Prospects in space-based Gamma-Ray Astronomy

Jürgen Knödlseder Centre d'Etude Spatiale des Rayonnements, Toulouse, France

The unique Gamma-Ray sky

Specific emission processes

0

	Radio	IR	Vis	UV	×	Gamma-rays
Relativistic particles	Synchrotron					Inverse Compton
Nuclear processes	-	-	-	-	-	Lines and continuum
Particle interactions	-	-	-	-	-	Continuum
Antimatter annihilation	-	-	-	-	-	Lines and continuum
Dark matter	Sync	•	-	-	-	Annihilation signatures

The non-thermal, nuclear and particle Universe

- Diversity of emission sites
 - Sun, black holes, neutron stars, pulsars, SNRs, galaxies, AGNs, GRB, CB
- Penetrating power of gamma-ray photons
 Probe the central engines

Observing the Gamma-Ray sky

(Selected) science themes

 \bigcirc

0

Cosmic accelerators

The most dynamic and powerful sites in the Universe

Accretion on compact objects

Binaries

AGN

Pulsars

Magnetars

µ-blazars

Rotation of neutron stars

Cosmic explosions

The most violent events in the Universe

Gravitational collapse

Core-collapse SN GRB

Thermonuclear explosions

Type Ia SN

Thermonuclear runaways

X-ray bursts

Stellar winds

Explosions and shocks

Black holes : understanding the accretion-ejection physics

- How is the energy reservoir transformed into relativistic particles ?
- Jet formation and collimation ?
- What triggers the outbursts ?
- Composition of accelerated plasmas ?
- Nature of the radiation process ?

Study broad-band SED in various states ; probe the universality of hard powerlaw tails

Measure polarisation of emission components

Search for pair annihilation and nuclear line features

The origin of galactic soft γ -ray emission

- INTEGRAL : ~ 90% of the galactic hard X-ray emission is resolved
- Spectral change around ~ 300 keV (Comptonisation => powerlaw)
- What is the origin of the emission at soft γ-ray energies ?

Search for hard tails in soft $\gamma\text{-ray}$ sources

Resolve the 'diffuse' galactic soft γ -ray emission

The origin of the cosmic soft y-ray background

sec⁻¹ sr⁻¹ MeV⁻¹]

 $E^{2}I(E)$ [MeV² cm⁻²

 10^{-2}

100

Energy [MeV]

 10^{2}

 10^{4}

- INTEGRAL : ~ 20% of the sources in the 2nd IBIS catalogue are of extragalactic origin 24 Seyferts, 5 Blazars, 5 AGN, 3 clusters
- So far, only ~ 1 % of the cosmic soft γ-ray background is resolved

Measure the soft y-ray SED of AGN - high-energy cut-offs - hard tails

Resolve the soft y-ray background

Determine the nature of the radiation process

- polarisation measurements
- annihilation features

Probing particle acceleration in the most extreme magnetic fields

- INTEGRAL : discovery of hard emission tails in SGR 1806-20 and AXPs
- Emission mechanism ?
- Energy cut-off ?
 QED effects (photon splitting)
- Cyclotron features ?

Measure the soft γ -ray SED of magnetars

- high-energy cut-off
- cyclotron features

Cosmic explosions

Type Ia SN : Identifying the progenitors and probing the explosion physics

- Distinguish progenitor scenarios direct measurement of ⁵⁶Ni mass (single / double degenerate)
- Distinguish explosion scenarios measure line shape evolution

Measure y-ray line lightcurves and profiles in nearby (< 100 Mpc) SN Ia

Search for radioactive decay signatures in galactic SNR (incl. e*)

Milne et al. (2004)

Cosmic explosions

From stars to compact objects : understanding core collapse explosions

- INTEGRAL: ⁴⁴Ti ejection velocity in Cas A v_e > 1000 km s⁻¹
- Fe-core material acceleration ?
- Jet formation ?
- What drives the supernova explosion ?

Study y-ray lines in galactic SNR (44Ti, ²⁶Al, ⁶⁰Fe)

Measure _Y-ray line lightcurves and profiles in nearby (< 10 Mpc) core-collapse supernovae

Cosmic explosions

Unveiling the origin of galactic positrons

- INTEGRAL: the bulk of positrons originates from a pure bulge population; they annihilate in a warm and partially ionised ISM
- What is this mysterious bulge source ?

Jean et al. (2005)

High-resolution mapping of the galactic bulge region

Probe annihilation medium around positron sources

Mission requirements

- Sensitivity leap in the soft gamma-ray band
- Adequate angular resolution for counterpart identification
- Capability to measure polarisation

Mission parameters

- Energy band
- FOV
- Continuum sensitivity
- Narrow line sensitivity
- Energy resolution
- Angular resolution
- Polarisation

50 keV - 2 MeV 30 arcmin 10^{-8} ph cm⁻² s⁻¹ keV⁻¹ (10⁶ s, 3 σ) 5 x 10⁻⁷ ph cm⁻² s⁻¹ (10⁶ s, 3 σ) 2 keV @ 600 keV arcmin 1 % @ 10 mCrab (10⁶ s, 3 σ)

The Gamma-Ray Imager

The Gamma-Ray sensitivity leap

ESA's Cosmic Vision 2015 - 2025

- ESA is currently defining the space program for 2015 2025
- april 2004 : call for themes

0

- autumn 2005 : final report
- early 2006 (?) : first A0 (3 expected)

Looking at the Universe with gamma-ray eyes These observatories would be joined by more missions, such as an Optical/Near-infrared Wide Field Imager to provide clues to the understanding of the elusive dark energy through the study of distant supernovae. An All-sky Cosmic Microwave Background Mapper would chart the details of the early accelerated expansion of the Universe.

An Ultra-high Precision Astrometry Optical/UV Spectroscopy mission could conduct a census of terrestrial exoplanets within 326 light years, a MeV Gamma Ray Imager would study the physics of supernovae at the origin of heavy nuclei and find the true origin of antimatter, and a High-resolution UV Spectroscopy mission would investigate the warm/hot intergalactic medium and distant supernovae.

http://www.esa.int/esaSC/SEM80J2IU7E_index_0.html

 GRI consortium works towards detailed mission design http://gri.cesr.fr

GRI science working group

GRI kick-off meeting (Toulouse, June 2005)