Fabrication Strategies for Light Weight X-ray Optics

Presented by Mel Ulmer^a

Co-Authors: Michael E. Graham, Semyon Vaynman, Matvey Farber, Jonathan Echt, Steve Ehlert, Alex Vaynman, Steven Wang, Robert Stern, Lawrence Shing, Yong Chu, Mark Smith, Asit Biswas

a: e-mail m-ulmer2@northwestern.edu; phone 847.491.5633; web page

http://www.astro.northwestern.edu/~ulmer

HDOS Chandra Mirror blank

Proof of concept study for light weight X-ray and visible light optics

X-ray optics geometry; 3. cm diameter. cylinder "hockey puck" for visible light optics; 6 cm diameter

Top/bottom az scans

Thanks to David Content NASA/GSFC

Ni/sprayed/Ni laminated 5 cm dia. flat: areal density, 2 kg/m²; 140 μ m front/back of and 120 μ m of sprayed micro-spheres; 7.3 gm = 3.7 kg/m²

Mirror and mandrel together, both 5 nm smooth

NB for cryo mirror applications, dipping in liquid N_2 had no effect

Straight line test on flat; profiler measurements show deviation from flat of 1/3 λ (600 nm); smoothness on 5 nm 10-100 micron scale

Background info re micro-spheres, Part I

For cylinder:

CTE about 4.2*E-6 versus 2.4E-6 CVD SiC Density = 4.7 g/cm^3 versus 3.2 g/cm^3 CVD SiC

A PERSONAL PROPERTY.

7 kev out of focus

7 keV in focus 30 arc sec FWHM

Two Actuator Concepts

Integrated Co-fired stack approach

Flex Patch Approach

Mandrel with electrodeposited nickel

Coated Mandrel

Two different orientations about optical axis, same energy; W/Si 5.29 nm

About 90 deg rotation

Higher Energy

Concluding Remarks:

- Plasma spray shows promise for light weight mirrors, and actuators are fall back
- Facilities available to test with and without Actuators
- Technology Exists to Enhance High Energy Reflectivity

Funding Sources: LM Independent Research Program

NASA Space Grant to Illinois

NASA STTR