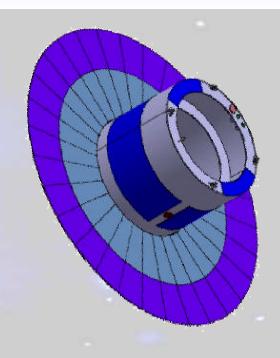


The Gamma Ray Lens

Technology Reference Study


Nicola Rando, Craig Brown SCI-AM Corsica - September 2005

Presentation Summary

- > Technology Reference Studies
- Science Goals
- Design Drivers
- SF-2B & A5-ECA scenario
- Future work Conclusions

Acknowledgement:

A.Short, A.Lyngvi (SCI-AM) - P.Von Ballmos, H.Halloin (CESR)

- Hypothetical future missions (not part of ESA science programme)
- Based on preliminary science goals, used as reference
- Objectives:
 - Essential mission definition / learning tool
 - Establish technical drivers and requirements
 - Identify critical technologies for future missions as to construct a coherent technology development plan

Proved as very useful tool in all space science disciplines (Venus Entry Probe / Jupiter Moon Explorer / Solar Polar Orbiter / etc.)

- **First iteration** internal SCI-AM exercise
- System level, as to allow preliminary definition
- Assuming significant step forward wrt INTEGRAL
- Exercise decoupled from programmatic considerations
- Emphasis on focusing optics technologies (critical to enhance effective area): <u>maturity</u> & accommodation.

Reference Science Objectives

Assumed primary target for the GRL:

SNe la	511 keV e+e-
> 847 keV line (⁵⁶ Co)	> Compact Objects
Long rise time ~60 days	Galactic Binaries
Long half life ~77 days	Supernovae
Relatively strong line	Galactic Centre
Flux ~10 ⁻⁵ -10 ⁻⁷ ph.cm ⁻² s ⁻¹	➢ Flux ~10 ⁻⁴ -10 ⁻⁸ ph.cm ⁻² s ⁻¹

Other lines of Interest:

158, 481, 812 keV from SNe Ia, 478 keV (Classical Novae),

74, 102 and 170 keV (Compton backscattering)

Science Requirements

Parameter	Requirement	
Energy Band	425-522 keV, 825-910 keV, 50-200 keV	
Effective Area	~ 10000 cm ² @511 keV, 5000 cm ² @ 847 keV	
Angular Resolution	Arc-minute	
Energy Resolution	Arc-minute $2 \text{ keV} @ 600 \text{ keV}$ ~ $5x10^{-7} \text{ ph.cm}^{-2}\text{s}^{-1}$ ESLAB symposium	
Line Sensitivity	~ 5x10 ⁻⁷ ph.cm ⁻² s ⁻¹ ESLAD	
Continuum Sensitivity	~ 10 ⁻⁸ ph.cm ⁻² s ⁻¹ keV ⁻¹	
Typical Integration Time	~ 10 ⁶ s @ <u>511 keV</u> , 2x10 ⁵ s for <u>SNe la</u>	
Sun Restraint Angle	30° half cone (based on XEUS)	
Nom. Mission Lifetime	10 year	
<u>}</u>		

> Target established from catalogued position (e.g INTEGRAL), from orbit or ground based observations.

Imaging not a priority – point sources (tbc) – time evolution of fluxes + spectroscopy

Focusing optics

Laue Crystals:

>

Design drivers (1)

- > Capable of higher energies truly in the gamma ray regime \rightarrow key technology
- Small energy band-pass (~ 60 keV) → suited for line emission, not for continuum
- ➢ Very small FOV (~ 30") → more suited for point sources, not for imaging

Graded Multilayer Mirrors:

- Capable of larger energy band-pass Potential interest for continuum emission
- Advanced coatings applied to existing optics geometry, e.g. XMM-Newton, XEUS
- Efficient at hard X-ray energies (< 200 keV at present stage)</p>

Laue lens assembly

Crystals mounted in concentric rings - Each crystal ring focuses a different peak energy to the focal point – $R \sim 3$ to 5 m (depending on LV fairing)

Large number of crystals, crystal alignment, large mass, deployable structure

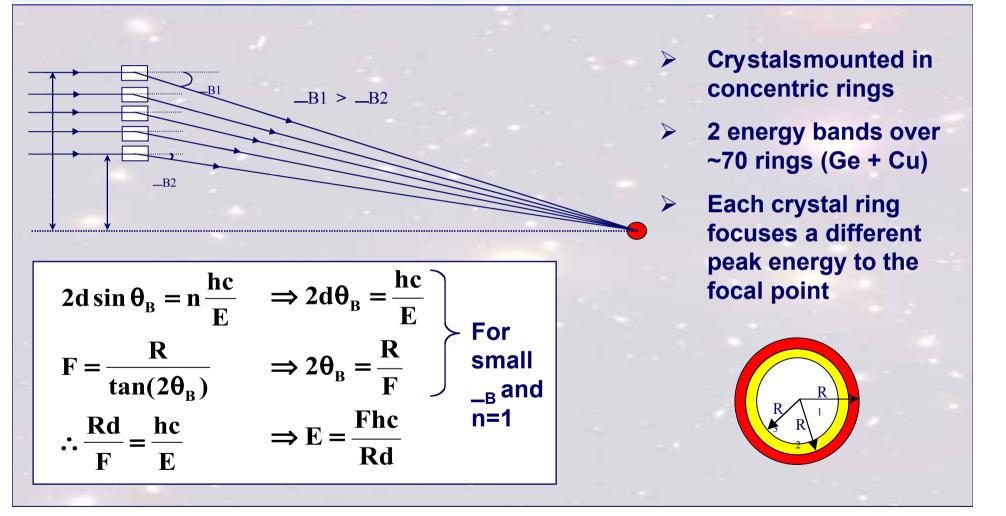
> Formation flying:

Imposed by long focal distance of focusing optics (f ~ 500 m) Relaxed ACS requirements wrt VIS/NIR optics (+/- 1cm lateral, +/- 50 cm on axis)

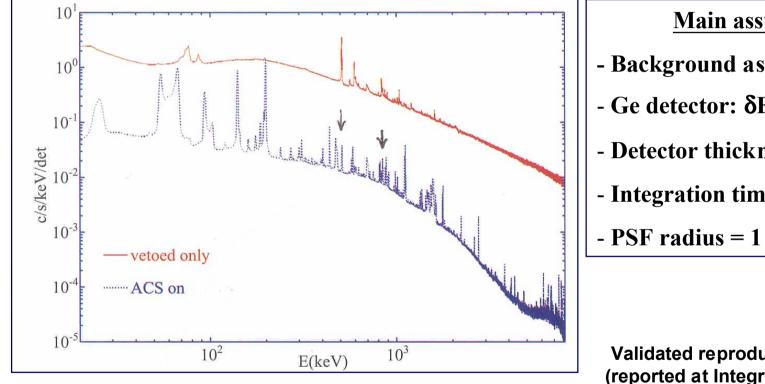
> Focal plane:

Spectrometer (imaging assumed to be lower priority) – not requiring cryogenics High energy resolution and stopping power – radiation hard Pixellated detector to improve background rejection – anticoincidence system

GRL TRS work plan


- Effective Area & Sensitivity model created (Laue)
- 2 different scenarios investigated (both at L2):
 - Soyuz-Fregat (2B)
 - Ariane 5 (ECA)

- Preliminary analysis of both scenario's
- Ariane 5 scenario chosen for further investigation
- Further spacecraft definition and mass budgeting
- Further work required and potential TDAs extracted

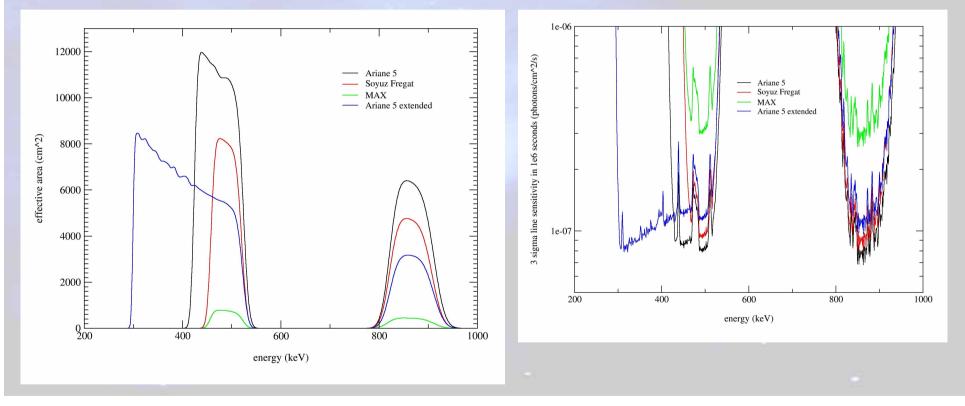

Gamma Ray Lens - Crystal Rings

Sensitivity analysis

Main assumptions:

- Background as INTEGRAL/SPI
- Ge detector: $\delta E = 0.4\%$ FWHM
- Detector thickness = 3 cm
- Integration time: 10⁶ sec
- PSF radius = 1 sigma

Validated reproducing MAX results (reported at Integral workshop 2005)



The Study Results

Effective Area

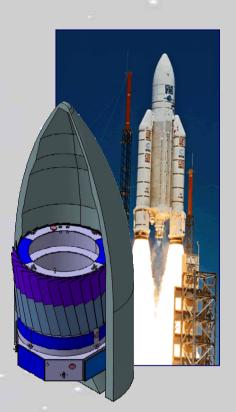
Sensitivity

Soyuz Fregat Scenario

- > R = 3.6 m, Ge + Cu → F = 436 m
- > OSC ~2010 kg, DSC ~1200 kg
- Soyuz to L2 = 2050 kg
- 2 spacecraft, 2 launches

Pros: Lower scale, fewer crystals, lower cost, achieves the Sne-la observational requirements.

Cons: Dual launch complexity, more limited science capability, no expansion possible (Laue optics only, OSC is mass limited).



Ariane 5-ECA Scenario

- > R = 4.5m, Ge + Cu → F = 504 m
- OSC ~3600 kg, DSC ~1300 kg, Tot = 4900 kg
- A5 to L2 = 6800 kg (ECA)
- 2 spacecraft, single launch

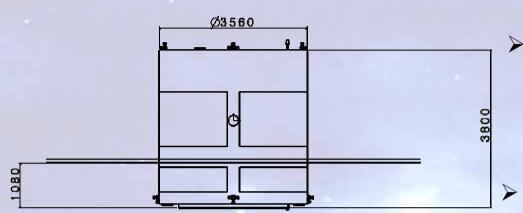
Pros: <u>All</u> science requirements met. Significant scope for payload expansion – either increased effective area or increased bandwidth. Also addition of other payloads. Simpler operations through single launch.

Cons: larger cost, larger # of crystals, more complex deployment mechanism

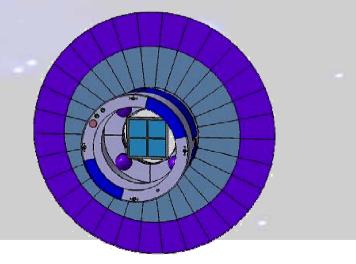
Comparison

SF : $A_{eff} \sim 7400 \text{ cm}^2 @ 511 \text{ keV}$, $\sim 4800 \text{ cm}^2 @ 847 \text{ keV}$ S $\sim 1-2 \times 10^{-7} \text{ ph.s}^{-1} \text{ cm}^{-2}$ (3 sigma)

 A5 : A_{eff} ~10800 cm² @ 511 keV, ~6400 cm² @ 847 keV S ~ 7 x 10⁻⁸ to 1 x 10⁻⁷ ph.s⁻¹cm⁻² (3 sigma)
 Includes Graded Multi-layers Optics for 50-200 keV range Significant opportunity for P/L expansion
 A5 scenario selected for additional TRS work

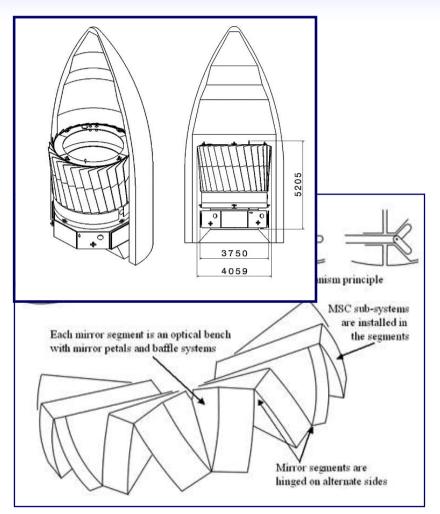

OSC Configuration Design Drivers

Configuration Design Driver	Design Solution	
Deployment mechanism for the large diameter circular lens	Novel deployment mechanism – folded and locked or long, cylindrical spacecraft bus	
Large mass concentration on the lens ring	Support/stiffening rings used before deployment during launch	
Temperature gradient & misalignment control of the optics	MLI covering the Laue lens and Silicon Pore Optic, complemented by active temperature control	
Unobstructed Graded Multi-layers optics (additional lens)	Bus is a cylindrical ring with the Graded Multi-layer Optics (GMO) supported inside	
30° sun angle restriction during observation	 GaAs and Si solar panels providing adequate power in all orientations Omni-directional communication capability No direct sunlight on the Ge detectors 	
2624 Ariane 5 adapter	Diameter of bus to accommodate this.	


The Optic Spacecraft

- More passive of the 2 spacecraft
- 3 Axis stabilised
- Omni-directional com with DSC
- Crystals and GMO covered in MLI

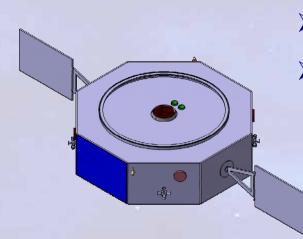
- > 184988 Ge crystals _ 80 % P.F.
- > 64582 Cu crystals
 - i ci ystais –
- Additional Graded Multilayer Optics



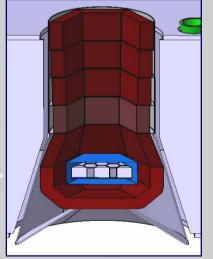
Deployment mechanism

- Design drivers
 - Segmented in petals (30)
 - Inter-crystal alignment
 - AIV/AIT, calibration facility
 - Large mass (launch lock)
 - > Minimise T gradients to avoid lens distortion (MLI)
 - Simple spring-latch

Dedicated study is required


DSC Configuration Design Drivers

Configuration Design Driver	Design Solution	
Large primary payload detector	Height of bus driven by this. Positioned in the centre of the spacecraft	
Supporting the OSC in the Stack configuration	2624 adapter used to optimise the launch load path via Internal cylindrical wall	
Formation Flying equipment	Low impact on S/C configuration – units distributed on module.	
Cryogenic system requires heat dissipation	Radiator panel positioned on a wall which will continuously face cold space	



The Detector Spacecraft

- More active of the 2 spacecraft (FF)
- Designed for launch stack configuration:
 - Diameter and strength to support the OSC during launch
 - Inner cylindrical wall to optimise load path
- Payload is a spectrometer based on SPI INTEGRAL
- ➢ 52 Ge detectors @80K and 405cm², BGO ACS.

Future Work and TDAs

= = 1

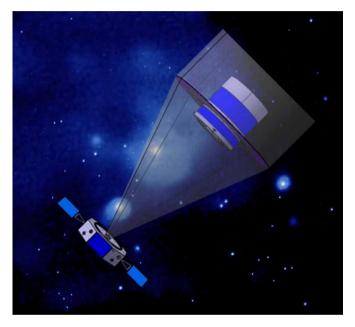
Key Mission	Driver	Future Work
Laue Crystals	Crystal growth, characteristics, mounting,	Crystal growth / large scale fabrication / mounting
Graded Multi- layer Optics (e.g. SiPO)	Battes defetor melip, ment multilayer coating design for 50-200 keV	bestgn ^{iq} ues characterisation of the Optics and multi- layers, Aeff
Background Rejection	'Better' ACS detectors, designing out intrinsic lines	Development of ACS materials (e.g LYSO & LuAP)
Polarisation	Koted ^s as highly desirable by the Gamma-ray science	Polarisation techniques, detector design
Formation Flying &	AOCYNERitgh	Establish formation flying package, including DSC
Rend 6 Forgy s	Calibration / alignment of	Atopussion 1999, fest facilities
PSF Size	Mosaicity, alignment, thermal control	Crystal mounting, deployment & thermal design/analysis
Mission Lifetime	10 yeas (+) desired	Dev. of rad hard detectors, Lal, Lul

= 💶

Conclusions

TRS extremely valuable exercise to appreciate mission drivers and critical technology requirements

> Large resources required to make a leap forward wrt INTEGRAL \rightarrow escalation effect


Need to explore performance of <u>smaller</u> <u>scale missions</u> (see literature/workshop)

Effective area & background rejection are critical and need to be addressed in detail

> A number of technology developments identified as candidates for ESA planning

Critical issue: maturity of optics technology

