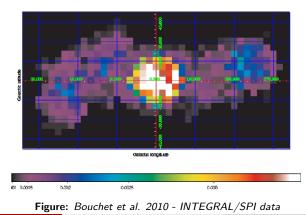
Morphology of the dark matter contribution to the 511 keV gamma ray sky: constraints from INTEGRAL/SPI observations

#### Aaron C. Vincent


McGill University

22 March 2012

Based on arXiv:1201.0997 [hep-ph], with **Pierrick Martin** (IPA Grenoble) and **James M. Cline** (McGill)

### The 511 keV signal: our motivation

• The  $E_{\gamma} = 511$  keV gamma-ray line observed by INTEGRAL/SPI. This signal is composed of a small **disk** component and a much larger **bulge** component, extending ~10 degrees away from the galactic plane. As we heard on Tuesday (talk by N. Prantzos), such B/D > 1.4 is not seen in any other region of the EM spectrum.



INTEGRAL/SPI and the DM Morphology

### Outline



Positrons in the Milky Way



2 Dark Matter to the Rescue



#### 1. Positrons in the Milky Way

#### INTEGRAL/SPI — current observations

After 8 years of observation, we have the following picture of the 511 keV sky:

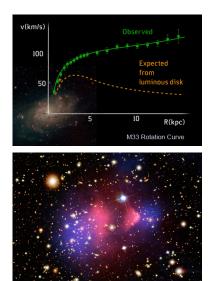
- SPI observes approximately  $1.7\times10^{-3}$  511 keV photons per second about  $10^3 L_{\odot}$
- this is consistent with the **annihilation** of  $1.5 \times 10^{43} e^+ s^{-1}$  in the bulge, and  $0.3 \times 10^{43} e^+ s^{-1}$  in the disk. (about 3  $m_{\odot}$  over the lifetime of the Galaxy)
- if a steady state is assumed, that means the creation of  $\sim 1.8 \times 10^{43}$  positrons per second in the Galaxy.
- The **positronium** continuum and 511 keV line are clearly visible
- The absence of a  $\gamma$ -ray excess above the line implies that the positrons are injected into the ISM at **low energies** ( $\lesssim 3MeV$ )

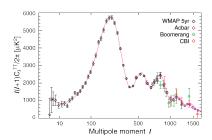
# INTEGRAL/SPI — current observations: Morphology



- Mainly: **circular bulge**, extending roughly 10° from the GC
- Since the fourth year of observation, the **disk component** is also clearly present
- A benchmark empirical fit to this signal was done by Weidenspointner et al. (2008):
  - Two concentric gaussians, with  $FWHM = 3^{\circ}$  and  $11^{\circ}$  respectively
  - A thin disk component, modeled by a young stellar disk
  - 8 degrees of freedom in the fitting procedure
  - With the 8-year data maximum log likelihood of MLR = 2693. We'll return to this.

## Known sources of positrons in the MW


| Source                              | Intensity    | Spectrum     | Morphology |
|-------------------------------------|--------------|--------------|------------|
|                                     |              |              |            |
| Massive stars ( <sup>26</sup> AI)   | $\checkmark$ | $\checkmark$ | ×          |
| SNe ( <sup>44</sup> Ti)             | $\checkmark$ | $\checkmark$ | ×          |
| SNIa ( <sup>56</sup> Ni)            | $\times$ (?) | $\checkmark$ | ×          |
| Novae                               | ×            | $\checkmark$ | ×          |
| Hypernovae/GRBs ( <sup>56</sup> Ni) | ?            | $\checkmark$ | ×          |
| Cosmic ray $p - p$                  | ?            | ×            | ×          |
| Pulsars $\gamma-\gamma$             | $\checkmark$ | ×            | ×          |
| Central black hole                  | ?            | ×            | √(?)       |


(Table adapted from Prantzos et al. 2010)

We need a source, or combination of source with a  $\checkmark$  in all three columns.

#### 3. Dark Matter to the Rescue

## Obligatory dark matter slide



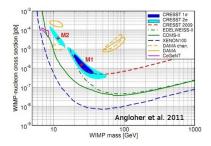


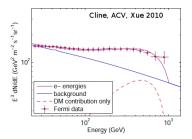
- 85 % of matter
- Explains observations on many scales
- non-gravitational sector unknown

Images: Andromeda:Harvard-Smithsonian center for Astrophysics; Bullet cluster: NASA

## What's known about the particle nature of dark matter

- It is **cold**: must be non-relativistic enough to allow structure to collapse at early enough times;
- It is **dark** enough not to radiate away energy efficiently
- It must behave like **matter** to have the correct equation of state, and to give the right dynamics on galactic and cluster scales.

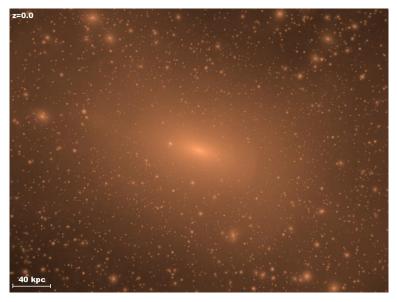

This leads to the Cold Dark Matter (**CDM**) paradigm. Within this is the WIMP scenario (or **WIMP miracle**). If dark matter was produced thermally in the early universe, the **self-annihilation cross-section** required to produce the correct abundance of DM today must be:


$$\langle \sigma v \rangle_{ann} = 3 \times 10^{-26} \mathrm{cm}^3 \mathrm{s}^{-1}, \tag{1}$$

which is pretty close to a typical weak-scale cross-section. It would be very nice for a DM model to conserve this WIMPiness, then.

## What about the mass?

Not much to go on...






 $\sim$  few GeV if you would like to believe recent claimed direct detection results (DAMA/LIBRA, CoGeNT, ...)

...or a **TeV** if you're wanting to explain other cosmic ray anomalies, such as the high-energy positron bump seen by **Fermi** and **PAMELA**.

#### Galactic distribution of dark matter



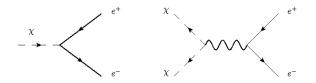
#### Figure: Via Lactea II INTEGRAL/SPI and the DM Morphology

#### Galactic distribution of dark matter

This density distribution can be parametrized with a spherically symmetric **Einasto profile**:

$$\rho_{DM}(r) = \rho_s \exp\left(-\left[\frac{2}{\alpha}\left(\frac{r}{r_s}\right)^{\alpha} - 1\right]\right);$$

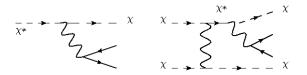
Parameters best fit by the Via Lactea II simulation:


$$\alpha = 0.17,$$
  
$$r_s = 26. \text{ kpc}$$

The normalization  $\rho_s$  can be inferred from indirect measurements of the local dark matter density (e.g. Salucci et al.):

$$ho_{Sun} \simeq 0.4 \ {
m GeV cm^{-3}}$$

#### Getting positrons from dark matter


Most obvious possibilities: Decay or annihilation of a  $\sim$  MeV WIMP:



...but there's another, more attractive option: **multi-state DM**(Finkbeiner and Weiner 2007, then many others including Chen et al 2009, Cline et al. 2010). Also called Excited Dark Matter (**XDM**)

- e.g. 2 states:  $\chi$  and  $\chi*$
- $\Delta m_{\chi} \simeq 2 m_e$
- DM mass becomes a free parameter again.

## Morphology



1) Long-lived metastable state looks like a decay:

$$d\Phi \propto \int_{l.o.s.} rac{
ho(\ell)}{m_\chi au} d\ell$$

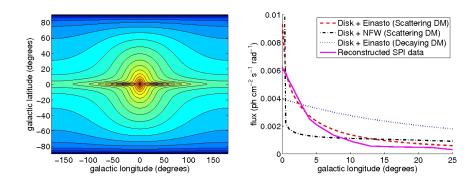
**2)** Short-lived metastable state, produced by **scattering**, looks like an annihilation:

$$d\Phi\propto\int_{I.o.s.}rac{\langle\sigma v
angle
ho^2(\ell)}{m_\chi^2}d\ell$$

- Many studies have shown that the rough morphology, intensity and spectrum can be obtained from DM
- Recently, Morris and Weiner (2011) found that the model of Finkbeiner and Weiner can produce the correct intensity
- Ascasibar (2006) studied DM morphology constraints from the one-year INTEGRAL/SPI data
- More recent studies (e.g. Abidin, 2010) compared predictions to empirical fits to the data, rather than to the data itself.
- Our goal is to use the 8-year data to statistically test the Dark Matter hypothesis

## Hypotheses

- Bulge component of the 511 keV signal is from DM decay, scattering or annihilation
- The DM has an **Einasto** (or NFW) profile, with parameters from **Via Lactea II** simulation:


$$\rho_{DM}(r) = \rho_s \exp\left(-\left[\frac{2}{\alpha}\left(\frac{r}{r_s}\right)^{\alpha} - 1\right]\right); \alpha = 0.17, \ r_s = 26 \ \text{kpc}$$
(2)

• **Disk** component modeled by **young stellar disk** distribution, with parameters **fixed** by *Diehl et al. 2006* study of the <sup>26</sup>Al 1809 keV gamma-ray distribution:

$$\dot{n}_{YD}(x,y,z) = \dot{n}_0 \left[ e^{-\left(\frac{\partial}{R_0}\right)^2} - e^{-\left(\frac{\partial}{R_i}\right)^2} \right], \qquad (3)$$

- we compare to 8 years of INTEGRAL/SPI observation, looking at a bin of 5 keV width, centered at 511 keV,
- No propagation of  $e^+$  assumed from creation to annihilation.

#### The profiles



itron) INTEGRAL/SPI and the DM Morphology

A.C. Vincent (Astropositron)

#### Estimator: Maximum log-Likelihood Ratio (MLR)

 $MLR \equiv -2(\ln L_0 - \ln L_1)$ 

- Interpretation: how much better is the model vs. background only.
- It can also be used as a rough comparison with previous fits to different models.
- A second estimator is the pointing-based  $\chi^2$ ;
- benchmark figures from Weidenspointner et al. analysis:

$$MLR = 2693$$
  
 $\chi^2_p = 1.007$ 

#### Results: decaying DM

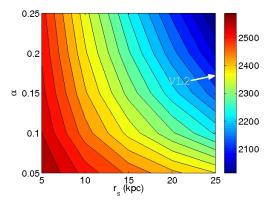



Figure: Einasto profile + disk

A very cuspy dark matter profile is needed to correctly describe the morphology of the 511 keV line. *Via Lactea II* results disfavored. MLR = 2194 (c.f. 2693)

#### Results: scattering DM

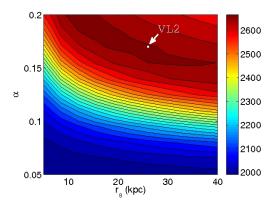



Figure: Einasto profile + disk

Best fit point in  $\alpha$ - $r_s$  space is statistically identical to the Via Lactea II parameters. MLR = 2668 (c.f. 2693);  $\chi_p^2 = 1.007$  (c.f. 1.007).

INTEGRAL/SPI and the DM Morphology

This means that it makes sense to assume that the *Via Lactea II* parameters are the true values. This leaves us with only **two degrees of freedom** in our fitting procedure:

- The normalization of the DM component. This specifies  $\langle \sigma v \rangle / m_{\chi}^2$
- the normalization of the disk component. This tells us how much <sup>26</sup>Al and other elements are present in the model.

# Summary of results (1)

| Channel        | Profile                         | MLR  | Disk flux                         | DM flux                            | DM lifetime or cross-section                                                                 |
|----------------|---------------------------------|------|-----------------------------------|------------------------------------|----------------------------------------------------------------------------------------------|
| decay          | Einasto only                    | 2139 | _                                 | $174.5 \pm 3.5$                    | $\tau_{\chi} = 1.1 \times 10^{26} (\text{GeV}/m_{\chi})$                                     |
|                | Einasto + Disk                  | 2194 | $10.60 \pm 1.42$                  | $148.6\pm5.1$                      | $	au_{\chi} = 1.3 	imes 10^{26} (\text{GeV}/m_{\chi})$                                       |
| scattering     | Einasto only                    | 2611 | _                                 | $24.02 \pm 0.47$                   | $\langle \sigma v \rangle_{\chi} = 5.8 \times 10^{-25} (m_{\chi}/\text{GeV})^2$              |
|                | Einasto + Disk                  | 2668 | $\textbf{9.98} \pm \textbf{1.32}$ | $\textbf{21.16} \pm \textbf{0.59}$ | $\langle \sigma v \rangle_{\chi} = 5.1 \times 10^{-25} (m_{\chi}/\text{GeV})^2$              |
|                | Einasto (oblate) + Disk         | 2669 | $\textbf{8.74} \pm \textbf{1.31}$ | $\textbf{21.06}\pm\textbf{0.61}$   | $\langle \sigma v \rangle_{\chi}^{\sim} = 4.9 \times 10^{-25} (m_{\chi}^{\sim}/{\rm GeV})^2$ |
|                | NFW only                        | 1602 | _                                 | $6.72\pm0.17$                      | $\langle \sigma v \rangle_{\chi} = 8.2 \times 10^{-26} (m_{\chi}/\text{GeV})^2$              |
|                | NFW + Disk                      | 2155 | $26.45 \pm 1.25$                  | $4.90\pm0.18$                      | $\langle \sigma v \rangle_{\chi} = 6.1 \times 10^{-26} (m_{\chi}/\text{GeV})^2$              |
| Flux units: 10 | $0^{-4}$ phcm $^{-2}$ s $^{-1}$ |      |                                   |                                    |                                                                                              |

- 72% of the disk flux can be attributed to <sup>26</sup>Al (consistent with other studies e.g. Knodlseder 2008);
- 10-1000 GeV scattering (XDM) WIMP:  $\langle\sigma\nu\rangle\sim\left[10^{-23},10^{-19}\right]$  cm  $^3{\rm s}^{-1};$
- MeV annihilating WIMP:  $\langle \sigma v \rangle \sim 10^{-31} \text{ cm}^3 \text{s}^{-1}$ : not great for simple models, but viable if  $\exists$  other stronger annihilation channels;
- adding a degree of **oblateness** does not significantly alter the fits;
- Neither does varying the **galactocentric distance** from 8.5 to 8.2 kpc.

# Summary of results (2)

| Source                                           | Intensity    | Spectrum     | Morphology   |
|--------------------------------------------------|--------------|--------------|--------------|
|                                                  |              |              |              |
| Decaying Dark Matter                             | $\checkmark$ | $\checkmark$ | ×            |
| Scattering Dark Matter $(+$ <sup>26</sup> Al $)$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

Some element that could significantly affect our results:

- The **propagation** of  $e^+$  from its sources
- The influence of baryons on halo formation

## Conclusions

- We have shown, in a quantitative manner, that given its predicted shape, scattering or annihilating dark matter can explain the 511 keV signal just as well as previous phenomenological fits (1.9 < B/D < 2.4)</li>
- we require **six fewer degrees of freedom** (2 vs 8) in our fitting procedure
- we provide a physical mechanism for e<sup>+</sup> production and its morphology
- 72% of the **disk flux** can be attributed to <sup>26</sup>AI
- consistent with thermal relic density cross-sections