Basics of Laue lens theory and simulations

or crystallography applied to high energy astrophysics ...

Hubert Halloin^{1,2,3}, Peter von Ballmoos¹, Nicolas Barrière¹, Gerry Skinner¹ et al. ¹CESR, Toulouse, France ²MPE, Garching, Germany ³APC, Paris, France

Coherent scattering in crystals

 What astrophysicists thought for a long time ...
 ... the <u>inability to reflect or deflect individual photons</u> makes the <u>concentration of</u> a gamma-ray beam impossible.
 A. J. Dean, Nuclear Instruments and Methods in Physics Research 221, 1984

Focusing gamma rays seems out of the question since their wavelengthsthan 0.01 angstrom) are smaller than the distance between atoms in solids.Giovanni F. Bignami, Sky & Telescope, October 1985

Higher-energy X-ray photons can pas through a lens, but since <u>they undergo no</u> <u>significant deflection</u>, no focusing can take place. Gerald K. Skinner, *Scientific American*, August 1988

... gamma-rays can not be focused. <u>They are scattered incoherently</u> and the direction of the scattered electrons are lost. von Ballmoos et al., *Astron. Astrophys.* 221, 396, 1989 Hubert Halloin Gamma WAVE – Bonifacio – Sept 2005

Coherent scattering in crystals But 93 years ago ...

 $\begin{array}{ll} 2d_{hkl}\,\sin\,\theta=n\lambda\\ Bragg\,diffraction\,\,in\,\,a\,\,crystal\\ also\,\,valid\,\,for\,\,gamma-rays\,\,(small\,\,d_{hkl}\,\,and\,\,\theta)\,\,!\\ {}_{Hubert\,\,Halloin}\,\,\,\,Gamma\,\,WAVE\,-\,Bonifacio\,-\,Sept\,\,2005} \end{array}$

Laue, Friedrich and Knipping, 1912

Focusing gamma-rays - principle

Crystals on concentric rings with varying materials, diffraction planes, etc...

Hubert Halloin

Laue vs. Bragg geometry

- Bragg geometry : like X-ray "supermirrors" (multilayer mirrors)
- For γ -rays : a 1-cm beam and an diffracted energy of 511 keV in $Ge_{111} \Rightarrow L\sim 2.8 \text{ m}!$

- At high energy, mean free path >~ "diffraction length" ⇒ Laue geometry possible (beam passing through the crystal).
- Requires to get homogeneous crystals (in volume not only surfaces).

Hubert Halloin

"Pendellösung" (extinction) effect

Diffracted fraction

"Pendellösung" (extinction) effect

Diffracted fraction

"Pendellösung" (extinction) effect

Diffracted fraction

 $t_{ext} \propto E \Rightarrow A$ thick ("bad") crystal at low energy can be thin ("good") at high energy

Gamma WAVE – Bonifacio – Sept 2005

Hubert Halloin

Killing the coherence ... Darwin model of mosaic crystals :

Gamma WAVE – Bonifacio – Sept 2005

hc

 $2d_{hkl}E$

Pendellösung

θ

Hubert Halloin

Properties of the reflectivity curve

 $r = 0.5*(1 - e^{-2}T) e^{-\mu T}$

$$= \frac{d_{hkl}}{t_{ext}^2} W_m \left(\theta - \frac{hc}{2d_{hkl}E} \right)$$

Variation in θ (same E) \Rightarrow "rocking curve" $\left\{ \begin{array}{l} \sim \text{equivalent if } \Delta E << E \\ \theta - \frac{hc}{2d_{hkl}E} = \Delta \theta \end{array} \right\}$ If $\frac{T}{m} \ll \frac{t_{ext}^2}{2d_{hkl}}$: $r \approx 2 Te^{-\mu T} \Rightarrow \Delta \theta_{FWHM} \approx m$

```
examples at 500 keV :
      13.2 mm.arcmin<sup>-1</sup> for Ge_{111}
      4.5 mm.arcmin<sup>-1</sup> for Cu<sub>111</sub>
```

Properties of the reflectivity curve

Example for W_m gaussian (w/o absorption):

Optimization of crystal properties

- Peak efficiency optimization for a given mosaicity (m):
 mosaicity from crystal growth constraints, expected bandwidth, ...
 - maximization of peak efficiency (could be slightly different from the *integrated intensity* optimization..)

• optimal thickness for a Gaussian distribution :

$$T_{opt} = \frac{\ln \left(1 + 0.939 \frac{2d_{hkl}}{mt_{ext}^{2}\mu}\right)}{0.939 \frac{2d_{hkl}}{mt_{ext}^{2}}}$$
Hubert Halloin

Optimization of crystal properties Significance optimization in the diffracted bandwidth • total diffracted flux : $S \propto r_{peak} * \Delta E_{FWHM}$ • background noise : $N \propto \Delta E_{FWHM}$ • significance : $_ \propto S/\sqrt{N} \propto r_{peak} * \sqrt{\Delta E_{FWHM}}$ • maximization of _ w.r.t m (mosaicity) and T (thickness) • optimum for a Gaussian distribution :

$$m_{opt} = 0.2871 \frac{2d_{hkl}}{t_{ext}^2 \mu}$$
$$T_{opt} = \frac{1}{2\mu}$$

- T_{opt} independent of crystal properties (half of the mean free path)
- $T_{opt}/m_{opt} = 1.74 t_{ext}^2/2d_{hkl}$

• Crystals thinner than peak maximization

Gamma WAVE – Bonifacio – Sept 2005

Hubert Halloin

Optimization of crystal properties

■ The real world is more complex ... :

 Unable to separate photons from different rings with different materials/diffracting planes

■ The Darwin model is only an approximation

- Constraints from crystal growth (homogeneity, quality, ...)
- The E bandwith(s) should be driven by the scientific objectives
- Pointing accuracy \Rightarrow spectral broadening
- mosaicity ⇒ beam divergence => loss of detectability and angular resolution on the detector plane
- ...

Global optimization required

Off-axis response of a Laue ring Principle – On axis

Off-axis response of a Laue ring Principle – Off axis 3.5 F detector cont. source Laue ring plane at infinity \Rightarrow Intensity ring on the detector plane with E_{diff} depending on the azimuth Hubert Halloin Gamma WAVE – Bonifacio – Sept 2005

Off-axis response of a Laue ring Monte Carlo simulation – On axis Cu₁₁₁ ring, R=1.00 m, ΔR=1.5 cm, f=86 m, E_∞=511 keV

Hubert Halloin

Off-axis response of a Laue ring

■ Monte Carlo simulation – Off axis (δ =1 arcmin) 1 Cu₁₁₁ ring, R=1.00 m, Δ R=1.5 cm, f=86 m, E_∞=511 keV

Short vs. long focal length

Short focal length :

No energy overlap from one ring to another

 \Rightarrow superposition of diffracted energies (\Rightarrow r.d_{hkl} = cst)

 \Rightarrow monochromatic, low efficiency

Long focal length :

energy overlap possible between r and $r+\Delta r$

 \Rightarrow juxtaposition of diffracted energies

 $\Rightarrow broad energy bandwidth for a given d_{hkl}, use of the most efficient orders$ Hubert Halloin Gamma WAVE – Bonifacio – Sept 2005

Short vs. long focal length

Short vs. long focal length

Spectral response vs. pointing accuracy

Short focal length :

strong spectral deformation for off-axis source

Short focal length – On axis

Short focal length – Off axis (3 arcmin)

Long focal length – On axis

■ Long focal length – Off axis (1 arcmin)

Simulations vs. experiment

Results from the CLAIRE project :

- $E_{\infty} = 170 \text{ keV}, F = 2.73 \text{ m}$
- v 563 Ge crystals, 511 cm²
- v 8 rings :
 - $v R_{111} = 6.2 cm$
 - v $R_{440} = 20.2 \text{ cm}$
- ∨ Crystals individually tuned and compared to the theory
 (⇒ determination of m and t₀)
- V Crystals parameters used for simulation

Simulations vs. experiment

Diffracted energy dependence on source distance :

Simulations vs. experimentSpectral response as a function of pointing

Measurements & Simulations Summary

Simulation / Measurement	Integrated flux [ph/s]	Diffracted FWHM [keV]	Efficiency (FWHM=3keV) [%]	Notes
D=Infinity, continuum@170 keV	312.9 E 0.6	4.1	19.33 E 0.04	Ideal case (perfect crystals and pointing)
	143.7 E 0.3	3.3	8.88 E 0.02	Perfect pointing Real crystals
	200 E 65-32	7.6	12.5 E 4-2	Stratospheric flight
D=205 m, continuum@165 keV	138.0 E 0.3	3.2	8.53 E 0.02	Perfect pointing Real crystals
	169.6 E 14	3.9	8.5 E 0.7	Long distance test Lorentzian peak
D=14m ⁵⁷ Co@122keV	18.590 E 0.002	-	3.668 E 0.004	Perfect pointing Real crystals
	16.1 E 0.6	-	3.17 E 0.12	Lab. measurement ⇒ 7.7E1% @infinity
Hubert Halloin Gamma WAVE – Bonifacio – Sept 2005				