Positron and positronium for the GBAR experiment

László Liszkay CEA, IRFU, Centre de Saclay, France

and the GBAR collaboration

Outline

- The GBAR (Gravitational Behaviour of Antimatter in Rest) experiment
- Linac-based positron source for GBAR
- Mesoporous silica film as efficient positron/positronium converter

The GBAR experiment

- Direct test of the weak equivalence principle by the observation of the free fall of antihydrogen at extremely low energy (~20 μK)
- ~1 % precision in \overline{g} , determined mostly by temperature (+stat.)
- Cooling path through positively charged antihydrogen ions Sympathetic cooling + Raman sideband Photodetachment of e^+ cooling (Be⁺) H^+ $H^ H^ H^-$

J. Walz and T. Hänsch, General Relativity and Gravitation 36, 561 (2004). P.Pérez and A. Rosowsky, Nucl. Inst. Meth. A 532 (2004) 523-532. Production of the antihydrogen ion

irfu

Status of the GBAR experiment

- Recommended by the SPS and PS experiments Committee (SPSC) of CERN
- Decision of the CERN Research Board (RB) is pending (expected in May)

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Swansea University School of Physical Sciences

ETH

NEUTRONS

Institut Laue-Langevin

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

RIKEN

GBAR experiment

The slow positron source

- Total efficiency is approximately 5 x 10^{-9} slow e^+ / e^-
- Efficiency has to be improved (higher electron energy, improvement in moderation)
- Optional solution: solid Ne moderator (using existing electron/positron separator)

The slow positron source at Saclay (CEA/IRFU)

 Positron production by a low energy (<10 MeV) linear electron accelerator (linac)

Saclay source	²² Na-based sources	Positron sources based on nuclear reactors or high energy accelerators
On/off operation, < 10 MeV electron source (no activation)	Radioactive source can't be switched off, capsule with thin exit window (~open source)	Limited access to the source, permanent activation of the source environment, radioactive waste
Dedicated positron source	Dedicated source	Time-sharing (reactor cycle, shared facility)
Possibly compact (+ biological shield)	Compact (thinner biological shield)	Large installation
High intensity (up to about 10 ⁸ e ⁺ /s	Intensity limited to about 6x10 ⁶ e ⁺ /s	Very high intensity possible (up to ~10 ⁹ e ⁺ /s)

The slow positron source at Saclay (CEA/IRFU)

GBAR experiment

Positron-positronium converter for the Ps cloud

Material of choice: porous silica films

Characterization: experimental methods

GBAR experiment

3 gamma annihilation fraction: energy distribution of the annihilation photons

irfu

o-Ps emission: lifetime (PALS) measurements

o-Ps energy: TOF measurements

o-Ps reemission at intense puses: comparison CERN / UCR

No loss in conversion efficiency due to the high e⁺ intensity is abserved
Laszlo Liszkay, Positrons in Astrophysics, 21 March 2012

Conclusions

- GBAR collaboration has been formed
- A feasible experimental scheme was developed
- Advances in the development of
 - Positron/positronium converter
 - Linac-based positron source
 - Positron trap
- Model calculations on Ps excitation, antihydrogen production cross sections, cooling... are underway
- First beamtime is expected in 2016 (see ELENA)
- First measurements in 2017

Multiring trap (RIKEN): cooling by trapped electrons

