

Non-Thermal Cosmic Backgrounds from Blazars

Paolo Giommi,

Agenzia Spaziale Italiana ASI ASI Science Data Center Email: paolo.giommi@asi.it

S. Colafrancesco

INAF - Osservatorio Astronomico di Roma

Email: Sergio.Colafrancesco@mporzio.astro.it

This talk is mostly based on

Non-thermal cosmic backgrounds from blazars: the contribution to the CMB, X-ray and γ -ray backgrounds

P. Giommi^{1,2}, S. Colafrancesco³, E. Cavazzuti^{1,2}, M. Perri¹, and C. Pittori^{1,4}

Astronomy and Astrophysics, in press astro-ph/0508034

.. and on more recent developments

What's a Blazar?

Gamma WAVE

AGN : Two main categories

- 1. Powered by accretion disk emission - AP-AGN
- 2. Powered by Non-Thermal radiation - jet emission - NT-AGN

Blazars:

NT-AGN viewed at a small angle w.r.t. jet axis

Radio Galaxies:

NT-AGN viewed at a large angle w.r.t. jet axis

Broad-line radio galaxies (e.g. 3c120):

A combination of AP-AGN and "misdirected" NT-AGN

(ח)

Blazars & WMAP

WMAP CMB fluctuation map

WMAP bright foreground source catalog

- •13 Radio galaxies
- •5 Steep Spectrum QSOs
- •2 starburst galaxies
- •2 planetary nebule
- •17 unidentified
- •5 without radio counterpart (probably spurious)

The vast majority (85%-90%) of bright WMAP foreground sources are Blazars

WMAP Blazar SEDs

The Blazar radio LogN-LogS

12 September 2005

Blazar contamination vs. ν

ogenzio spozi itoliono From μ -wave flux to X-rays and vice-versa

12 September 2005

From μ -wave to X-rays

12 September 2005

Radio — γ -ray flux ratio & duty cycle

Define a slope/trend: $\alpha_{\mu\gamma} = -$

$$\alpha_{\mu\gamma} \equiv \frac{\log(F_{\mu} / F_{\gamma})}{\log(v_{\mu} / v_{\gamma})}$$

Blazar Name	$\alpha_{\mu\gamma}$	$f\gamma$ -source/< γ -background>	
		($\alpha_{\mu\gamma background}$ =-0.994)	
BZQ J0204+1514	-0.892	14.5 -	
BZU J0210-5101	/ -0.887	16.6	
BZB J0339-0146	-0.902	11.2	
BZQ J0423-0120	-0-907	9.7	
BZQ J0455-4615	0.913	α _{μγ} 83	
BZQ J0457-2324	-0.908	9.6	
BZU J0522-3627	¹⁰ -0.926 ¹⁵ Log fre	$20_{\text{quency } \nu \text{ (Hz)}} 6.0$ 25	
BZB J0538-4405	-0.892	14.4	
BZQ J1256-0547 (3C 279)	-0.870	25.5	

Duty cycle (%) 6.9 6.0 8.9 10.3 12.0 10.4 16.7 6.9 3.9

M V 12

Table 2. The list and properties of all WMAP-detected Blazars associated to EGRET y-ray sources

Blazar Name	R.A. J2000.0	Dec J2000.0	Radio Flux 5GHz Jv	WMAP flux 94GHz Jv	EGRET flux >100 MeV 10 ⁻⁸ ph cm ⁻² s ⁻¹	$\alpha_{\mu\gamma}$	Duty cycle %	EGRET name 3EG J	WMAP catalog number
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
4C15.05	02 04 50.3	15 14 10	3.073	1.6*	9-53	0.846-0.914	2-12	0204+1458	092
1Jy0208-512	02 10 46.2	-51 01 02	3.198	1.8	35-134	0.816-0.867	1-4	0210-5055	158
B2 0234+28	02 37 52.3	28 48 08	2.794	2.1*	11-31	0.877-0.917	5-13	0239+2815	093
CTA26	03 39 30.8	-01 46 35	3.014	3.2	13-178	0.827-0.926	1-17	0340-0201	106
PKS 0420-01	04 23 15.7	-01 20 32	4.357	3.9	9.3-64.2	0.873-0.946	4-29	0422-0102	110
1Jy0454-463	04 55 50.7	-46 15 59	1.653	3.8	5.5-22.8	0.911-0.966	11-47	0458-4635	151
1Jy0454-234	04 57 03.1	-23 24 51	1.863	2.7	8.1-14.7	0.915-0.938	13-23	0456-2338	128
PKS 0506-61	05 06 44.0	-61 09 40	1.211	1.1*	6-29	0.855-0.915	3-13	0512-6150	154
1Jy0537-441	05 38 51.3	-44 05 11	4.805	6.7	16.5-91.1	0.880-0.945	5-28	0540-4402	148
PKS 0735+178	07 38 07.3	17 42 18	1.812	1.7*	15-29	0.872-0.896	4-8	0737+1721	113
B2 0827+24	08 30 52.0	24 10 57	0.886	2.6*	16-111	0.837-0.911	2-11	0829+2413	112
\$50836+710	08 41 24.4	70 53 40	2.342	1.2*	9-33	0.854-0.903	2-9	0845+7049	089
OJ 287	08 54 48.8	20 06 30	2.908	2.5	9.7-15.8	0.910-0.928	11-18	0853+1941	115
4C 29.45	11 59 31.7	29 14 43	1.461	2.1	7.5-163.2	0.814-0.931	1-19	1200 + 2847	111
PKS1221-82*	12 24 54.3	-83 13 10	0.797	1.2*	11-36	0.850-0.895	2-7	1249-8330	178
1Jy1226+023	12 29 06.3	02 03 04	36.923	9.0	8.5-48.3	0.916-0.982	13-73	1229+0210	170
3C279	12 56 11.0	-05 47 19	11.192	19.0	15-250	0.882-1.000	5-100	1255-0549	181
PKS 1313-333	13 16 07.9	-33 38 59	1.093	1.3*	15-32	0.858-0.887	3-6	1314-3431	182
1Jy1406-076	14 08 56.4	-07 52 25	1.080	1.7*	10-128	0.815-0.912	1-12	1409-0745	203
1Jy1424-418	14 27 56.2	-42 06 19	2.597	1.5*	12-55	0.842-0.901	2-9	1429-4217	191
1Jy1510-089	15 12 50.4	-09 06 00	3.080	1.7	12.6-49.4	0.851-0.903	2-9	1512-0849	207
1Jy1606+106	16 08 46.0	10 29 07	1.412	3.1	21.0-62.4	0.865-0.907	3-10	1608 ± 1055	009
DA 406	16 13 40.9	34 12 46	2.324	1.4	19-68.9	0.831-0.880	1-5	1614+3424	023
4C38.41	16 35 15.4	38 08 04	3.221	4.2	31.8-107.5	0.856-0.902	3.9	1635+3813	033
PMNJ1703-6212	17 03 36.2	-62 12 39	0.616	1.9*	14-53	0.853-0.904	2-9	1659-6251 ^b	198
\$41739+522	17 40 36.9	52 11 42	1.699	1.2*	10-45	0.842-0.899	2-8	1738+5203	048
PKS 1814-63 ^r	18 19 34.9	-63 45 47	4.506	1.3*	14-27	0.864-0.889	3-6	1813-6419	200
PMNJ1923-2104	19 23 32.1	-210433	2.885	2.1*	29**	0.880	5	1921-2015	008
PKS 2052-47	20 56 15.5	-47 14 37	2.026	1.3*	9-35	0.854-0.906	3-10	2055-4716	208
BL Lac	22 02 43.2	42 16 39	2.940	3.8*	9-40	0.890-0.947	7-29	2202+4217	058
PKS2209+236	22 12 05.9	23 55 39	1.123	1.3*	7-46	0.844-0.916	2-13	2209+2401	050
CTA102	22 32 36.3	11 43 50	3.967	3.1	12.1-51.6	0.873-0.928	4-18	2232+1147	047
1Jy2251+158	22 53 57.6	16 08 52	14.468	5.9	24.6-116.1	0.866-0.925	3-16	2254+1601	055
1Jy2351+456	23 54 21.6	45 53 03	1.127	1.7*	12-43	0.874-0.923	4-15	2358+4604	074

12

12 September 2005

First results from the Swift-BAT High-Latitude (15-150 KeV) survey Markwardt et al. 2005, submitted

- Data from the 3 months of the Swift mission
- |bii| > 19 (~25,000 sq deg)
- Limiting sensitivity $\approx 3x10^{-11}$ erg/cm2/s
- 3-4 Blazars
- Radio-loud/non-thermal AGN >≈ 20% of all extragalactic sources
- Blazar redshift distribution seems very different than that of radio quiet (accretion powered) AGN
- Similar results from INTEGRAL

12 September 2005

italiana

The high-energy gamma-ray band, GeV and beyond: blazar simulations

•Starts from a radio Luminosity function + Cosmological evolution

- Monte Carlo simulation of redshift and radio luminosity
- •Radio luminosity of each source is extrapolated to other energy bands (micro-wave, optical, X-ray, gamma-ray) based on SSC model + and randomized based on observed distributions.
- •Gamma-ray flux simulated taking into account of duty cycle and
- Gamma Ray Background constraints (see Giommi et al. 2005 A&A in press, astro-ph/0508034)
- •Sources are accepted above a set of flux limits (radio, opt, X-ray etc.)

¹² September 2005

Expected distribution of microwave/gamma-ray spectral index ($\alpha_{\mu\gamma}$) in the subsample of EGRET detected (f_{γ} >1x10⁻⁷ ph/cm2/s > 100 MeV) in the 50 mJy simulated radio survey (110 Blazars)

Expected distribution of microwave/gamma-ray spectral index ($\alpha_{\mu\gamma}$) in the subsample of GLAST detected (f_{γ} >3x10⁻⁹ ph/cm2/s > 100 MeV) in the 50 mJy simulated radio survey

12 Se

