

Small d-spacing WC/SiC multilayers for future hard x-ray telescope designs

C. P. Jensen, K. K. Madsen, F. E. Christensen

Danish National Space Center, Copenhagen, Denmark

Outline

- Reflectivity scans for WC/SiC
- Transverse scans WC/SiC
- Discuss optical constants for WC and SiC
- Telescopes up to 250 keV

Multilayers

Reflectivity scan with d-spacings around 9.5 nm

	d-spacing (nm)	Г	σ (nm)
W/Si	9.85	0.32	0.33
W/SiC	9.10	0.37	0.28
WC/Si	9.35	0.41	0.28
WC/SiC	10.05	0.37	0.23

Scatter

Distorted Wave Born Approximation

Roughness correlation:

 $\boldsymbol{\sigma} = \sqrt{\boldsymbol{\sigma}_d^2 + \boldsymbol{\sigma}_r^2}$

 σ_r : real roughness σ_d : interfacial diffusion

$$\sigma_r = \sqrt{\sigma_{ucorr}^2 + \sigma_{corr}^2}$$

 σ_{corr} : correlated roughness

 σ_{ucorr} : uncorrelated roughness ; $\sigma_{ucorr} \cong 0$

 $\frac{\text{Self-affine surface (Sinha$ *et al* $):}}{\left\langle h(r-R)h(r)\right\rangle = \sigma_{corr}^2 \exp\left\{-\left(\frac{R}{\xi}\right)^{2/h}\right\}$

h: fractal exponent $0 < h \le 1$ ξ : correlation length

Scan types

- 2D-map
- Specular scan
- Transverse scan

Transverse scans

Sample	????đeg	? (nm ?10)	h (?0.1)	? _{corr} (nm ?0.01)	? _d (nm ?0.03)	?? _{corr} ² +? _d ² (nm ?0.033)
W/Si	3.6	20	0.25	0.25	0.20	0.32
W/SiC	3.9	10	0.20	0.15	0.25	0.29
WC/Si	3.9	10	0.15	0.12	0.20 - 0.25	0.23 - 0.28
WC/SiC	3.6	10	0.16	0.12	0.15	0.19

4. order peak for WC/SiC

Specular and transverse scans

Roughness for WC/SiC multilayer

Optical constants SiC

Optical constants WC

Multilayer optimization

Power law thickness $D_i = \frac{a}{(b+i)^c}$

- Constants a and b are uniquely determined by Dmin and Dmax
- For a given max and min graze angle for a group Dmin and Dmax are determined by the Bragg equation:

С

$$D = \frac{hc}{2E\sin\theta}$$

- Multilayer recipes are optimized over:
- number of bilayers N
- high Z fraction Γ
- power law index

Design based on a XEUS like configuration

Focal length	50 m
R	255-365 mm
Inci. angles	1.27 – 1.85 mrad
# shells	109
Shell thickness	0.2 mm
Primary mirror L	400 mm
Energy range	100 – 250 keV
Substrate	Si
Material combination	WC/SiC

C = 0.260 - 0.390

Optical constants for WC

 D_{min} for $E_{max} = 250$ keV

Summery

- Demonstrated very thin WC/SiC multilayer
- Shown problems caused by unknown optical constants
- Thin coatings can be used for:
 - Large radius telescopes with long focal length
 - High energy telescopes with short focal length
 - Telescope looking at small band at high energy

Hard x-ray focusing telescopes

	Launche	Energy max (keV)	Coatings	Focullength (m)
NuSTAR	2009	80	Pt/SiC W/SiC	9
Constalation-X	~2015	70		
XEUS	~2020	30		50
NEXT	~200?	80	Pt/SiC	

Stability of WC/SiC coating over time

