

Compton Focal Planes for Gamma-Ray Lenses

Why a Ge Compton Detector? Configurations Studied Compton Analysis Basics (preliminary) Results

In collaboration with Andreas Zoglauer Georg Weidenspointner Peter v. Ballmoos Nicolas Barriere Steven Boggs

Focal Plane Instrumentation

- Compton detector focal plane has three advantages over monolithic detector(s)
 - Better capability for background rejection
 - Inherently finely pixellated detector naturally allows selection of events according to focal spot size and position
 - Inherently sensitive to γ -ray polarization
- Ge-strip Compton detectors have been tested in the laboratory at UC Berkeley and flew on a balloon in Spring 2005

- Mass models built starting from existing NCT (balloon !) detectors
- Strip pitch for MED and LARGE 1 mm (NCT and SMALL 2 mm), LARGE uses larger Ge ingots (9.2 × 9.2 cm detectors instead of 8 × 8 cm detectors) and 2 detector thicknesses (1.5 cm and 7.5 mm)

LARG

one spot where we were too optimistic ... : For detectors with central hole, the hole is not surrounded by a guard ring. A real detector would need ~ 1 mm guard ring there.

- Balloon detector geometry ("cheap & reliable" over optimization)
- Al parts holding detectors
- Details down to metal screws
- Large passive-Ge "handles" used for Ge mounting
- Thick circuit boards protruding between detector active areas
- Faithfully represented in our Detector mass model at correct composition and mass
- Mass models contain lots of passive material that can be reduced, avoided or repositioned
- For the LARGE design, shrunk Al bars and electronics boards within reasonable limits (all the pieces still there!)

Performance Predictions

- Need to predict interactions in detectors
 - From source
 - From background
- Need to get from these raw events to the sensitivity achievable after Compton event analysis

The ACT concept study has assembled existing software packages into a toolset covering all aspects of Compton telescope performance prediction from space environments to Compton event reconstruction and event selection

... we're leveraging off these toolsets

http://sigma-2.cesr.fr/spi/MGGPOD/ http://www.mpe.mpg.de/MEGA/megalib.html

Mass Model

Properties

Event Reconstruction Intro I

What happened?

4 interactions \Rightarrow 4! possibilities ...

Goal: reject all events that don't have a high probability of having come from the lens

GammaWave, Corsica, Sept 2005

 $T_{n} = \left(\cos\varphi_{i}^{E} - \cos\varphi_{i}^{geo}\right)^{2}$

The sequence with the lowest value is the correct one (MEGAlib, A. Zoglauer 2005)

Can be used to determine Compton sequence

 $\cos\varphi_i^{geo} = \frac{\vec{g}_{i-1} \circ \vec{g}_i}{|\vec{g}_{i-1}| \cdot |\vec{g}_i|}$

Compute for all possible sequences the following test statistics:

Compton Focal Planes

Via angles:

 \hat{g}_1

 E_1

Cornelia Wunderer, SSL, UC Berkeley

- Now we have to pick the "good ones"
- Selection criteria:
 - non-ambiguity of sequence (2 interactions only)
 - Test statistic value (for 3+ interactions)
 - Compton scatter angle
 - Number of interactions
 - (Minimum) angular distance from source (ARM)

as well as

- Total deposited energy
- We reject ~ 75% of source counts \otimes

... but also >> 99% of the background O!

Preliminary Findings I

- Our preliminary, conservative estimates indicate that sensitivities of 10⁻⁶ ph/cm²s
 - For a 511 keV narrow line
 - For a 847 keV 3% FWHM broadened line

are achievable with a Laue lens of 1200 cm^2 and 660 cm^2 effective area at 511 keV and 847 keV, respectively, with a Compton focal plane

- Keep in mind that
 - These estimates are based on *first* guesses at good detector configurations
 - For the Compton telescopes, we use ACT analysis methods as they stand, without in-depth optimization for the different beam as well as detector geometries in a Lens focal plane
 - Detector geometries are conservative (reflecting existing balloon or S/C hardware rather than "what could reasonably be done")
 - Both the 511 keV line and a broad-line region are "hard" cases since background levels are higher than for many narrow lines

Preliminary Findings II

ComptonMED 1.5 cm, 847 BL

847 keV broad line total:
Cosmic Positrons
Cosmic Electrons
Cosmic Protons (prompt)
Cosmic Protons (activation)
Cosmic diffuse gamma-rays

	Observation time [s]	counts in energy window	Limit	Rate [counts/sec]		
/S	420,800.00	438		1.04E-03	+-	4.97E-05
ו)	100,000.00	155		1.55E-03	+-	1.24E-04
	4,220.45	1	yes	2.37E-04	+-	2.37E-04
	9,174.40	1	yes	1.09E-04	+-	1.09E-04
	91,744.00	1	yes	1.09E-05	+-	1.09E-05
				2.9E-03	+-	2.9E-04

For narrow 511 keV line and event selections optimized for the LARGE concept, activation from CR protons accounts for up to 70% of the total background rate.

Prompt CR proton, CR electron, and CR positron contributions are small or negligible.

MAX-ComptonMED - 1.5cm radius 847 BL background

- **Preliminary Findings III**
- Our *preliminary, conservative findings* indicate for a 2-band lens of 1200cm² and 660cm² effective areas at 511 keV and 847 keV respectively that *at least the following can be achieved*:

	Compton	Compton	Compton	
	SMALL	MED	LARGE	
511 keV sensitivity [ph/cm ² s]	1.3.10-6	1.2.10-6	9.4.10-7	
847 keV broad-line (3% FWHM) sensitivity [ph/cm ² s]	2.0.10-6	1.7.10-6	1.1.10-6	
Photopeak Efficiency (@511 keV / @ 847 keV)	6% / 6%	8% / 10%	13% / 7%	
S/B ratio @ 511 keV	10%	6%	13%	

... beyond the Lens

- A Compton-telescope focal plane not surrounded by a heavy scintillator shield will have secondary capabilities for survey science
- With a Compton-telescope focal plane, a Laue-Lens instrument might detect its own ToOs
- Sensitivities for this TBD

Summary and Outlook

- Our simulations show that sensitivities
 - for 511 keV narrow line
 - for 847 3% FWHM broadened line
 - on the order of $1.0\cdot10^{-6}$ ph/(cm²s) can easily be achieved with a 1200 cm² / 660 cm² effective area lens
- Sensitivity numbers for narrow lines other than 511 keV will be much better we've asked the really tough questions here!
- A Compton detector focal plane will have secondary capabilities for survey science

Much remains to be done ...

- SMALL and MEDIUM stacks are doing fairly well optimize distances, as well as hole size for MEDIUM
- The LARGE concept must undergo significant redesign it's much too leaky to justify the additional weight as it stands now ...