
GLPULSE3D

Stéphane Charpinet

Institut de Recherche en Astrophysique et Planétologie (IRAP)
CNRS / Université Paul Sabatier (Toulouse III)

stephane.charpinet[at]irap.omp.eu

Version 1.0.0 - April 18, 2012

1 Introduction
GLPULSE3D is a program designed to simulate/visualize a pulsating star in 3 dimension (3D).
Its main purpose is to provide a versatile, easy-to-use tool aimed at educational and public
demonstration (the very first versions were developed back in 2009, in the context of the Inter-
national Year of Astronomy). However, the code may also be a useful tool for assisting your
reasearch activities in stellar pulsations or asteroseismology, as it can visualize radial eigenfunc-
tions computed from pulsations codes applied to realistic stellar models. Examples of pulsations
occuring in various types of stars are provided in the package. GLPULSE3D is written in C
and uses OpenGL to exploit the accelerated 3D rendering capabilities offered by modern GPUs.

This program is freely released under the General Public License v3 (see the COPYING file)
and usable by those interested in the community. Feel free to install and use it at your conve-
nience. You can also modify the source code to suit better your needs if you wish (or, better,
you could suggest some improvements that I may implement in future versions), but in any
case, keeping the appropriate acknowledgements and credits for this program would be greatly
appreciated. Hopefully you won’t have major problems installing the code on your system. I
can provide some very limited help if absolutely needed, but be aware that I don’t have much
time to spend on this.

Credit: Stéphane Charpinet (IRAP, Université de Toulouse / CNRS, France)

1

Thanks to: Masao Takata (University of Tokyo, Japan), Valérie Van Grootel (Université de
Liège, Belgium), Gilles Fontaine & Pierre Brassard (Université de Montréal, Canada), Sylvie
& Gérard Vauclair (IRAP), Alain Hui Bon Hoa (IRAP).

2 How to install it

The code should work with any Linux distribution and on Mac systems having a number of
libraries installed. First, you need to have a working 3D-accelerated X-windows environment
on your desktop/laptop using either an ATI or NVIDIA video card. Just make sure to set up
your system properly for 3D acceleration before attempting to run GLPULSE3D. It might work
without 3D acceleration, but it would probably be extremely slow (as the CPU would have to
do both the real time calculation and the 3D rendering).

The libraries (with their associated header files) and packages that need to be installed on the
system are :

• pkg-config (usually a standard package in modern Linux distributions; not necessary on
a Mac)

• GL (usually installed with the X-server libraries)

• Glut (not always installed, you can install a package called freeglut)

• ftgl (generally not installed by default)

• freetype (usually a standard package in modern Linux distributions)

• fontconfig (usually a standard package in modern Linux distributions)

• gsl (the Gnu Scientific Library usually not installed by default)

Download the archive file containing the source code and “untar” it in your preferred directory:
$ tar xzvf glpulse3d-1.0.0.tgz

Then go into the newly created directory “glpulse3d-1.0.0” and check the content of the file called
“Makefile” (choose first the Makefile suitable for your system: linux or mac). You shouldn’t
have to modify it except for the choice of the C compiler and the optimization flags. You can
either use gcc (the standard C compiler on Linux/Mac systems) or icc (the Intel C compiler).
With icc, the code seems to run 20 to 30% faster, but gcc will work fine. You may have to adapt
the COPTS (optimization) flags to your own system if it doesn’t compile/execute properly.

Build the program with the command:
$ make clean; make

and you should be ready to run it.

3 Running the code / key controls

To run the code, just call the executable followed by the name of a configuration file (several
are provided; see Section 4), e.g.:

2

$./glpulse3d glpulse3d-example1.conf

A window pops up showing the 3D animation, which you can resize at your convenience or
even switch to full screen mode by pressing the “F” key (“Maj + f”; the key controls are case
sensitive). The program starts with the view showing the superposition of all pulsation modes
defined in the configuration file (see again Section 4) and the animation is in real time. De-
pending on the values specified for the periods (frequencies) of the modes, you may want to
accelerate time by pressing “+” to increase the time acceleration factor. The “-” key will allow
you to decrease this factor and slow down the animation. You may also want to press “r” to
activate the radial view and press “a” 3 times to show the pulsation axis, latitudes and longi-
tudes. These are the most basic keys controlling the scene, but there are many more options,
as listed below. Pressing the left or right buttons of the mouse while moving it will allow you
to rotate the sphere to any viewing angle. The mouse wheel can also be used to zoom in and out.

Tip: If your graphic card is powerful enough, it is possible to improve the rendering quality by
setting the anti-aliasing option up to whatever your card can support and handle. With Nvidia
cards under Linux, this can be done with the program “nvidia-settings” (provided that you are
using the video drivers from Nvidia).

List of key controls (case sensitive):

“Q” Exit the program.

“F” Enter/Leave full screen mode.

“SPACE” Enter/Leave the “decomposed view”. In this view, along with the main representa-
tion, all the modes (up to 24) are also shown individually.

“<” In decomposed view, decrease the number of modes shown per row (minimum 1).

“>” In decomposed view, increase the number of modes shown per row (maximum 4).

“w” In decomposed view, if there are more modes than can be displayed at once on
screen, scroll down.

“x” In decomposed view, if there are more modes than can be displayed at once on
screen, scroll up.

“o” In decomposed view, increase the number of modes shown per column (maximum
6).

“l” In decomposed view, decrease the number of modes shown per column (minimum
1).

“Y” In decomposed view, lock/unlock the number of modes shown per column. By
default, this number is locked, which means that it is automatically adjusted de-
pending on the number of modes shown per row. Pressing “o” or “l” deactivate this
automatic adjustment. You can come back to the default setting by pressing “Y” .

“TAB” Change the selection of the main representation (all modes combined, by default)
and navigate among the individual modes.

“BACKSPACE” Change the selection of the main representation (all modes combined, by
default) and navigate among the individual modes.

3

“+” Accelerate time.

“–” Slow down time.

“=” Set time flow to real time.

“r” Activate/Deactivate the radial view (i.e., open the star to show what is going on
inside).

“R” Activate/Deactivate the radial view also for the “decomposed” views (the radial and
decomposed views must be activated for this to have an effect).

“a” Show the pulsation axis and longitudinal, latitudinal, and radial grids. Press this
key as many time as needed to cycle among the possibilities.

“A” Show also the grids for the “decomposed views” (the decomposed view must be
activated).

“i” Change the textual information mode (cycle through the various modes by pressing
this key).

“L” Change the language for the textual information (only French and English are
available for now).

“PAGEDOWN” By default, the surface of the sphere shown is the surface of the star (r =
1Rstar). With this key, you can remove layers and expose deeper parts of the star.

’PAGEUP” Do the opposite of “PAGEDOWN”.

“LEFT” When the radial view is activated, pressing this key opens up further in longitude
the part of the sphere that is removed to show the interior.

“RIGHT” Do the opposite of “LEFT”.

“DOWN” When the radial view is activated, pressing this key opens up further in latitude
the part of the sphere that is removed to show the interior.

“UP” Do the opposite of “DOWN”.

“p” Cycle through various rendering modes: plain (default), grid only, and vertices only.

“c” Cycle through various color schemes.

“S” Increase the ratio between diffuse and ambiant light (increases the contrast).

“D” Decrease the ratio between diffuse and ambiant light (decreases the contrast).

“b” Change the background color (black or white; white is better for screen shots sent
to a printer).

“2” Zoom out (can also be done with the mouse wheel).

“8” Zoom in (can also be done with the mouse wheel). Note that there is no limit on
the “zoom-in factor”. Zooming in to much can lead to part of the sphere not being
rendered on screen (they are clipped). Zooming in can be useful to see the details
in the core when showing the radial view for instance.

4

“5” Set the zoom factor back to 1 (no zoom).

“n” Change the renormalization factor used to compute the amplitude of the combined
deformations. Just adding-up contributions from individual modes of amplitudes
scaled to be visible on screen can lead to global deformations that are two large
(through constructive interferences). By default, the amplitude of the multi-mode
representation is therefore scaled down to keep it reasonable for rendering purposes.
If you don’t want this renormalization, press “n” (and “n” again to reactivate it).

“s” Disable/Enable the rendering of the sphere. Only the radial view is shown, when
enabled.

“V” Deactivate/Activate the radial deformation (ξr).

“H” Deactivate/activate the horizontal deformation (ξθ and ξφ).

“Z” ’ Change the quantity represented by the color variations. By default, this is the tem-
perature perturbation. Other options are the radial displacement (ξr), the horizon-
tal displacement (ξh), the dimensionless eigenfunctions y1, y2, y3, and y4. Note that
these quantities are generally available when the real eigenfunctions (i.e., calculated
with a adiabatic or non-adiabatic pulsation code) are provided to GLPULSE3D (see
Section 4). When a generic radial eigenfunction is used, the temperature perturba-
tion is just set to be −ξr and the other quantities are simply set to zero.

“C” Deactivate/Activate the acknowledgment text. Feel free to do it, but of course
giving proper credit and acknowledgments, if you use this program for your own
illustrations/animations aimed at the public or the medias, will be greatly appreci-
ated.

4 Configuration file
Several control parameters and the information on the oscillation modes that we want to repre-
sent are provided in a configuration file. Several examples of configuration files (ending with the
suffix “.conf”) are provided with the program. The global control parameters are the following
(see also comments given in the configuration files):

language Define the language used at start by the program (can be changed afterward with
the “L” key).

fontfile Indicate the filename of the TrueType font that will be used when rendering text
on screen. You can choose any font that is installed on your system.

title Set the title of the animation. Note: use “underscore” (“_”) to specify where there
should be a blank in the text string.

frequencies Specify whether you provide the frequencies or the periods of the modes in this
configuration file (“yes” means frequencies are used)

amplitudes Specify if the amplitude information provided for each mode is used. “yes” means
that modes can be rendered with relative amplitude differences between them. “no”
means that all modes will be set to the same amplitude.

deform_fac This parameter provides the global amplitude given to the oscillation modes. It’s
value needs to be adjusted in order to have the best rendering of the oscillations.

5

ampl_rescale_exp When “real” eigenfunctions are used, their amplitudes as a function of
“r” can be rescaled nonlinearly following a power law of exponent specified by this
parameter. This is useful to rescale amplitudes that can span several orders of
magnitude inside a star in order to make them observable on screen.

expand_radius Specify if you want to remap nonlinearly the radial mesh using a power law.
If “yes” is specified, then the following number is the exponent of this power law.
This option is useful when activity is concentrated in a very narrow region of the
star. It is the case for red giants, where a lot happens inside the helium core. But
this core is tiny relative to the whole star on a linear radial scale. Remapping the
radial grid with the appropriate exponent permits to expand the core and make it
visible.

decomp_nxdiv Specify the number of modes shown per row in the decomposed view (min-
imum 1, maximum 4). If this value is not defined (commented out in the configu-
ration file) the program will evaluate itself the optimal value. Note that the chosen
configuration can be changed afterward while the program is running, with the keys
“<” and “>”.

decomp_nydiv Specify the number of modes shown per column in the decomposed view
(minimum 1, maximum 6). If this value is not defined (commented out in the
configuration file) the program will evaluate itself the optimal value. Note that the
chosen configuration can be changed afterward while the program is running, with
the keys “o” and “l”.

mesh_nr Specify the number of mesh points on the radial grid. This value will depend on how
precise you want the radial representation of the eigenmodes to be. For situations
with modes having many radial nodes (like in red giants), it is useful to increase
this number (up to 200 or 500). The price to pay is an increase of the computation
load which your computer may handle or not. Note that it is also possible to change
the non-radial grid resolution (in latitude and longitudes). But this has to be done
in the source code. You can change the values of NLAT and NLONG given in the
file “src/data.h” and recompile the code with the command $make clean; make.
However, if you change these values, make sure that NLONG and NLAT are always
multiples of 8.

The list of individual modes is then specified. A new mode is defined by the keyword “mode”
followed by a number of parameters whose values must be given on the same line:

Id A short string giving a name to the mode. Underscore will be replaced by a “blank”
on screen. If you don’t want to provide a text there, just put a single underscore.

commentary A short string giving a commentary. Underscore will be replaced by a “blank”
on screen. If you don’t want to provide a text there, just put a single underscore.

l The degree of the mode

m The azimuthal order of the mode (−` ≤ m ≤ `)

k The radial order of the mode. Note that by convention, positive radial orders are
for p-modes and negative radial orders are for g-modes.

Period/Freq Period or Frequency of the mode (in seconds or µHz). Provide one value de-
pending of your choice to use frequencies or periods.

6

Ampl. Amplitude of the mode (only relative values between modes matter). These values
are not used if the “amplitudes” parameter is not set to “yes”

Phase Phase of the mode (in second)

dxh/dxr This parameter can introduce (if the value differs from 1.0) an artificial amplitude
factor between the horizontal displacement (ξh) and the radial displacement (ξr).
This can be useful to enhance or decrease the relative importance of the radial vs
non-radial deformations.

eigenfunctions This parameter indicates the name of a file where the “real” eigenfunctions of
the mode are stored. An alternate option is to use ad-hoc (non physical) eigenfunc-
tions computed from a simple analytical formula. If, instead of giving a filename,
you specify the keyword “cosinewave” there, the radial and horizontal displace-
ments as functions of the radius r will be set to ξr = ξh ∝ (r/R) cos(πkr/R). The
“temperature” perturbation eigenfunction used for color modulations is then set
to−ξr.

Finally, note that “mode” lines can be commented out. Each line in the configuration file that
starts with “#” is treated as a comment.

5 Providing real eigenfunctions to GLPULSE3D
A most interesting capability of GLPULSE3D is to simulate/represent the radial behavior of
the oscillations based on “real” eigenfunctions. By real, I mean mode eigenfunctions previously
calculated by a pulsation code applied to a realistic stellar model. This option permits to
visualize what the pulsation may look like for all kind of stars, from the main sequence to
the white dwarfs, including intermediate stages like the red giants and the extreme horizontal
branch stars. The eigenfunctions must be provided in a separate file, called for each mode
in the configuration file (see Section 4). A single file may contain the eigenfunctions for all
modes (the program searches for the corresponding modes based on the given k and ` values)
or several files (even one file per mode) can be specified. This file is one of the outputs of the
pulsation code PULSE (Brassard et al. 1992, ApJS, 80, 725). It has the following format (see
also examples):

For each mode, a six line header is expected (see examples). Only the value of ` and k (degree
and radial order) are used and should be the same as the values given for the mode in the
configuration file. Below this header, the columns then provide the following quantities (but
not all are used by the code).

n (not used) mesh point number. The first line corresponds to the center of the star.

xi (not used) pulsation code integration variable.

y1 (optional) dimensionless y1 eigenfunction (can be represented as a color modula-
tion).

y2 (optional) dimensionless y2 eigenfunction (can be represented as a color modula-
tion).

y3 (optional) dimensionless y3 eigenfunction (can be represented as a color modulation)

y4 (optional) dimensionless y4 eigenfunction (can be represented as a color modulation)

7

ri (mandatory) radius (given as a fraction of the star total radius)

xir (mandatory) radial displacement ξr ≡ ry1

xih (mandatory) horizontal displacement ξh = Gm
r2σ2y2

dT/T (mandatory) temperature perturbation (the quantity selected by default for the
color modulations). For adiabatic pulsations, note that δT

T
' ∇ad

δP
P

and δP
P

=
V (y2 − y1 − y3) with V = ρgr

P
.

wfi (not used) weight function.

In making your own files following this format, quantities that are not used by GLPULSE3D
can be set to zero. Optional quantities can also be set to zero, but then if you select them to
be color coded and represented on screen, you will see nothing interesting.

6 Making videos

GLPULSE3D is doing the calculations and the rendering on screen in real time. While this is
very flexible, it is sometimes not appropriate when, for instance, one wants to show it on the
internet or during a presentation. A solution to this limitation is to make a video capture of
the animation.

For this, you will need a fairly powerful computer that is able to handle both the video capture
and the real-time calculations of the code. The best method for a smooth recording is to create
a ramdisk. You will need root access on your computer to do this. If you don’t have this access,
you can skip steps 1 to 3 and record directly on your hard-drive.

1. as the superuser: add in your “/etc/fstab” file the line “none /mnt/ramdisk tmpfs
defaults,size=2G,users 0 0”. You also need to create a directory called ramdisk in
’/mnt/’ if it does not exist. The size limit (here 2Gb) can be changed to fit your system.

2. As a normal user: $ mount /mnt/ramdisk

3. go to the ramdisk: $ cd /mnt/ramdisk

4. Start GLPULSE3D and move the window in the upper left corner of your screen

5. In the ramdisk directory, type: $ ffmpeg -f x11grab -r 25 -s 850x550 -i :0.0+nomouse
-vcodec libx264 -preset ultrafast -crf 0 video.mkv
In this example, the animation is being captured at 25fps. You can then control GLPULSE3D
as usual during the recording. To stop recording, just do Ctrl+C where the above com-
mand has been issued.

6. When the video has been recorded, you can do another pass to crop the sides of the video
(and remove unwanted parts of the screen that were captured): $ ffmpeg -i video.mkv -
vf crop=in_w-70:in_h-60:10:30 -vcodec libx264 -preset slow -crf 0 video2.mkv

Other video formats can be created using ffmpeg or similar softwares.

8

7 On the calculation of displacement eigenvectors

GLPULSE3D computes in real time spherical harmonics and their derivatives for rendering
temperature waves (colors) and physical deformations of the star. For the latter, the code com-
putes at each grid point and at each time step the displacement vectors, ~ξn`m = {~ξr, ~ξθ, ~ξφ}n`m
of each mode and sums them up (with a renormalization factor to keep them at reasonable am-
plitudes for visualization) to produce the multi-mode representation. In spherical coordinates,
the components of the displacement eigenvectors are given by:

~ξr = ξr(r)Y
m
` (θ, φ)eiσt~er

~ξθ = ξh(r)
∂Y m

`

∂θ
eiσt~eθ (1)

~ξφ = ξh(r)
1

sin θ

∂Y m
`

∂φ
eiσt ~eφ

The spherical harmonics, Y m
` (θ, φ), are expressed in terms of the normalized associated Legen-

dre polynomials, for ` = 0,1, ... and m = 0, ..., `:

Y m
` (θ, φ) = P̄m

` (cos θ)eimφ = Nm
` P

m
` (cos θ)eimφ with Nm

` =

√√√√2`+1
4π

(`−m)!

(`+m)!
(2)

For negative values ofm, the relations P̄−|m|` (x) = (−1)|m|P̄
|m|
` (x) or Y −|m|` (θ, φ) = (−1)|m|Y

|m|
` (θ, φ)

are used. Derivatives of the spherical harmonics have to be computed. For the simplest case,
we have

∂

∂φ
Y m
` (θ, φ) = imP̄m

` (cos θ)eimφ

= imY m
` (θ, φ) (3)

The differentiation relative to θ can be obtained with recurrence relations between associated
Legendre polynomials, we have:

∂

∂θ
Y m
` (θ, φ) =

d cos θ

dθ

d

d cos θ
P̄m
` (cos θ)eimφ

= − sin θ
d

dx
P̄m
` (x)eimφ where x = cos θ (4)

Starting from the recurrence relation (for m ≥ 0)

(1− x2) d
dx
Pm
` (x) = (`+ 1)xPm

` (x)− (`−m+ 1)Pm
`+1(x) , (5)

we can write (for m ≥ 0)

d

dx
P̄m
` (x) = Nm

`

d

dx
Pm
` (x)

=
1

1− x2

{
(`+ 1)xP̄m

` (x)− (`−m+ 1)
Nm
`

Nm
`+1

P̄m
`+1(x)

}
. (6)

For negative m-indices, this derivative simply obeys the relation:

d

dx
P̄
−|m|
` (x) = (−1)|m|

d

dx
P̄
|m|
` (x) . (7)

9

Considering that 1− x2 = 1− cos2 θ = sin2 θ, the above equations lead to

∂

∂θ
Y m
` (θ, φ) =

1

sin θ

{
(`−m+ 1)

Nm
`

Nm
`+1

Y m
`+1(θ, φ)− (`+ 1) cos θY m

` (θ, φ)

}
. (8)

Taking the real part of these expressions, the components of the displacement eigenvector for
a given mode are then

~ξr = ξr(r)P̄
m
` (cos θ) cos(mφ+ σt) ~er

~ξθ =
ξh(r)

sin θ

{
(`−m+ 1)

Nm
`

Nm
`+1

P̄m
`+1(cos θ)− (`+ 1) cos θP̄m

` (cos θ)

}
cos(mφ+ σt) ~eθ (9)

~ξφ = −mξh(r)

sin θ
P̄m
` (cos θ) sin(mφ+ σt) ~eφ

The deformations are then calculated by applying these vectors to the unperturbed sphere at
each grid point and at each time step. The perturbed grid points are then projected from the
spherical coordinate system on to the Cartesian reference frame in which the OpenGL scene is
displayed.

10

