

Mosaic Copper Single Crystals for Laue Lenses

P. Courtois, K. Andersen, P.Bastie

Mosaic Copper Single Crystals for Laue Lenses A feasibility Study

- Introduction
 - The Monochromator Group Our work
- Mosaic Copper Single Crystals for Laue Lenses
 - Recent Results and Progress
 - Growth of Cu single crystals
 - Preparation of thin copper pieces
 - Hard X-Rays Reflectivity measurements
- Conclusion and Perspectives

Neutron Optics Laboratory (K. Andersen) Monochromator group (P. Courtois)

Production of neutron monochromators based on Cu mosaic single crystals (also Ge, Si, Heusler alloy Cu₂MnAl....)

ŢĹ

Mosaic Crystal

To match the neutron beam divergence (typically 0.2 ° to 0.5 °)

> To obtain adequate integrated reflectivity

Anisotropic mosaic (fwhm_h / fwhm_v > 1) for focusing properties

mosaic = FWHM

Mosaic Copper Single crystals for Laue Lenses P. Courtois, K. Andersen, P. Bastie

Neutron monochromators

- ⇒ 1. Growth of high quality Cu mosaic single crystals (Bridgman technique)
- \Rightarrow 2. Orientation
- ⇒ 3. Characterization of the quality of the as-grown crystal
 - ⇒ Hard X-ray Laue Diffractometer (100 keV- 400 keV)
- ⇒ **4.** Cutting

⇒ Spark-erosion machine

⇒ 5. Plastic deformation

⇒ in order to increase the mosaic spread of the as-grown crystal up to the required value: fwhm ~ 0.3° - 0.5°

⇒ 6. Neutron Characterization and Crystal Mounting

"A Neutron Laue Lens"

Double-focusing Cu(200) monochromator (transmission geometry)

Mosaic Copper Single crystals for Laue Lenses P. Courtois, K. Andersen, P. Bastie

Gamma Laue Lenses and the I.L.L.

- What is required for Laue Lenses ?
 - ⇒ High quality Cu single crystals with a mosaic of 30" of arc
 - High Peak Reflectivity
 - High Integrated Reflectivity
 - ~ 8000 crystals of dimensions 15 x 15 x e_{opt} mm³...
- What can I.L.L. do? A feasibility Study
 - ⇒ Technical Aspects
 - Is it possible to grow « almost perfect » Cu single crystals?
 - How to prepare small Cu pieces ?
 - ⇒ X-ray Diffraction properties of Cu crystals produced at I.L.L.
 - High Peak Reflectivity ?

BUT...

After cutting the as-grown crystal

⇒ Mosaic of the as-grown crystal affected by the cutting process (spark-erosion)

How to Remove the perturbed layers ?

⇒ Polishing and mechanical machining ? NO : Cu is too soft

 \Rightarrow Chemical Etching allows to remove defects induced by spark-erosion without affecting the structure of the crystal

Xrays Diffraction Properties Real crystal = ideal mosaic crystal ?

• Experimental reflectivity (*Hard Xrays Diffractometer*)

- White Beam with a divergence $\alpha \sim 1$ ' of arc
- Energy between 100 and 400 keV
- Cooled Ge detector
- Samples
 - Cu(200) pieces cut from a crystal of 1' of mosaicity (FWHM)
 - Crystals with different thickness (etching)

t = 2.5mm, 4 mm, 4.6mm, 5.65mm, 7.45mm, 12.6 mm ...

• **Theoretical reflectivity** calculated from the model of ideal imperfect mosaic crystal (P. Bastie)

Experimental Reflectivity - Principal Results Comparison between experimental and calculated datas Cu(200) Laue geometry

Experimental Reflectivity - Principal Results Optimum Thickness t_{opt} = f(E) ? Cu(200) Laue geometry

FOR SCIENC

Optimum thickness (cm)

E(keV)	Measured	Calculated
200	~ 0.25	0.22
250	~ 0.35	0.30
300	~ 0.55	0.39

 \Rightarrow t_{opt} experimental > t_{opt} theoretical.....

Mosaic Copper Single crystals for Laue Lenses P. Courtois, K. Andersen, P. Bastie

Conclusion

Mosaic Copper single crystals of 30 seconds of arc are now available at I.L.L.

Cu Crystals of high quality adapted for a gamma Laue lens

≻Homogeneous structure

> High peak Reflectivity $R_{exp} \sim 80-90 \% R_{th}$

Difficulties involved in the preparation of thin Cu crystals overcome using chemical etching

Mosaic Copper Single crystals for Laue Lenses P. Courtois, K. Andersen, P. Bastie

In the Future

- Study of diffraction properties of Cu single crystals using a parallel monochromatic beam at ESRF (E = 100-800 keV)
- Bent copper crystals for the lens ?
 ⇒Minimize the number of crystals (in a ring)
 ⇒Optimize focusing properties

Mosaic Copper Single crystals for Laue Lenses P. Courtois, K. Andersen, P. Bastie