Development of a new photon diffraction imaging system for nuclear diagnostic medicine

D.E. Roa Ph.D.^{1a}, R.K. Smither Ph.D.², N.S. Ramsinghani M.D.^{1a}, N. Milne M.D.^{1b}, J.W. Kuo M.D.^{1a}, J.L. Redpath Ph.D.^{1a}, M. Al-Ghazi Ph.D.^{1a} and P. Caligiuri M.D.³

¹ UCIMC – ^aDepartment of Radiation Oncology, ^bDepartment of Nuclear Medicine ²Argonne National Laboratory – Advanced Photon Source Division, Argonne, Illinois ³University of Chicago – Department of Radiology,

Chicago, Illinois

MAIN IMAGING MODALITIES

CT Image

Fused CT / MRI Image

Myocardial function.

Bone scan

PET scan

Typical Radiopharmaceuticals used in Nuclear Medicine for Imaging

Nuclide	T _{1/2}	Energy (keV)	Purpose
Cr-51	28 d	320	Red cell volume
Ga-67	79.2 h	94, 184, 296, 159	Tumor location & inflammation
I-123	8.08 d	364.5	Imaging of thyroid
In-111	67 h	173, 247, 393	Labeling white blood cells
Tc-99m	6.02 h	140.5	Multi-purpose imaging
TI-201	73 h	135, 167	Myocardial imaging
Xe-133	5.3 d	81	Ventilation imaging
F-18	1.92 h	PET	Tumor imaging

Radiopharmaceutical administered intravenously prior to undergoing a scan with a gamma camera

Tumor Tagged with a Radiopharmaceutical

Patient undergoing a scan using a Gamma Camera

Schematic Description of Bragg's Law

d = separation distance between consecutive planes n = integer > 0

Copper Crystals

Medical Lens Assembly Setup

Expected Overall Efficiency

For 1-Lens:

_1 = (Diff. Eff.) x (155 cm² / 4 pi (100 cm)²) =>_1 = 3.7×10^{-5}

For a 9-Lens Array: _= (3.7 x 10⁻⁵) x 9 = 3.3 x 10⁻⁴

Gamma Camera:

 $= ~3.0 \times 10^{-4}$ (*)

* E. L. Palmer, J. A. Scott and H. W. Strauss, "Practical Nuclear Medicine", W. B. Saunders Company, Philadelphia (1992)

Expected Features

- Gamma-ray energies ranging from 100 200 keV can be imaged with the new system, by simply adjusting the source-to-lens and lens-to-detector distances.
- Because of the properties of photon diffraction, only one gamma-ray energy can be imaged at a time which can significantly reduce the background contribution from scatter gamma rays.
- No additional radioactivity would be needed on a patient who has already undergone a scan since the new system should be sensitive enough to detect the remaining radioactivity.

Work to be done for this Stage of Development

 Monte Carlo simulations to assess the performance of the medical diffraction lens array system at different stages of development.

 Monte Carlo simulations for determining the overall efficiency of the system under different clinical scenarios and comparison with existing imaging modalities.

Grant proposal to the NIH.

Conclusions

- Work towards the realization of a new imaging system based on photon diffraction continues.
- Preliminary phantom measurements using Tc-99m and Co-57 sources have yielded encouraging results regarding improved spatial resolution and sensitivity of a lens system.

Special Thanks

To Edward J. Orlowski for all his help with the animation portion of this presentation.