
EUSO-Balloon: Observation and Measurement of
Tracks from a laser in a Helicopter

J.Eser∗1†,J.Adams2, R.Attallah3, S.Bacholle4, P.A.Barrillon5, M.Bertaina6,7,
F.Cafagna14, D.Campana8, C.Catalano10, M.Christl11, S.Dagoret-Campagne12,
M.Fouka13, F.Guarino8,9, A.Jung4, E.Kuznetsov2, E.Mayotte1, C.Moretto12,
G.Osteria8, W.Painter1, B.Panico8, F.Perfetto8,9, G.Prevot4, J.A.Rabanal Reina12,
M.Rodencal2, Z.Sahnoun13, J.Sawatzki2, V.Scotti8,9, G.Suino6,7, P.vonBallmoos10,
L.Wiencke1

1Colorado School of Mines
2University of Alabama,Huntsville
3University of Annaba
4APC-Paris Diderot university
5Universite de Paris-Sud 11
6Universita Torino
7INFN, Torino
8INFN, Napoli
9Universita di Napoli Federico II - Dipartimento di Fisica
10IRAP
11NASA, MSFC
12LAL/IN2P3/CNRS
13Dep. Astronomy, Centre Res. Astronomy, Astrophysics and Geophysics
14INFN Bari

for the JEM-EUSO Collaboration

EUSO-Balloon is a prototype detector of the Extreme Universe Space Observatory on the
Japanese Experiment Module (JEM-EUSO). EUSO-Balloon was flown successfully as a balloon
payload from the Timmins Stratospheric Balloon Launch Facility in Ontario, Canada on 2014
August 24-25 at an altitude of 38 km. To simulate the optical signatures of UV fluorescence pho-
tons emitted from cosmic ray air showers generated in the atmosphere, a pulsed UV laser and two
UV flashers (LED and Xe) were used. These sources were fired in the instrument field of view
for about 2 hours from a helicopter that circled at an altitude of 3 km under the balloon. UV sig-
nals were effectively detected, including 270 laser track events. We describe the helicopter laser
system and the geometric reconstruction of the laser events that were generated by this system.
We report here on the reconstruction of the laser events starting from the information contained
in the observed tracks. We note that this work represents the first observation and measurement
of aircraft based laser tracks by an optical fluorescence detector flown at near space altitudes.
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Figure 1: left: drawing of the flown EUSO-Balloon detector [1]; right: the actual detector

1. EUSO-Balloon Mission

EUSO-Balloon is a prototype detector of the Extreme Universe Space Observatory on the
Japanese Experiment Module (JEM-EUSO). JEM-EUSO is a UV telescope that will observe Ex-
tremely Energetic Cosmic Rays (EECR) from the International Space Station (ISS) by measuring
the UV light produced by EECR-induced extensive air showers(EAS) in the earth’s atmosphere.

To perform a full scale test in a near space environment and to measure the earth UV back-
ground from above, the EUSO-Balloon detector was flown as the payload on a stratospheric bal-
loon. This balloon was launched from the Timmins (Canada) stratospheric balloon launch facility
during the night of the 24th/25th of August 2014 under the lead of the French space agency (CNES)
and with support of the Canadian space agency(CSA ASC).

The EUSO-Balloon instrument(Fig. 1) uses two 1 m2 Fresnel lenses to focus light onto the
Photo-Detector Module (PDM) in the focal surface. The PDM consists of 36 Hamamatsu M64
multi-anode photomultipliers tubes (MAPMTs) each containing 64 anodes that are capable of sin-
gle photon counting. These 2304 pixels detect light between 290 and 430 nm through a BG3 filter.
The field of view (FoV) of a single pixel is 0.23◦. The FoV of the instrument is 11◦ × 11◦. During
the flight the detector recorded short "video clips" at a rate of 20 Hz. Each clip consists of 128 con-
secutive 2.5 µs frames of the all 2304 pixels or Gate Time Unit (1GTU). Details about the detector
are described in [2]. The payload was also equipped with an IR camera for cloud detection ([3, 4]).

To test the capability of the detector to measure UV light from an EAS, 3 light sources were
fired from a helicopter that circled under the balloon. The arrangement is illustrated in Fig. 3. The
wavelengths of the 3 sources (UV LED, Xe-Flashlamp, UV laser) were similar to the wavelengths
of fluorescence emission of electrons in air (Fig. 2). The nominal laser energy was equivalent to
the light emitted by a 100 EeV EAS [6]. The LED and the Xe-flashlamp were mounted in a basket
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Figure 2: The wavelengths of the LED (375 nm), the laser (355 nm) and filtered Xe flashlamp (337
nm) are indicated on the fluorescence spectrum of electrons in air [5].

Balloon

Detector

3.1 km

38km

LASER light

scattered
lightFlashers

8 km

11°

Figure 3: Sketch of the helicopter underflight
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Figure 4: The light sources were mounted on a
Bell 212 helicopter. This dual turbine model was
used because it satisfied various rules for night
flight in Canada.

outside of the Bell 212 Helicopter (see Fig. 4). The laser system was fixed to the inside of the
helicopter. The beam was aimed out a partially open door to fire perpendicular to the front- back
axis of the helicopter and horizontally when the helicopter was flying level.

The trajectories of the balloon and the helicopter are shown in Fig. 5 and the timeline of the
mission is shown in Fig. 6. The balloon was launched at 01:00 UTC and reached float altitude of
approximately 38 km after a ascent of 2.5 hours. After 5 hours at float altitude the payload was
released from the balloon at 8:30 UTC and landed half an hour later in a lake.
The helicopter arrived from Ottawa on the evening of the launch, refueled in Timmins and followed
the balloon using a GPS tracking system. At 03:31 UTC the helicopter entered the FoV of the de-
tector and the light sources were turned on. To trigger pixels across the whole camera, the pilots
flew circular loops with a radius smaller then 4 km centered on the latitude/longitude of the balloon.
The flight path is plotted in red in Fig. 5. The sources were fired ∼ 150000 times in 2.28 hours.

2. The Light Systems

The laser was a Quantel CFR-Ultra [7] pulsed YAG-laser with frequency tripling to 355 nm.
The maximum energy was 18 mJ. The pulse width was 7 ns. The relative energy of every pulse

3



JEM-EUSO ICRC 2015 J.Eser

10 mi

Figure 5: The thick blue line shows the flight
path of the balloon. The yellow dashed line is
the approximate FoV. The red line (loops) shows
the flight pattern of the helicopter while the light
sources were firing.(created with google maps)
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Figure 6: Timeline of the balloon and helicopter
mission. The dashed line indicates the balloon.

was measured by a "pickoff" energy probe. The beam was sent through a depolarizer so that the
scattering out of the beam in the air would be symmetric in the azimuth angle perpendicular to the
beam axis. The full optical setup is shown in Fig. 7. The beam characteristics are listed in Table
1. The laser system was calibrated before and after the flight by measuring the ratio between the
monitor energy probe and a second energy probe placed temporarily in the beam downstream of
all optics. The difference between this calibration factor measured before and after the flight was
1.2 %. A description of the flashers and their different operation modes can be found in [8].
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Figure 7: Left: The UV-laser system that was flown in the helicopter. The thick blue line indicates
the beam path. Right: Schematic of the UV-laser system

The three sources were triggered in a specific order (1.LED, 2.Laser, 3. Xe-Flasher) by a
Single Board Computer equipped with a custom GPS module for a precise timing [9]. The sequence
was timed so that light from the three sources could arrive in the same 128 GTU readout window.
The laser energy was switched every two minutes between ∼15 mJ and ∼10 mJ. A 19 Hz repetition
rate was chosen to obtain a chance overlap at regular intervals between the 20 Hz readout of the
balloon and the laser. This arrangement was implemented to work around a problem with the clock
synchronization between the two systems, probably caused by a faulty GPS antenna on the balloon.
The average energy of the shots, measured at the laser system, as a function of time can be seen in
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wavelength 355 nm divergence < 0.04 ◦

relative energy calibration > 2% beam halo < 0.5%
absolute energy calibration > 4.5% spectral purity > 99.9%

overall stability 1.2%
beam pointing direction

vertical: 3 ◦

depolarization < 4% horizontal: 1 ◦

absolute timing accuracy ±20 ns

Table 1: Laser beam characteristics

Fig. 8. The 270 laser shots that were recorded by EUSO-balloon are superimposed. Most of the
events were recorded when there were no clouds between the laser and the balloon.

 6

 8

 10

 12

 14

 16

 18

03:30
03:45

04:00
04:15

04:30
04:45

05:00
05:15

05:30
05:45

06:00

La
se

r 
E

ne
rg

y 
[m

J]

 
Time in UTC

Laser Energy (1s Average)
Recorded Shots

Figure 8: Red dots: Energy of all fired laser shots averaged over 19 shots. Green Xs: Shots recorded
by EUSO-balloon. Grey regions indicate the likely presence of clouds.

3. Geometric Reconstruction

The EUSO-balloon data for a single event consists of a 128 GTU sequence of the 2304 pix-
els. From the times and the pointing directions of the pixels with signals above background, we
reconstruct the direction of the laser beam relative to the orientation of the detector. The analysis
follows two major steps. First the pointing direction of the selected pixels are used to find the
Shower Detector Plane (SDP) (Fig. 9). To reconstruct the direction of the event in the SDP, a trial
nominal laser direction is estimated. Then the expected time at the detector is calculated for each
pixel based on the region of the event axis to which it points (see Eq. 3.1). The difference between
the expected and the observed time is compared and the parameters are adjusted to minimize time
differences across the camera using the χ2 method. The geometry with the minimum difference is
the reconstructed shower axis. The distance of closest approach, RP, and the angle from horizontal
to RP, Ψ0 are the two parameters describing the axis. The arrival time at the ith pixel is given by

ti,expected = T0 +
RP

c
tan

(
π

4
+

ψ0 −ψi

2

)
(3.1)

where ψi is the pointing direction of each participating pixel projected into the SDP. T0 is the time
when the shower front reaches RP. The scattered laser light is assumed to travel at the speed of light
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(c) and the detector is assumed to point directly down. If the change in angular speed dψ

dt is small
over the observed track length (low curvature in time vs angle), the uncertainties in the 3 parameter
fit can be large.
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Figure 9: Illustration of the geometrical direction reconstruction of the laser tracks fired from the
helicopter with observables of the balloon.

A constraint fit was performed using the known position of the helicopter. This reduces the
number of parameters in Eq.(3.1) from 3 to 1 (Ψ0) [10]. The time expected at the detector is then
given by

ti,expected = tH − RH

c
(1− sin(ψH −ψ0)) +

RH cos(ψH −ψ0)

c
tan

(
π

4
+

ψ0 −ψi

2

)
(3.2)

where RH is the distance between the detector and the helicopter. tH is the laser firing time plus
propagation time and ψH is the angle between the detector and the helicopter. ψH and tH are
determined by the first occurrence in the camera.
The data was analysed using the JEM-EUSO Offline framework [11]. An example laser track with
the corresponding timing fit is shown in Fig. 10.

4. Reconstruction Results

The reconstruction of Ψ0 for the full data set using the constraint fit (Eq. 3.2) is shown in
Fig. 11. The distribution has a mean reconstructed zenith angle of 86.1 ◦ and a root mean square
(RMS) of 7.75 ◦ (only noise cuts applied). This resolution does not represent the final resolution
of the instrument and will likely be improved by applying calibration data. The time resolution of
2.5 µs presents another issue as this bin size is too large to achieve an angular resolution within a
few degrees at the short distance between the helicopter and the balloon. This is not an issue for
JEM-EUSO, because the detector-shower separation is around 10 times bigger. The most common
values in this distribution are between 90 ◦ and 92 ◦. This means the majority of the laser tracks
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Figure 10: Example laser track at 05:29:45 UTC with corresponding time profile and fit.
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Figure 11: Zenith angle reconstruction of the helicopter laser shots with the 1 parameter fit method

were reconstructed to point slightly towards the ground as expected considering the helicopter
flight pattern. To fly in a circular pattern, the helicopter was tilted slightly towards the ground by
approximately 1-2 ◦ and the laser fired out of the "lower" side of the helicopter. The estimation
of this angle can be found using the measured velocity of the helicopter and the assumption of a
circular flight pattern (θ = arcsin

(
v2

R·g

)
). The difference between the mean and the mode of this

distribution is not yet understood and needs more investigation. Another work in progress is the
described fit with no constrains (3 parameter). Due to the flat timing profile of the laser tracks in
the camera, a worse resolution is expected with the 3 parameter fit compared to the 1 parameter fit.
This prediction remains to be quantified, especially after applying IR camera and calibration data.

5. Conclusion

EUSO-balloon made the first measurements of tracks from above looking down. The recording
of the 270 events was a success for the balloon mission. Cloud attenuation was expected for EUSO-
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balloon. However, this is not a significant issue for JEM-EUSO, as often most of the shower will
develop above the clouds. Constraining the detected track to start at the helicopter position at the
time of the first occurrence of the laser light in the camera minus the light propagation time, gives
a mean zenith angle of 86.1 ◦ and an RMS of 7.75 ◦. The shift to a slightly downward pointing
direction, regarding the mode (90-92 ◦), agrees with the magnitude and direction of the tilt of the
helicopter as it circled while the laser was firing. These results are better than expected regarding
the fact the EUSO-balloon was the first prototype detector for JEM-EUSO with the main purpose
to test the hardware components in a near space environment.
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