Focusing on supernova γ-rays

Mark Leising Clemson University Clemson, South Carolina USA

Focusing Telescopes in Nuclear Astrophysics - Bonifacio

Supernovae: brief intro

Two different engines, coincidentally similar in appearance:

Core-collapse of massive star

Si --> Fe is last exothermic fusion Thermonuclear explosion of white dwarf (in binary star system)

P_{deg} support; fusion reactions speed up, no expansion --> runaway

Supernovae: energetics

	Core-collapse	of massive	star	Thermonuclear explose dwarf (in binary star s	sion of white system)	
source	Gravitational potential $GM_{Fe}^2 \left(\frac{1}{R_{ns}} - \frac{1}{R_{Fe}}\right) \sim 3\ 10^{53} \mathrm{ergs}$			Fusion of 10 ^{55 56} Fe nuclei from ¹² C ¹⁶ O (10 ⁵¹ ergs)		
kinetic	$1-2 \ 10^{51} \text{ ergs}$ 10-15 M _{\odot} ejected <v> ~ 3000 km/s</v>		6-8 10 ⁵⁰ ergs 1.4-2 M _☉ ejected <v> ~ 10,000 km/s</v>			
radiated	10 ⁴⁹ ergs		4 10 ⁴⁹ ergs			
		Spectra: <i>Type II</i> , <i>Ib, Ic,</i>		XMM Newton SH 1005	Spectra: <i>Type Ia</i>	

Supernovae: nucleosynthesis & rates

Core-collapse of massive star

Thermonuclear explosion of white dwarf (in binary star system)

Elements	O, F, Ne, Na, Mg, Al, Si,	Fe-peak	10^{6}
produced	S, A≥70 (r-process)	elements	
Milky way rates	$2.5 \pm 1 \text{ century}^{-1}$	0.5	± 0.3 century ⁻¹

Spectra: *Type II*, *Ib, Ic, ...*

Spectra: Type Ia

Supernovae: major questions

Core-collapse of massive star

Thermonuclear explosion of white dwarf (in binary star system)

How is large n-star binding	What are the progenitor
energy transferred to star?	systems?
(models do not explode)	
What are the dynamical	How does the nuclear flame
complexities (mixing due to	ignite and propagate?
instabilities, jets, etc.)?	detonations out; deflagrations
c.f. gamma-ray bursts	unlikely; combination?

Spectra: Type Ia

Supernovae: visible light evolution

$${}^{56}Ni \xrightarrow{\text{8.8d}} {}^{56}Co \xrightarrow{\text{113d}} {}^{56}Fe$$

Thermonuclear SN and Cosmology

Do these objects follow a 1-parameter family? Were they the same at 1/2 present age of universe?

Thermonuclear SN models

Model (in spherical symmetry): mass, composition, flame prescription...

Iwamoto et al.

Thermonuclear SN Models - schematic

γ-ray lines: come only from 'optically' thin regions.

We can watch the attenuating medium lift off -- flux vs. time

We can see the doppler profiles of the emission regions -- spectra

Model discrimination

For a given instrument sensitivity, variation with time is slightly more sensitive test than spectra.

Unfolding the actual ⁵⁶Ni distribution is the ultimate goal.

Biggest difference: Some models have fast ⁵⁶Ni at surface. Changes in 10⁶ sec.

On the number of SNe we can study...

Calan/Tololo Survey --> 0.21 SN Ia / $10^{10} L_{sun}(B)$ / century SDSS --> 0.017 $10^{10} L_{sun}(B)$ / Mpc⁻³ > 19 y⁻¹ SN Ia within D = 50 Mpc (Peak 847 keV Flux $\ge 1.2 \ 10^{-6} \text{ cm}^{-2} \text{ s}^{-1})$

But, how good are these numbers? Take confirmed SNIa, Tully Nearby GC Distances

1 y⁻¹ at D < 20 Mpc seems safe (> 20 σ for F_{3 σ}= 1 10⁻⁶)

Detecting many is fine, but it will be the best few of each -- bright, normal, subluminous -- that will be most important.

W7 minimum annual event---->

Core collapse objectives: Dynamics At the 'mass cut' Jets Nucleosynthesis

Circumstellar matter/wind interactions

Cosmic ray acceleration

Dynamics at the mass cut

How is ~1% of the n-star binding energy transferred to the star?

Observations are well ahead of theory -⁵⁶Ni, ⁵⁷Ni masses, ⁴⁴Ti masses?

Measurements needed -

New ⁵⁶Co (847, 1238, 50-150 keV) light curve SN* ⁵⁷Co (122, 136 keV)

SNR* ⁴⁴Ti (68, 78, 1157 keV)

Woosley & Weaver 1995

* ⁵⁶Co detectable to ~2 Mpc --> local group SN * SN 1987A, e.g., ⁴⁴Ti yield to ~10% *c.f. also NUSTAR* $44\text{Ti} \rightarrow 44\text{Sc} \rightarrow 44\text{Ca}$ $63y \qquad 4h \\ 68, 78 \qquad 1157 \text{ keV}$

Dynamics - jets (see also grb's)

⁵⁶Co fluxes can be ~5 times higher (Hungerford et al. 2003, 2005) --> D~6 Mpc (need either sample of several angles or very good spectroscopy)

⁴⁴Ti / ⁵⁶Ni ratio might vary substantially in jets. Where we can measure ⁴⁴Ti well (e.g., Cas A) can we measure ⁵⁶Ni?

modest spectroscopy (~1000 km/s) might also reveal jets in brightest ⁴⁴Ti sources. (several snr in galaxy)

Core collapses - nucleosynthesis

In principle, many isotopes accessible in gamma-ray lines.

	⁷ Be	478 keV	53 d			
	²² Na	1275 keV	2.6 y			
– Galactic SNR	²⁶ A1	1809 keV	0.7 My			
	⁵⁹ Fe	1099, 1292 keV	44 d			
– Local group SN	⁶⁰ Fe	59 keV	1.5 My			
	⁶⁰ Co	1173, 1332 keV	5.3 y			
– Galactic SN!	r-process	various	various			
	e.g. ¹²⁶ Sn	87 keV	0.1 My			
$F_{est} \sim 10^{-7} \text{ cm}^{-2} \text{ s}^{-1}$, fluctuations? jets?						

Core collapse - shock/csm interaction

- distinguish forward shock/csm (kT~10⁹) from
 reverse-shock/ejecta at ~50--150 keV.
- determine wind density profile and/or binary effects
- see SN 1993J
- GRI a few per year, quick response needed (days)

Summary

- Sensitive γ-ray observations can answer the fundamental questions about supernovae (thermonuclear, especially)
- Broad line flux sensitivity $\sim 10^{-6}$ cm⁻² s⁻¹ is essential
- In a narrow-field instrument, this should be achieved in ~10⁵ sec (maybe 3 10⁵ sec) because multiple observations are essential.