency. Thus, we have two

mixtures of two sources. This problem was first addressed by Almeida [32] who

used a general-purpose neural network for separating the sources. Almeida and

Almeida [17, 19] and Merrikh-Bayat et al. [31] showed that the mixing effect

in the show-through problem may be approximated using more general linear-

quadratic models (a bi-affine model in [17, 19] and a linear-quadratic model

with filtering blocks to take into account the blurring effects in [31]).

The linear-quadratic model is also encountered in hyperspectral remote sens-

ing [33, 34, 35, 36]. When the surfaces are not flat and homogeneous, the 3D

structure induces multiple scattering of light between surfaces, which yields a

linear-quadratic model when only taking into account second-order interactions.
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In a more general context, the linear-quadratic model may be considered as

a truncated Taylor series which may be used to approximate unknown nonlinear

mixtures. In the remainder of this section, we only study the case of N = P = 2

(i.e. two mixtures of two sources). This case was investigated in the first part of

this article ([23]) as an illustrative example to show how the stability problem

can be treated in ETMs. In the current paper, we aim at showing how the

results of [23] can be adapted to the blind configuration.

Suppose u1 and u2 are two independent random signals4. Given the following

nonlinear instantaneous mixing model

xi = ρi1u1 + ρi2u2 + ξiu1u2 i = 1, 2 (15)

we would like to estimate u1 and u2 up to a permutation and a scale factor

(and possibly an additive constant). For simplicity, let us denote s1 = ρ11u1

and s2 = ρ22u2. The signals s1 and s2 will be referred to as the sources in the

following. Thus, (15) can be rewritten as

x1 = s1 − L12s2 −Q1s1s2

x2 = s2 − L21s1 −Q2s1s2 (16)

in which L12 = −ρ12/ρ22 and L21 = −ρ21/ρ11 represent the linear contributions

of the sources in the mixture, and Q1 = −ξ1/(ρ11ρ22) and Q2 = −ξ2/(ρ11ρ22)

represent the quadratic contributions. The negative signs are chosen for simpli-

fying the notations of the separating structure.

A more general form of the model (15), containing the additional terms

u1
2 and u2

2, has been studied by a few authors [13], [14], for the special case of

circular complex sources, when at least 5 mixtures are available. Another linear-

quadratic model, similar to (15), has also been used in [18] with two binary

sources and at least 3 mixtures. In the current work, however, we suppose that:

4In [23], we used the notation si for the original sources and s′i for the normalized ones. In

the following, however, the original sources will be denoted by ui and the normalized sources

by si. This choice improves the readability of equations.
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1) the sources can be any arbitrary real signals, and 2) only two mixtures are

available.

3.1. Comments about the invertibility of the model

As shown in [15], multiplying the first equation of (16) by −Q2 and the

second equation by Q1, then adding the results, yields

s2 = [Q1x2 −Q2x1 + (Q1L21 +Q2)s1]/(Q2L12 +Q1).

Substituting this expression of s2 in the second equation of (16), leads to the

following equation of the second degree for s1

(Q1L21 +Q2)s
2
1 + (Q1x2 −Q2x1 + L12L21 − 1)s1 + (x1 + L12x2) = 0.

Similarly, the corresponding equation with respect to s2 is

(Q2L12 +Q1)s
2
2 + (Q2x1 −Q1x2 + L12L21 − 1)s2 + (x2 + L21x1) = 0.

Solving the above equations for s1 and s2 leads to the following two pairs of

solutions:

(∫1, ∫2)1 = ((−b1 +
√

∆1)/2a1, (−b2 +
√

∆2)/2a2)

(∫1, ∫2)2 = ((−b1 −
√

∆1)/2a1, (−b2 −
√

∆2)/2a2) (17)

where ∆i = b2i −4aici, a1 = Q2+L21Q1, a2 = Q1+L12Q2, b1 = Q1x2−Q2x1+

L12L21−1, b2 = Q2x1−Q1x2+L12L21−1, c1 = x1+L12x2 and c2 = x2+L21x1.

It can be easily verified that ∆1 = ∆2 = J2, where J is the Jacobian of the

mixing model (16) and reads

J = 1− L12L21 − (Q2 + L21Q1)s1 − (Q1 + L12Q2)s2. (18)

It is clear that the linear-quadratic model is not bijective in R
2. However, if

the variation domain of the sources is limited, the mixture may be bijective in

this variation domain, which will be denoted by Ω in the following. In fact,

according to the variation domain of the two sources, three different cases may

be considered:
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1) J < 0 everywhere in Ω. In this case (17) becomes:

(∫1, ∫2)1 = (s1, s2) (19)

(∫1, ∫2)2 = (−
Q1 + L12Q2

Q2 + L21Q1
s2 −

L12L21 − 1

Q2 + L21Q1
,−

Q2 + L21Q1

Q1 + L12Q2
s1 −

L12L21 − 1

Q1 + L12Q2
).

(20)

Thus, the first pair of solutions in (17) corresponds to the actual sources and the

second one to another solution, equivalent to the first one up to a permutation,

a scale factor, and an additive constant.

We now show that the mixture is bijective on Ω in this first case. Consider the

function

J1((∫1, ∫2)) = 1− L12L21 − (Q2 + L21Q1)∫1 − (Q1 + L12Q2)∫2. (21)

Replacing (∫1, ∫2) first by (∫1, ∫2)1, then by (∫1, ∫2)2 defined above, and compar-

ing the results with (18), it can be easily verified that

J1((∫1, ∫2)1) = −J1((∫1, ∫2)2) = J (22)

The line J1((∫1, ∫2)) = 0 splits the (∫1, ∫2) plane in two parts. If J < 0 for all

the source values (i.e. in Ω), then (∫1, ∫2)1 = (s1, s2) is always situated in the

one part of the (∫1, ∫2) plane corresponding to J < 0 (thus containing Ω) while

(∫1, ∫2)2 is situated in the other part corresponding to J > 0 so that the model

is bijective on Ω. 5

2) J > 0 everywhere in Ω. In this case, it may be shown that the first pair of

solutions in (17) corresponds to the permuted sources, defined by the right-hand

side of (20), and the second one corresponds to the actual sources (s1, s2). An

example is shown in Fig. 3 for the numerical values L12 = −0.2, L21 = 0.2,

Q1 = −0.8, Q2 = 0.8 and si ∈ [−0.5, 0.5].

5Note that contrary to the linear-quadratic mixture, a general mixing model may be non-

bijective on a region, even if the sign of its Jacobian does not change on that region. For

example [37], the mapping defined by x1 = e2s1 − s2
2
+ 3, x2 = 4e2s1s2 − s3

2
has a positive

Jacobian J = 2e2s1 (4e2s1 +5s2
2
) in R

2 while both points (0, 2) and (0,−2) are mapped to the

origin.
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3) J > 0 for some values in Ω and J < 0 for other values. In this case,

each solution in (17) corresponds to the non-permuted sources (19) for some

values of the observations and to the permuted sources (20) for the other values.

Moreover, the mixture is not bijective in the variation domain of the sources.

An example is shown in Fig. 4 (with the same coefficients as in the second case,

but for si ∈ [−2, 2]). The permutation effect is visible in the figure. Thus, it is

clear that even in the non-blind configuration, the actual source signals may be

retrieved only if the Jacobian of the mixing model is always negative or always

positive, i.e. for all the source values. Otherwise, although the sources are

separated sample by sample, each retrieved signal contains successive samples

of the two sources. This theoretically insoluble problem which arises because

the mixing model (16) is not bijective in R
2 should not discourage us. In fact, in

real-world applications, the mixture may be bijective in the variation domain of

the sources6. Moreover, in a more elaborate scheme, the structure of the sources

(auto-correlation, non-stationarity, etc) may be used to solve the permutation

problem as in frequency-domain BSS methods applied to convolutive mixtures.

Thus, in the following, we suppose that the sources and the mixture coefficients

have numerical values ensuring that the Jacobian J of the mixing model has a

constant sign.

3.2. Estimation of the mixing parameters

Considering the mixing model (16), we aim at estimating the parameter

vector θ = [L12, L21, Q1, Q2]
T using the maximum likelihood approach described

in Section 2. Consider the set of parameter vectors θ̂ = [L̂12, L̂21, Q̂1, Q̂2]
T for

which the mixing model x(n) = F (̂s(n), θ̂) is bijective in the variation domain

of the sources, and suppose ŝ(n) = [ŝ1(n), ŝ2(n)]
T is the solution of the following

6To better understand this phenomenon, consider for example the simple one-dimensional

model x(n) = s(n)2. It is clear that this model is not bijective in general: if the signals contain

1000 samples, there are 21000 different source signals which could produce the observed signal.

However, if we know that the source samples are positive, we can retrieve the source signal in

a unique manner.
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equations in this variation domain for the observed samples:

x1(n) = ŝ1(n)− L̂12ŝ2(n)− Q̂1ŝ1(n)ŝ2(n),

x2(n) = ŝ2(n)− L̂21ŝ1(n)− Q̂2ŝ1(n)ŝ2(n). (23)

Based on (18), the Jacobian of the above model reads

Ĵ(n) = 1− L̂12L̂21 − (Q̂2 + L̂21Q̂1)ŝ1(n)− (Q̂1 + L̂12Q̂2)ŝ2(n). (24)

Using (10) and (12), the gradient of the cost function C in Eq. (8) with respect

to the parameter vector θ̂ reads as follows, where the time index n is omitted

for simplifying the notation (see Appendix A for the computation details):

dC

dθ̂
= EK[D1

Ĵ
,
D2

Ĵ
,
D3

Ĵ
,
D4

Ĵ
]
T

(25)

where

D1 = [ψS1
(ŝ1)(1− Q̂2ŝ1)ŝ2 + ψS2

(ŝ2)(L̂21 + Q̂2ŝ2)ŝ2]− [L̂21 + Q̂2ŝ2]−
[(Q̂2 + L̂21Q̂1)(1− Q̂2ŝ1)ŝ2/Ĵ]− [(Q̂1 + L̂12Q̂2)(L̂21 + Q̂2ŝ2)ŝ2/Ĵ],

D2 = [ψS1
(ŝ1)(L̂12 + Q̂1ŝ1)ŝ1 + ψS2

(ŝ2)(1− Q̂1ŝ2)ŝ1]− [L̂12 + Q̂1ŝ1]−
[(Q̂1 + L̂12Q̂2)(1− Q̂1ŝ2)ŝ1/Ĵ]− [(Q̂2 + L̂21Q̂1)(L̂12 + Q̂1ŝ1)ŝ1/Ĵ],

D3 = [ψS1
(ŝ1)(1− Q̂2ŝ1)ŝ1ŝ2 + ψS2

(ŝ2)(L̂21 + Q̂2ŝ2)ŝ1ŝ2]− [L̂21ŝ1 + ŝ2]−
[(Q̂2 + L̂21Q̂1)(1− Q̂2ŝ1)ŝ1ŝ2/Ĵ]− [(Q̂1 + L̂12Q̂2)(L̂21 + Q̂2ŝ2)ŝ1ŝ2/Ĵ],

D4 = [ψS1
(ŝ1)(L̂12 + Q̂1ŝ1)ŝ1ŝ2 + ψS2

(ŝ2)(1− Q̂1ŝ2)ŝ1ŝ2]− [L̂12ŝ2 + ŝ1]−
[(Q̂1 + L̂12Q̂2)(1− Q̂1ŝ2)ŝ1ŝ2/Ĵ]− [(Q̂2 + L̂21Q̂1)(L̂12 + Q̂1ŝ1)ŝ1ŝ2/Ĵ].

3.3. Computing the outputs using a recurrent network

Following (25), it is clear that the computation of the numerical value of the

gradient at each iteration of the gradient algorithm requires the knowledge of
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the signals ŝ1(n) and ŝ2(n) for the current value of θ̂. A natural idea to compute

these signals is to form a direct “separating” structure using any of the equations

in (17), replacing the actual parameter vector θ = [L12, L21, Q1, Q2]
T by the

estimated parameters θ̂ = [L̂12, L̂21, Q̂1, Q̂2]
T in these equations. Although this

approach may be used for our special mixing model (16), as soon as a more

complicated model with unknown explicit inverse is considered, the solutions

(∫1, ∫2) can no longer be analytically determined so that the generalization of the

method to arbitrary ETM models becomes impossible. To avoid this limitation,

we propose to use recurrent structures as mentioned in the previous sections.

Figure 5 shows the basic and extended recurrent structures that we pro-

posed in [23] for inverting linear-quadratic mixtures. In [23], we analyzed these

structures in the non-blind configuration, i.e. when the actual mixing param-

eter vector θ is known and the parameter values of the recurrent network are

matched to these mixing parameters so that one of the equilibrium points of

the network corresponds to the actual sources s(n) without permutation (but

with possible scale factors for the extended network). We showed that each of

these two networks has also another equilibrium point which corresponds to the

permuted sources up to a scale factor and an additive constant. While the basic

network may be unstable at both of its equilibrium points, it is always possible

to choose the self-feedback free parameters l11 and l22 in the extended network

to guarantee its stability at one of these points. In particular, in Section 3.4 of

[23] we proposed a method for stabilizing the extended network.

The same procedure may be used for computing the equilibrium points of the

extended recurrent network and for analyzing its stability when its parameters

are matched to the current estimation of the mixing parameters i.e. to θ̂ =

[L̂12, L̂21, Q̂1, Q̂2]
T in a blind configuration. In the following, we discuss these

issues.

3.3.1. Equilibrium points

Consider the extended recurrent network of Fig. 5. For each time n, it

performs a recurrence to compute the values of its outputs yi. We denote by m
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the index associated with this recurrence and by yi(m) the successive values of

each output in this recurrence at time n.7 This recurrence reads

y1(m+ 1) = x1(n) + l11y1(m) + l12y2(m) + q1y1(m)y2(m),

y2(m+ 1) = x2(n) + l21y1(m) + l22y2(m) + q2y1(m)y2(m). (26)

The equilibrium points of this recurrence are all the points (yE1 , y
E
2 ) which are

such that

y1(m+ 1) = y1(m) = yE1 , y2(m+ 1) = y2(m) = yE2 . (27)

Combining the recurrence (26) with (27) we obtain a system of two equations

with respect to the unknowns yE1 and yE2 . Solving this system by cancelling yE2

leads to an algebraic equation of the second degree with respect to yE1 . Let us

define

l′11 = 1− l11 , l′22 = 1− l22 (28)

and choose the non-free parameters of the recurrent network as follows

l12 = L̂12l
′
22 , l21 = L̂21l

′
11 , q1 = Q̂1l

′
11l

′
22 , q2 = Q̂2l

′
11l

′
22. (29)

Using the same procedure as in Section 3.1 of [23] we can show that the dis-

criminant of the above equation of the second degree reads

∆̂y1
= (l′11l

′
22)

2δ̂y1
(30)

with

δ̂y1
= [Q̂2x1(n)− Q̂1x2(n) + γ̂]2 − 4α̂[x1(n) + x2(n)L̂12] (31)

where

α̂ = Q̂2 + Q̂1L̂21, (32)

γ̂ = 1− L̂12L̂21. (33)

7These successive ouput values therefore also depend on n. This index n is omitted in the

notations yi(m), in order to improve readability and to focus on the recurrence on outputs

for given input values xi(n).

16



Note that the above equations are the same as Equations (61)-(64) in [23]:

the only difference is that the actual mixing parameters are replaced by their

estimates.

The equilibrium points of the recurrent structure are (see Eq. (70) and (71)

in [23])

yE1 =
1

l′11
ŝ1(n) , yE2 =

1

l′22
ŝ2(n) (34)

and

yE1 =
1

l′11

[

β̂

α̂
ŝ2(n) +

γ̂

α̂

]

, yE2 =
1

l′22

[

α̂

β̂
ŝ1(n)−

γ̂

β̂

]

(35)

where

β̂ = −(Q̂2L̂12 + Q̂1). (36)

The first equilibrium point (34) provides the signals ŝi(n) without permutation

(and with scale factors) whereas the second point (35) provides these signals

with a permutation (and with scale factors and additive constants). This issue

is related to the non-bijectivity of the mixing model in R
2 mentioned in Section

3.1.

3.3.2. Stability condition

Once more, the results obtained in [23] about the local stability condition of

the network at its equilibrium points for the actual value of the parameters may

be generalized to the blind case (i.e. when the network parameters are defined

by (28) and (29)) just by replacing the actual parameters by their estimates.

Thus, we can propose the following procedure for choosing the free parameters

l′11 and l′22, which guarantees the local convergence of the extended recurrent

network towards an equilibrium point (see Section 3.4 of [23] for details):

1. Choose λ = 1 or λ = −1.

2. Set

l′11 = µ
Â+ B̂λ
√

δ̂y1

with 0 < µ < µmax (37)

with

µmax =







1 if Ĉ(λ) ≤ 4

1−
√

1− 4
Ĉ(λ)

otherwise
(38)
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where

Ĉ(λ) =
(Â+ B̂λ)2

√

δ̂y1

. (39)

3. Set

l′22 = λl′11. (40)

4. Set the parameters of the extended recurrent network according to (28)

and (29).

3.3.3. Discussion

Here, we discuss the practical problems which must be considered when using

the recurrent structure in a blind configuration.

1. Negativity of the discriminant: Until here, we supposed that the esti-

mated parameters, θ̂, took values guaranteeing the bijectivity of the model

(23) in the variation domain of sources so that the discriminant (30) was

never negative. In practice, however, during the gradient descent algo-

rithm, the discriminant corresponding to the current estimated values of

the parameters may become negative for some samples of the observed

signals. A first solution may be to reject from the learning database these

samples (only for the current update) and to continue the learning pro-

cedure with the other samples (if there are enough). Another solution

consists in stopping the gradient algorithm and restarting it using other

initial values for the estimated mixing parameters. Our experiments show

that the second solution leads to better results. Note that this problem

is inherent to the non-bijectivity of the mixing model and exists even if

we use another method for inverting this model. The following problem,

however, is related to the use of recurrent networks.

2. Global stability: While the procedure proposed in Section 3.3.2 guar-

antees the local stability of the recurrent network, it cannot guarantee its

global stability. In fact, when performing the recurrence (26), we must

choose an initial value yi(0) for the network outputs. When choosing the

free parameters l′11 and l′22 as proposed in Section 3.3.2, if the initial value
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yi(0) is around the values of the unknown signals ŝi(n) (divided by l′ii: see

Eq. (34)), the network converges towards ŝi(n) (divided by l′ii). However,

initializing the outputs with arbitrary values may lead to divergence. Our

experiments show that the stability region around the equilibrium point is

usually large and initializing the network outputs with the observed val-

ues xi(n) (divided by l′ii) usually leads to convergence, if the observations

have the same order of magnitude as the signals ŝi(n). However, if by

using this initialization the network diverges only for some samples and

converges for the others, we can save the convergent samples and use an-

other initialization for the non-convergent samples. If after a fixed number

of tests, there still exist non-convergent values, we may reject them from

the learning database and continue the learning procedure with the other

samples (only in the current iteration of the gradient algorithm).

A better idea consists in initializing the network outputs using the es-

timation of the sources derived from observations by supposing a linear

mixing model. In this approach, we first suppose that the observations

are generated using the following linear model

x1 = s1 − L12s2,

x2 = s2 − L21s1. (41)

Then, we use a linear classical BSS method to obtain a first estimate

of the sources and the mixing parameters L12 and L21. The recurrent

network outputs yi may be initialized around these source estimates (di-

vided by l′ii). Moreover, these estimates of the linear mixing parameters

may be used for initializing their values in the gradient algorithm. This

method gives good results especially when the quadratic part in (16) is

small compared to the linear part.

3.4. Algorithm

Thus, we propose the following algorithm for blindly separating linear-quadratic

mixtures:
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A: Initialize θ̂ = [L̂12, L̂21, Q̂1, Q̂2]
T to θ̂0.

repeat

for n = 1 to K do

- Compute δ̂y1
(n) using (31) for the observed samples x1(n) and x2(n).

- If δ̂y1
< 0, then go to A choosing another value for θ̂0.

- Compute l′11(n) and l
′
22(n) from (37) and (40).

- Compute the network parameters l11(n), l22(n), l12(n), l21(n), q1(n), q2(n)

from (28) and (29).

B: Initialize the outputs of the recurrent network y1(n) and y2(n) to the

initial values y1(0, n) and y2(0, n).

repeat

- Set y1new
(n) = x1(n) + l11(n)y1(n) + l12(n)y2(n) + q1(n)y1(n)y2(n).

- Set y2new
(n) = x2(n) + l21(n)y1(n) + l22(n)y2(n) + q2(n)y1(n)y2(n).

- If divergence, then go to B choosing other values for y1(0, n) and

y2(0, n).

- Set y1(n) = y1new
(n), y2(n) = y2new

(n).

until the convergence of the recurrence

- Set ŝ1(n) = l′11(n)y1(n), ŝ2(n) = l′22(n)y2(n).

end for

- Estimate the score functions of ŝ1 and ŝ2.

- Compute the gradient ∂C
∂θ̂

using (25).

- Update the parameter vector using (13).

until the convergence of the parameters

- Set the estimated sources s̃1 and s̃2 to ŝ1 and ŝ2.

4. Simulation results

In Sections 4.1-4.2, we present some simulation results related to the 2 × 2

linear-quadratic mixture discussed in Section 3. Another test, related to a more

general 3× 3 linear-quadratic mixture, is presented in Section 4.3.
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4.1. Simulations using generalized Gaussian sources and the basic recurrent net-

work

We generated K=1000 samples of two zero-mean, unit-variance, generalized

Gaussian sources with pdf f(si) =
α

2βΓ(1/α) exp(−( |si|β )α) where the parameter

α was varied in the interval [0.5, 40]. Note that α = 1 corresponds to a Laplace

distribution, α = 2 to a normal distribution and α = 40 to a nearly uniform

distribution. The generated sources were then normalized so that all 1000 sam-

ples belong to [−0.5, 0.5]. This choice guarantees the bijectivity of the mixture

in this domain when the mixing parameters are set to the values chosen for this

simulation i.e. L12 = −0.2, L21 = 0.2, Q1 = −0.8 and Q2 = 0.8.

We used the algorithm of Section 3.4 for separating this mixture. Since the

convergence of the extended network was rather slow, we used the basic network

in this simulation (i.e. we chose l11 = l22 = 0 in (26)). The basic network is

locally stable at the separating point when using the above-mentioned values

for sources and mixing parameters.

For each value of α, we performed 100 Monte Carlo simulations correspond-

ing to 100 different initial values of the random source generator. Moreover,

we used in each simulation a different initial value, chosen randomly on [-0.05,

0.05], for each entry of θ̂0. The initial values yi(0, n) of the network outputs

were set to the observed samples xi(n). For each simulation, the Signal to In-

terference Ratio (SIR) and the Signal to Interference Ratio Improvement (SIRI)

were computed by

SIR =
1

2

2
∑

i=1

10 log10
EK [s2i ]

EK [(s̃i − si)2]
(42)

SIRI =
1

2

2
∑

i=1

10 log10
EK [(xi − si)

2]

EK [(s̃i − si)2]
(43)

after normalizing all the signals so that they have unit variance.

For some values of α, the algorithm diverged for a few number of these simu-

lations. In this first experiment, we simply chose not to take into account these

simulations for computing SIR and SIRI, although it was possible to make the
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network convergent using the methods explained in the previous section. Fig-

ure 6 shows the mean of SIR and SIRI and the standard deviation of SIR,

computed on convergent simulations, as a function of α. It can be seen that for

these mixing parameters, the algorithm cannot separate Gaussian sources while

it succeeds in separating sub-Gaussian and super-Gaussian signals. The average

running time of the algorithm implemented in Matlab on a 2.2 GHz AMD PC

was 0.45 seconds for each simulation. The scatter plots of the observations and

of the estimated sources (for α = 40) are shown in Figure 7. As can be seen,

the independent components are retrieved by the algorithm.

To determine whether the use of recurrent networks leads to a loss of perfor-

mance, we also repeated the experiment (for α = 40) using the second inversion

formula in Eq. (17) for directly calculating the estimated sources at each step of

the gradient algorithm. We obtained exactly the same results for SIR and SIRI

as when using a recurrent network. This is not surprising because as mentioned

in [23], the recurrent network provides very precise estimates.

4.2. Simulation using extended recurrent network

In this simulation, the mixing parameters and the source values were chosen

such that:

• the basic recurrent network is unstable at the separating point,

• the Jacobian of the mixing model is negative for all the source samples.

As a result, the mixture is bijective in the variation domain of the sources

and the permutation problem mentioned in Section 3.1 does not occur at

the separating point.

Thus, we chose L12 = L21 = −2.5 and Q1 = Q2 = 1.5. The two 1000-sample

sources were uniformly distributed over [-0.5,0.5]. Since the basic network is

unstable and diverges, we only use the extended network in this experiment.

We made 100 Monte Carlo simulations corresponding to 100 different initial

values of the random source generator. The parameters L̂12 and L̂21 as well as

the network outputs yi(n) were initialized using the estimates of the parameters
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L12 and L21 and of the sources supposing the linear mixing model (41) for

the observations as mentioned in Section 3.3.3. To this end, we used a linear

BSS ML algorithm like that proposed in [25]. The parameters Q̂1 and Q̂2 were

randomly initialized over [-0.005, 0.005] with a different initial value at each

Monte Carlo simulation. The results are shown in the first row of Table 1 and

confirm the good performance of our algorithm. Figure 8 shows the evolution

of the estimated parameters Q̂1 and Q̂2 during the gradient descent algorithm

for one of the 100 simulations. Figure 9 shows the global stability region in

this experiment for the source sample (s1(n), s2(n)) = (0.1,−0.1) when the

estimated mixing parameters are set to their actual values and the parameters

l′11 and l′22 are computed using the procedure proposed in Section 3.3.2, then

used for computing the extended network weights using (28) and (29). The

stars in this figure represent the initial values y1(0) and y2(0) for which the

recurrence (26) converges. The circle represents the equilibrium point ( s1
l′11
, s2
l′22

).

We also repeated the experiment using two Laplacian sources. The results

are given in the second row of Table 1.

4.3. Simulations using a linear-quadratic model with 3 sources and 3 mixtures

The illustrative example studied in the first part of this paper and up to

this point of the current paper was a linear-quadratic model with 2 sources and

2 mixtures. As explained in the beginning of Section 3.3, in this special case,

the use of a recurrent network is not mandatory because a direct separating

structure, defined by any of equations (17) may be used instead. In this section,

we present our simulation results with a more general model, i.e. a linear-

quadratic model with 3 sources and 3 mixtures, whose inverse cannot directly

be computed as explained below. The mixing model is defined by:

x1(n) = s1(n) + θ1s2(n) + θ2s3(n) + θ7s1(n)s2(n) + θ8s1(n)s3(n) + θ9s2(n)s3(n)

x2(n) = θ3s1(n) + s2(n) + θ4s3(n) + θ10s1(n)s2(n) + θ11s1(n)s3(n) + θ12s2(n)s3(n)

x3(n) = θ5s1(n) + θ6s2(n) + s3(n) + θ13s1(n)s2(n) + θ14s1(n)s3(n) + θ15s2(n)s3(n)

(44)
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where s1(n), s2(n) and s3(n) are three independent sources, θ1, · · · , θ6 are the

mixing parameters related to the linear contributions of the sources in the mix-

ture, while θ7, · · · , θ15 are related to the quadratic contributions. If we compute,

from the first equation, s1 as a function of s2 and s3 and replace it in the other

two equations, then compute s2 as a function of s3 from the second transformed

equation and replace it in the third one, we finally obtain an equation which

only depends on s3, the observations x1, x2, x3 and the mixing parameters θi. It

can be verified that this equation includes the terms containing s53, s
4
3, s

3
3, s

2
3, s3

and the square roots of some polynomial functions of s3. It is clear that such an

equation cannot analytically be solved for s3, so that a direct structure cannot

be derived. On the contrary, we can invert this mixture using a basic recurrent

structure realizing the following recurrence where θ̂i represent the estimates of

θi:

y1(m+1) = x1−θ̂1y2(m)−θ̂2y3(m)−θ̂7y1(m)y2(m)−θ̂8y1(m)y3(m)−θ̂9y2(m)y3(m)

y2(m+1) = x2−θ̂3y1(m)−θ̂4y3(m)−θ̂10y1(m)y2(m)−θ̂11y1(m)y3(m)−θ̂12y2(m)y3(m)

y3(m+1) = x3−θ̂5y1(m)−θ̂6y2(m)−θ̂13y1(m)y2(m)−θ̂14y1(m)y3(m)−θ̂15y2(m)y3(m).

(45)

Appendix B shows how to compute the gradient of the log-likelihood with re-

spect to the parameters θi in the mixing model (44), without requiring the

knowledge of the explicit inverse of this model. This gradient will then be used

to estimate the parameters of the mixing model and to invert this model using

the recurrent network (45) as explained in the previous sections.

In our simulation, we chose the following numerical values for the parameters

θi in (44):

θ = [0.6, 0.5,−0.4, 0.4, 0.3,−0.5, 0.6, 0.4,−0.2,−0.6, 0.4,−0.4, 0.3,−0.3,−0.3]T .

The sources s1(n), s2(n) and s3(n) were three 1000-sample i.i.d. statistically

independent signals, uniformly distributed over [-0.5,0.5]. It can be numerically

verified that the Jacobian matrix of (44) for this choice of parameters is a P-
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matrix8 on the variation domain of the sources so that the mixture is bijective

on this domain [37].

Like in Section 4.2, the mixing parameters corresponding to the linear con-

tribution of the sources in the mixture (i.e. the first 6 estimated parameters

θ̂1, · · · , θ̂6) as well as the recurrent network outputs yi(n) were initialized us-

ing the estimates of the parameters θ1, · · · , θ6 and of the sources supposing a

hypothesized linear mixing model for the observations. The other parameters

θ̂7, · · · , θ̂15 were randomly initialized over [-0.05,0.05].

At each step of the gradient algorithm, the parameters θ̂1, · · · , θ̂15 were updated

using the gradient computed above9, then the recurrence (45) was realized un-

til convergence. It can be numerically checked that all the eigenvalues of the

Jacobian matrix of (45) are in the unit circle at the separating point so that

the network is locally stable at this point. 50 Monte Carlo simulations cor-

responding to 50 different initial values of random number generator led to

mean(SIR)=29.7 dB and std(SIR)=2.5 dB. The mean and the standard devia-

tion of the estimated parameters are given in Table 2. These results confirm the

very good performance of our proposed method in a situation where the direct

inverse of the mixing model cannot be computed.

5. Conclusion

In this second part of our paper, we proposed a maximum likelihood ap-

proach for blindly separating a large class of nonlinear mixtures (called ETM)

that we had proposed in the first part of the paper. While this approach exploits

the knowledge of the parametric form of the mixing model in the separation pro-

cedure, its implementation does not require the knowledge of the explicit inverse

of the model. Hence, it can be used e.g. for separating polynomial mixtures

when the inverse function is unknown.

8A matrix J is called a P-matrix if every principal minor of J is positive.
9We also used a momentum term to improve the convergence of the gradient algorithm.
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In particular, we illustrated in detail the proposed approach for a linear-

quadratic mixture by using an extended recurrent network with self-feedback

parameters which guarantee its local stability. Simulation results showed the

very good performance of the proposed algorithm.

Since our approach takes advantage of the knowledge of the parametric form

of the mixing model, it can be considered as a structurally constrained ICA

method. It is well known [1] that the indeterminacies involved in such methods

are much less restrictive than those resulting from general ICA methods which

do not exploit this knowledge. However, it is necessary to study the separability

issue for each specific mixing model to determine the source distributions for

which ICA leads to a unique solution (up to classical indeterminacies). This

study for the specific case of linear-quadratic mixtures has been done in the

over-determined case [38] and in the determined case with bounded sources

[19].

In [23] and this paper, we only studied the stability of the recurrent network

in the case of linear-quadratic mixtures with two sources and two observations.

When using other kinds of ETM models, such studies are necessary but may

be very difficult, which could limit the use of our proposed approach. However,

the nonlinear BSS being a difficult problem, the solutions proposed in this pa-

per may help other researchers in their future investigations. Moreover, these

solutions may work in practice even without such stability analysis as shown by

our simulation results with a 3× 3 linear-quadratic model of Section 4.3.
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A Details of gradient computation for a 2×2 linear-quadratic model

Considering (23), which can be written in vector form x(n) = F (̂s(n), θ̂)

and using the notations defined after (12), we obtain

∂F

∂ŝ
=





1− Q̂1ŝ2 −L̂21 − Q̂2ŝ2

−L̂12 − Q̂1ŝ1 1− Q̂2ŝ1



 (A-1)

and

∂F

∂θ̂ |s cst

=

















−ŝ2 0

0 −ŝ1

−ŝ1ŝ2 0

0 −ŝ1ŝ2

















(A-2)

which implies, from (12)

∂ŝ

∂θ̂
=

−1

Ĵ

















−ŝ2 0

0 −ŝ1

−ŝ1ŝ2 0

0 −ŝ1ŝ2





















1− Q̂2ŝ1 L̂21 + Q̂2ŝ2

L̂12 + Q̂1ŝ1 1− Q̂1ŝ2



 (A-3)

and yields

∂ŝ1

∂θ̂
=

1

Ĵ
[(1− Q̂2ŝ1)ŝ2 , (L̂12 + Q̂1ŝ1)ŝ1 , (1− Q̂2ŝ1)ŝ1ŝ2 , (L̂12 + Q̂1ŝ1)ŝ1ŝ2]

T

,

∂ŝ2

∂θ̂
=

1

Ĵ
[(L̂21 + Q̂2ŝ2)ŝ2 , (1− Q̂1ŝ2)ŝ1 , (L̂21 + Q̂2ŝ2)ŝ1ŝ2 , (1− Q̂1ŝ2)ŝ1ŝ2]

T

.(A-4)

Using (A-4), we obtain the first term of the gradient (10). To determine the

second term, we need to compute dĴ
dθ̂

. Denoting Ĵ = g(θ̂, ŝ) and considering θ̂

as an independent variable and ŝ as a dependent variable, we can write

∂Ĵ

∂θ̂
=
∂Ĵ

∂θ̂ |̂s cst

+
∂ŝ

∂θ̂

∂Ĵ

∂ŝ
. (A-5)

Following (24), we obtain

∂Ĵ

∂θ̂ |̂s cst

= −[L̂21 + Q̂2ŝ2, L̂12 + Q̂1ŝ1, L̂21ŝ1 + ŝ2, ŝ1 + L̂12ŝ2]
T (A-6)

and
∂Ĵ

∂ŝ
= −[Q̂2 + L̂21Q̂1, Q̂1 + L̂12Q̂2]

T . (A-7)
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Inserting (A-3), (A-6) and (A-7) in (A-5) yields

∂Ĵ

∂θ̂
= [−(L̂21 + Q̂2ŝ2)− (Q̂2 + L̂21Q̂1)(1− Q̂2ŝ1)ŝ2/Ĵ − (Q̂1 + L̂12Q̂2)(L̂21 + Q̂2ŝ2)ŝ2/Ĵ,

−(L̂12 + Q̂1ŝ1)− (Q̂1 + L̂12Q̂2)(1− Q̂1ŝ2)ŝ1/Ĵ − (Q̂2 + L̂21Q̂1)(L̂12 + Q̂1ŝ1)ŝ1/Ĵ,

−(L̂21ŝ1 + ŝ2)− (Q̂2 + L̂21Q̂1)(1− Q̂2ŝ1)ŝ1ŝ2/Ĵ − (Q̂1 + L̂12Q̂2)(L̂21 + Q̂2ŝ2)ŝ1ŝ2/Ĵ,

−(L̂12ŝ2 + ŝ1)− (Q̂1 + L̂12Q̂2)(1− Q̂1ŝ2)ŝ1ŝ2/Ĵ − (Q̂2 + L̂21Q̂1)(L̂12 + Q̂1ŝ1)ŝ1ŝ2/Ĵ ]
T .

(A-8)

Using (A-4), (A-8) and (10), we finally obtain the expression (25) for the gra-

dient of the cost function C.

B Details of gradient computation for a 3×3 linear-quadratic model

To compute the gradient of the cost function C defined in (8), we first

compute the Jacobian matrix of the mixing model (44) which reads

J =
∂F(s(n),θ)

∂s(n)
=











1+θ7s2(n)+θ8s3(n) θ3+θ10s2(n)+θ11s3(n) θ5+θ13s2(n)+θ14s3(n)

θ1+θ7s1(n)+θ9s3(n) 1+θ10s1(n)+θ12s3(n) θ6+θ13s1(n)+θ15s3(n)

θ2+θ8s1(n)+θ9s2(n) θ4+θ11s1(n)+θ12s2(n) 1+θ14s1(n)+θ15s2(n)











.

(B-1)

Denoting by Jij the entry (i, j) of this matrix, the Jacobian, i.e. the determinant

of (B-1), can be written as

J = J11(J22J33 − J23J32)− J12(J21J33 − J23J31) + J13(J21J32 − J22J31).

(B-2)
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Computing the derivative of (44) with respect to θ = [θ1, · · · , θ15]
T , keeping

si(n) constant, yields

∂F(s(n),θ)

∂θ |s(n) cst

=











s2 s3 0 0 0 0 s1s2 s1s3 s2s3 0 0 0 0 0 0

0 0 s1 s3 0 0 0 0 0 s1s2 s1s3 s2s3 0 0 0

0 0 0 0 s1 s2 0 0 0 0 0 0 s1s2 s1s3 s2s3











T

(B-3)

where the time index (n) is omitted for the sake of readability. Replacing s and

θ by ŝ and θ̂ in (B-1) and (B-3), then using (12), we can compute ∂ŝ(n)

∂θ̂
. This

derivative, together with the conditional score functions, allows us to obtain

the first term of the gradient (10). To determine the second term, we need to

compute ∂J
∂θ . Denoting J = g(θ, s) and considering θ as an independent variable

and s as a dependent variable, we can write

∂J

∂θ
=
∂J

∂θ |s cst

+
∂s

∂θ

∂J

∂s
. (B-4)

Using (B-1) and (B-2) and after some computation, we obtain

∂J

∂θ |s cst

= [J13J32−J12J33 , J12J23−J13J22 , J23J31−J21J33 , J13J21−J11J23 , J21J32−J22J31 ,

J12J31−J11J32 , s2(J22J33−J23J32)−s1(J12J33−J13J32) , s3(J22J33−J23J32)+s1(J12J23−J13J22) ,

−s3(J12J33−J13J32)+s2(J12J23−J13J22) , −s2(J21J33−J23J31)+s1(J11J33−J13J31) ,

−s3(J21J33−J23J31)−s1(J11J23−J13J21) , s3(J11J33−J13J31)−s2(J11J23−J13J21) ,

s2(J21J32−J22J31)−s1(J11J32−J12J31) , s3(J21J32−J22J31)+s1(J11J22−J12J21) ,

−s3(J11J32−J12J31)+s2(J11J22−J12J21)]
T(B-5)
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and

∂J

∂s
= [J11(θ10J33+θ14J22−θ13J32−θ11J23)−J12(θ7J33+θ14J21−θ13J31−θ8J23)

+J13(θ7J32+θ11J21−θ10J31−θ8J22),

θ7(J22J33−J23J32)+J11(θ15J22−θ12J23)−θ10(J21J33−J23J31)−J12(θ15J21−θ9J23)

+θ13(J21J32−J22J31)+J13(θ12J21−θ9J22),

θ8(J22J33−J23J32)+J11(θ12J33−θ15J32)−θ11(J21J33−J23J31)−J12(θ9J33−θ15J31)

+θ14(J21J32−J22J31)+J13(θ9J32−θ12J31)]
T . (B-6)

Replacing J , s and θ by Ĵ , ŝ and θ̂ and using the expression of ∂ŝ(n)

∂θ̂
, already

computed, we obtain ∂Ĵ
∂θ̂

from (B-4), then the second term of (10), and therefore

the entire gradient dC
dθ̂

.
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Figure 1: Proposed recurrent network for basic additive-target mixtures.
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Figure 2: Proposed recurrent network for basic additive-target mixtures, with additional self-

feedback.
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Figure 3: Case when J > 0 for all the source values. Circles: (∫1, ∫2)2 = (s1, s2).

Stars: (∫1, ∫2)1 = (−Q1+L12Q2
Q2+L21Q1

s2 − L12L21−1

Q2+L21Q1
,−Q2+L21Q1

Q1+L12Q2
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). Straight line:

J1((∫1, ∫2)) = 0.
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Figure 4: Case when J > 0 for some values of the sources and J < 0 for other values. Circles:

non-permuted source samples. Stars: permuted source samples. Straight line: J1((∫1, ∫2)) =

0.
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Figure 5: Recurrent networks for separating linear-quadratic mixtures. Left: Basic version

(without self-feedback). Right: extended version (with self-feedback).
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Figure 6: mean of SIR (stars), mean of SIRI (circles), and standard deviation of SIR (squares)

as functions of α.
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Figure 7: scatter plots of (a) observations, and (b) estimated sources.
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Figure 8: Evolution of the estimated parameters Q̂1 (solid line) and Q̂2 (dashed line) during

gradient descent algorithm. The actual values are: Q1 = Q2 = 1.5.
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Figure 9: Global stability region (stars) and Equilibrium point (circle) for (s1(n), s2(n)) =

(0.1,−0.1).
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mean(SIR) std(SIR) min(SIR) max(SIR) mean(SIRI)

Uniform sources 25.04 1.11 22.60 27.65 25.99

Laplacian sources 21.77 6.37 2.35 32.37 22.82

Table 1: Mean, standard deviation, minimum, and maximum of SIR and mean of SIRI.
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i 1 2 3 4 5 6 7 8

θi 0.600 0.500 -0.400 0.400 0.300 -0.500 0.600 0.400

mean(θ̂i) 0.596 0.506 -0.397 0.405 0.297 -0.497 0.605 0.405

std(θ̂i) 0.024 0.028 0.034 0.027 0.021 0.018 0.049 0.067

i 9 10 11 12 13 14 15

θi -0.200 -0.600 0.400 -0.400 0.300 -0.300 -0.300

mean(θ̂i) -0.211 -0.599 0.401 -0.400 -0.291 -0.304 -0.288

std(θ̂i) 0.063 0.036 0.082 0.042 0.056 0.053 0.043

Table 2: Actual values of the parameters (θi), and means and standard deviations of their

estimates (θ̂i).
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