BE rayonnement : partie II

Documents autorisés (pour cette partie seulement)

Lundi 25 Novembre 2013

1 Effet Sunyaev-Zeldovich (SZ)

L'effet SZ correspond à la diffusion Compton inverse (*Compton up-scattering*) du rayonnement du CMB (fond diffus cosmologique) par le gaz chaud des amas de galaxies.

- Les photons du CMB possèdent un spectre de corps noir $I_{\nu}^{0} = B_{\nu}(T_{0})$ de température $T_{0} = 2.7$ K (c'est à dire $k_{B}T_{0} = 2.4 \times 10^{-7}$ keV).
- Le gaz intra-amas émet principalement par émission Bremsstrahlung. Les observations montrent un spectre électromagnétique plat qui coupe à une énergie $h\nu_{\rm max}\approx 5~{\rm keV}$.
- 1) À quelle la gamme du spectre électro-magnétique correspond cette énergie?
- 2) Estimer la température T_e du gaz intra-amas. Calculer le rapport $\theta_e = k_B T_e/(m_e c^2)$. Le gaz est-il relativiste? En déduire une estimation de la vitesse typique des particules $\beta = v/c$.
- 3) Dans quel régime s'effectuent les diffusions Compton des photons du CMB? Justifiez votre réponse.
- 4) Montrer que la variation relative d'énergie des photons lors d'une unique diffusion peut s'écrire $\delta E/E \approx \theta_e$.
- 5) Exprimer la variation relative moyenne $y = \Delta E/E$ de l'énergie des photons lors de la traversée d'un amas de taille finie et de profondeur optique $\tau_T << 1$. Comment s'exprime, en fonction de y, l'énergie $E_0 = h\nu_0$ des photons avant leur traversée d'un amas, s'ils sont observés avec une énergie $h\nu$ après avoir traversée l'amas?
- 6) En déduire l'expression du spectre diffusé I_{ν} en sortie de l'amas. Montrer qu'il possède une forme comparable à celle d'un corps noir, mais d'intensité et de température T différentes : $I_{\nu} = \eta B_{\nu}(T)$, où on exprimera T et η en fonction de y. En déduire la variation relative de température $\delta T/T_0$ et montrer qu'elle est faible.

On peut montrer facilement (non demandé) que, dans la limite y << 1, la variation d'intensité $\delta I_{\nu} = I_{\nu} - I_{\nu}^{0}$ peut s'écrire :

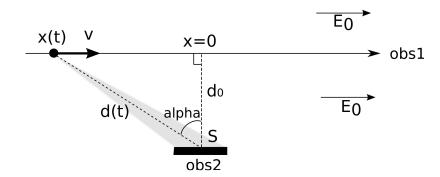
$$\frac{\delta I_{\nu}}{I_{\nu}^{0}} \approx y \left(\frac{h\nu}{k_{B}T_{0}} \frac{e^{h\nu/k_{B}T_{0}}}{e^{h\nu/k_{B}T_{0}} - 1} - 3 \right)$$

- 7) Montrer que la forme générale de cette variation est indépendante des propriétés de l'amas et que seule son amplitude en dépend. En déduire une méthode observationnelle pour mesurer y.
- 8) On mesure ainsi $y \approx 2 \times 10^{-5}$. En déduire la densité d'un amas de diamètre 1 Mpc (Mega-parsec).

1

On donne : $m_e c^2 = 511$ keV, 1 parsec = 3.1×10^{18} cm et $\sigma_T = 6.65 \times 10^{-25}$ cm².

2 Émission d'une particule accélérée linéairement



On s'intéresse au mouvement et à l'émission d'une particule **non-relativiste** de masse m et de charge q accélérée par un champ électrique constant, uniforme et orienté dans la direction $x: \vec{E}_0 = E_0 \vec{e}_x$ (voir schéma). On suppose qu'il n'y a pas de mouvement perpendiculaire au champ électrique et que la vitesse est dirigée par l'axe $x: \vec{v} = v\vec{e}_x$. On note a l'accélération de la particule.

- 1) Quelle est la puissance totale P émise par la particule à chaque instant? Donnez l'expression et la valeur numérique du rapport P_e/P_i entre la puissance émise par un électron et la puissance émise par un proton accéléré dans le même champ électrique?
- 2) Quelle fraction de cette puissance voit un observateur ponctuel situé exactement le long de l'axe de la trajectoire (obs1 sur la schéma)? Justifiez votre réponse.

Dans la suite, on s'intéresse à l'observateur 2 placé à une distance d_0 de la trajectoire. A tout instant, on note d(t) la distance entre l'observateur et la particule. On choisit l'origine des temps t=0 lorsque la particule passe au plus proche de cet observateur. On définit l'origine des positions x=0 en ce point et on note v_0 la vitesse qu'elle possède à cet instant.

- 3) Exprimer la puissance $dP/d\Omega$ émise par unité d'angle solide dans la direction de l'observateur en fonction de la position x de la particule.
- 4) On rappelle qu'une surface élémentaire dS observée à une distance d depuis une direction \vec{n} est soustendue par l'angle solide élémentaire $d\Omega = \frac{d\vec{S}.\vec{n}}{d^2}$. En déduire l'expression de la puissance P_S reçue sur un détecteur placé au niveau de l'observateur 2, et dont la surface S est parallèle à la trajectoire de la particule (on supposera que la taille du détecteur est bien inférieure à d_0). Montrer qu'elle peut se mettre sous la forme

$$P_S = \frac{P_0}{\left(1 + (x/d_0)^2\right)^{5/2}}$$

5) Représenter qualitativement cette fonction de x, en faisant apparaître les points remarquables. Montrer que la puissance mesurée provenant des régions où $|x| >> d_0$ est très faible.

On s'intéresse maintenant à l'énergie totale $\mathcal{E}_{\mathcal{S}}$ reçue par le détecteur au cours de la trajectoire. Pour simplifier les calculs, on s'intéressera au cas d'une faible accélération et d'une forte vitesse.

- 6) Exprimer la position x(t) de la particule en fonction du temps, de l'accélération a et de la vitesse v_0 de la particule.
- 7) Calculer le temps maximal t_{max} pour lequel on peut faire l'approximation $x(t) \approx v_0 t$. En déduire une estimation de la distance x_{max} sur laquelle cette approximation est valide.
- 8) Montrer que si $a \ll v_0^2/d_0$, l'essentiel de l'énergie reçue \mathcal{E}_S provient de la région où cette approximation est valide.
- 9) En déduire l'expression de l'énergie totale \mathcal{E}_S reçue par le détecteur (on donne que $\int_{-\infty}^{+\infty} (1+u^2)^{-5/2} du = 4/3$). Justifier les dépendances qualitatives par rapport aux différents paramètres du problème.