Monte Carlo Study of Detector Concepts for MAX

Georg Weidenspointner, N. Barrière et al. CESR, Toulouse, France C. Wunderer, A. Zoglauer UC Berkeley, USA

Motivation

• Basic question:

What is the best focal spot gamma-ray detector? (hardware and analysis software)

- Requirements:
 - Sensitivity
 - Sensitivity
 - Sensitivity
 - Spectral Resolution
 - Polarimetry
- Trade Off Between:
 - Efficiency
 - Background
 - Spectral & Spatial Resolution

Approach

- *ab initio* Monte Carlo Simulation
- MGGPOD + MEGAlib (also used for e.g. ACT study)

 \Rightarrow high fidelity Monte Carlo study

MGGPOD

- MGGPOD Monte Carlo package (Weidenspointner et al., 2005) based on CERN's GEANT3.21
- Available to the public: http://sigma-2.cesr.fr/spi/MGGPOD
- Already applied to TGRS, SPI, RHESSI, ACT concept study, ...

Some Capabilities:

- Gamma-ray sources (celestial and laboratory) and instrument response including polarization
- Cosmic rays and their secondaries: prompt background and activation
- Diffuse X and gamma ray background
- Earth albedo
- Radioactive decays (including isomeric levels)

MEGAlib

- Originally developed for MEGA
 an ACT prototype data analysis (Zoglauer et al., 2005)
- Complete Compton telescope data analysis, including the crucial step of event reconstruction (background rejection)
- Available to public:

http://www.mpe.mpg.de/MEGA/megalib.html

• More detail: next talk by C. Wunderer

The Very First Step... Scope

- Compare three different detectors:
 - single co-axial Ge detector (« MAX-TGRS »)
 - stack of segmented, planar Ge detectors (« MAX-NCTseg »)
 - stack of Ge strip detectors
 (« small Compton telescope »)
- Compare three different Compton telescope designs (→ C. Wunderer)

The Very First Step... in Perspective

- Detector designs: « intuition »
- Only existing detector technology
 ⇒ concepts could be built today
- Different from designs considered in MAX proposal
- Spacecraft model: CNES phase 0 « design »

Therefore:

- Preliminary results
- Conservative sensitivities
- For now: relative results are more interesting than absolute results
- Much room for improvement/optimization BUT: we now have the tools to do so!

Simulation Details... Mass Models - Spacecraft

Simulation Details... Mass Models – single Crystal

Single co-axial Ge detector:

- TGRS-like detector (also Mars Odyssey)
- Size:
 - Radius ~ 3.4 cm
 - Height ~ 6.1 cm
 - Volume ~ 216 cm³
- Veto shield:
 - BGO block below
 - plastic dome cover

Simulation Details... Mass Models – Detector Stacks

Boggs et al, 2004

Detector Stacks:

- 5 NCT Ge strip detectors (Ge ACT balloon prototype)
- Size: ~8×8×1.5cm³~96cm³
 total of 5: ~ 480 cm³
- distance between layers: 0.7cm
- strip (Compton telescope) or segmented
- veto shield: as before

Simulation Details... Mass Models – Detector Stacks

Detector Stacks:

 if segmented: one central pixel (Ø 1.9cm), one "outer" pixel

Boggs et al, 2004

Simulation Details... Lens Beam

3 -Lens parameters: focal length: 86m 2 - mosaicity: 30 arcsec 1 - crystal size: 15mm × 15mm 0 - \Rightarrow 50% of photons within 1 cm 75% 1.5cm -1 -90% 2cm -2 -Currently assumed:

- Source on axis
- Photons are parallel
- Beam center at detector center

Beam footprint on detector

Some Simulation Results... TGRS Flight Data

- MGGPOD does very well
- Prompt Background dominates for > 200 keV
- Diffuse cosmic photons drop below radioactive decays for > 400 keV
- Decays dominated by detector

Weidenspointner et al., 2005

Some Simulation Results... « MAX-TGRS » - veto off

MAX-TGRS with veto off is very similar to TGRS...

Some Simulation Results... « MAX-TGRS » - veto on

MAX-TGRS with veto on:

- Prompt background reduced by factor 10
- Radioactive decays hardly affected (dominated by decays in detector)
- Total background reduced by factor ~2-3 above ~400 keV

Some Simulation Results... TGRS, MAX-TGRS, & MAX-NCTseg

 TGRS & MAX-TGRS: veto reduces total background by
 2 above 300 keV in continuum; by ~10 at 511 keV

 Segmentation: reduces total background again by ~2 above 300 keV (although volume 2× larger); by ~10 in XRB/EGB

 \Rightarrow « back of the envelope » scaling is tricky...

Some Simulation Results... Preliminary Sensitivities

- Lens effective areas 1191 cm² and 661 cm² at 511 keV and 847 keV, respectively
- 3σ significance for observation time of 10^6 s

	Sensitivity [ph/cm ² /s]			
	MAX-TGRS	MAX-NCTseg	Compton small	
511 keV	(3.0-6.0)×10 ⁻⁶	(2.0-4.0)×10 ⁻⁶	1.3×10 ⁻⁶	
847 keV	(3.5-6.9)×10 ⁻⁶	(1.9-3.7)×10 ⁻⁶	-	
847 keV (3% FWHM)	(1.3-2.5)×10 ⁻⁵	(0.7-1.3)×10⁻⁵	2.0×10 ⁻⁶	

 \Rightarrow Compton detector appears most promising

Some Simulation Results... Preliminary Efficiencies

In $\pm 2\sigma$ energy interval:

	MAX-TGRS	MAX-NCTseg	Compton small
		Photopeak Efficiency [%]	
511 keV	38	41	6*
847 keV	27	32	6*
		Background Rate [cts/s]	
511 keV	2.1×10 ⁻¹	1.1×10 ⁻¹	1.0×10 ⁻³ *
847 keV	5.1×10 ⁻¹	1.7×10 ⁻²	2.1×10 ⁻³ **

* energy interval of optimum sensitivity

** as *, but for broad line

Conclusions & Prospects

- Tools for detailed detector modelling are available and we have begun to use them
- Much remains to be improved for each concept:
 - veto design
 - detector size/geometry, segmentation
 - event selections
 - detector materials and passive materials

- ...

- Neverthless: even first « guess » gives preliminary line sensitivities close to 10⁻⁶ ph/cm²/s ... equivalent to at least 100 SPI telescopes !!!
- Compton detector seems most promising
- Segmented detector might be a simpler alternative