

Cosmic-Ray Positron Measurement with the Fermi-LAT

Warit Mitthumsiri

Stanford University/SLAC/KIPAC warit@slac.stanford.edu

on behalf of the Fermi-LAT Collaboration

International Workshop on Positrons in Astrophysics Mürren, Switzerland March 20, 2012

Gamma-ray Space Telescope

Fermi-LAT and Cosmic Rays

- Fally
- Designed to detect highenergy photons
- But also detects cosmic-ray (CR) e⁺ and e⁻
- Results on the combined spectrum of e⁺ + e⁻ are published and well-known
- Some unexpected results (PAMELA e⁺ excess, Fermi hard spectrum) question our understanding of CR e⁺
- Even without a magnet on board, Fermi has a way to distinguish e⁺ and e⁻

- Pure e⁺ region in the west, and pure e⁻ region in the east
- The regions vary with particle energy and the Fermi-LAT position
- To locate these regions, we use a code written by Smart, D. F. and Shea, M. A.* which numerically calculates a particle's trajectory in the most up-to-date geomagnetic field model (IGRF2010)

*Center for Space Plasmas and Aeronomic Research, The University of Alabama in Huntsville

e⁺ and e⁻ Exposure

All data when the East or West Earth's limb lies well inside the Fermi-LAT's field of view up to April 2011 (~39 days of livetime)

Atmospheric e⁺ and e⁻ Background

- Produced by CR-atmosphere interactions
- At high energy, secondaries are tightly collimated with the grazing incidence primaries
- Trim 4 deg around the deflected horizon below 100 GeV and 2 deg above 100 GeV

Cosmic-Ray Background

e⁺

e-

- The main background is CR protons
- Contamination level: $e^+ + e^-$
- ~5-20% ~20-50% ~1-5%

Fit-Based Method

Fit two gaussians to the distribution of the transverse shower size in the calorimeter for events passing relaxed selection to determine signal and background

Apply event selection to a large set of CR proton Monte-Carlo simulations to estimate surviving background

March 20, 2012

W. Mitthumsiri

Fit-Based vs MC-Based

Systematic Errors for e⁺

Error Component	Fit-based	MC-based
Effective Area	5%	5%
Onboard filter efficiency	5%	5%
Atmospheric e+ below 100 GeV	+0%, -3%	+0%, -3%
Atmospheric e+ above 100 GeV	+0%, -10%	+0%, -10%
Data-MC p+ agreement	N/A	8%
CR p+ spectral index uncertainty	N/A	2-10%
Fit parameterization	5-10%	N/A
Reference theta distribution	2-4%	N/A
Total (sum in quadrature)	10-16%	8-19%

- Fit-based method has lower systematic errors
- Results from two methods are consistent within errors
- Use Fit-based results up to 160 GeV, where statistics are not enough for the fitting procedure anymore, and use MC-based results above 160 GeV

- The ratio of J(e⁺) + J(e⁻) and J(e⁺ + e⁻), being consistent with 1, shows that the results are self-consistent
- Fitted spectral indices are 2.77 \pm 0.14 for e⁺ and 3.19 \pm 0.07 for e⁻

- Some systematic uncertainties cancel in ratio calculation
- Error bars = statistical errors, and the grey band = total errors
- The e⁺ fraction is increasing with energy, consistent with PAMELA results

Gamma-ray Space Telescope

- The Fermi-LAT has measured the cosmic-ray e⁺ and e⁻ spectra separately, between 20 – 200 GeV, using the Earth's magnetic field as a charge discriminator
 - First measurement of absolute e⁺ spectrum above 50 GeV
 - First published e⁺ fraction above 100 GeV
- Two independent methods of background subtraction, Fit-Based and MC-Based, produce consistent results
- The observed e⁺ fraction rises with energy, showing no sign of decreasing between 100-200 GeV

e⁻ region

Gamma-ray Space Telescope

Back Up III: Model Comparison

Dermi

- From arXiv:1110.2591 by D. Grasso and D. Gaggero et al.
- The model with an extra component of e+ and e- is in better agreement with measurements

