A Novel Electromagnetic Calorimeter for a Balloon Borne Spectrometer

Alex Howard, ETH Zurich

C. Casella, G. Dissertori, W. Lustermann

EPFL: A. Bay, G. Haefeli, J-B. Mosset, T. Nakada, L. Shchutska, F. Zehr

Overview

- 1. Why measure positrons up to 1 TeV (or beyond)?
- 2. PEBS concept
- 3. Electromagnetic Calorimeter
- 4. Design performance
- 5. Testbeam 2010
- 6. Novel SiPM read-out
- 7. Characterisation of new prototype
- 8. Summary and Conclusions

Our Understanding (GALPROP)

- GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation. The GALPROP code incorporates as much realistic astrophysical input as possible together with latest theoretical developments.
- http://galprop.stanford.edu/

GALPROP: Cosmic Ray Fluxes

Elux E(dF/dE) / MeV cm²sr¹s¹MeV¹

Spectra drop steeply with increasing energy

Alex Howard, ETHZ – Positrons in Astrophysics

Positron Fraction

Positron Fraction 10 -2 10 10⁻³ Positron fraction 10 -4 decreases even 10 -5 more rapidly -6 10 -7 10 10 -8 -9 10 -1010 10 -11 10² -2 -1 10³ 4 10 10 10 10 Energy/GeV

Alex Howard, ETHZ - Positrons in Astrophysics

5

Alex Howard, ETHZ – Positrons in Astrophysics

PEBS Experiment

The overall height, including the lower crush pads, is 2.7 m and the overall width is 3.3 m. The total weight of the instrument is 2000 kg.

Tracker, magnet, TRD \rightarrow 10³ proton rejection ECAL \rightarrow 10³ proton rejection at high energy Superconducting magnet – Charge measurement > TeV (e⁺/e⁻)

Electromagnetic Calorimeter

- Crucial to measuring the high energy positron spectrum is to reject significant background from protons (>10³ suppression)
- A lead-scintillator sampling calorimeter with 6mm Pb, 4mm Sci
- Scintillator read-out with embedded wavelength shifting fibres
 - Improves homogeneity and shower shape reconstruction
- Read-out with novel SiPMs
- Dynamic range needs to be from MIPs to ~3000 MIPs

- Split gains, different read-out on each end of the fibre

Single Photoelectron Resolution

Geant4 – Full Prototype

A lex Howard, ETHZ - Positrons in Astrophysics

Rejection Factors

- R-parameter:
 - ∑ (bar_signal x layer)

within two Moliere radii and up to the shower maximum

• PAMELA used this approach

M/C Positrons vs. Protons

- Recent Monte
 Carlo of test beam
 set-up
- 120000 protons do not give an electron-like signal
- @10 GeV
- High energy data in progress

Testbeam'10

- One type of SiPM (Hamamatsu)
- Proton contamination in the beam above 50 GeV
- Change of read-out electronics (SPIROC)
- Attenuated filters introduced on one side
 - Split gain
 - Four options of read-out range
 - Unfortunately cross-talk and non-linearity when high gain channel saturated
 - Analysis hard...

Shower Profile 25 GeV Positrons

Shower Profile 125 GeV Positrons

Beam Contamination

Energy Linearity and Resolution

Proton Rejection

- Positron efficiency and proton rejection factors
- Up to 50 GeV rejection is better than 10⁻³

ECAL Prototype 2012

- New ECAL being constructed
 - Larger (384mm x 384mm)
 - 16 layers
 - Single electronics (IDEAS VATA-64)
 - Two types of SiPMs for read-out \rightarrow two gains
 - Test of slow scintillator \rightarrow could reduce saturation

Two Type of SiPMs

- Each end of the wavelength shifting fibre is read-out with different SiPMs
- One side is "standard" MPPC from Hamamatsu (3000 pixels/mm²) - G = 5x10⁵
- Second side is using Zecotek MAPDs $G = 5 \times 10^4$
 - New device
 - 15000 pixels/mm²
 - Much higher saturation, lower gain
 - Unfortunately also higher noise

Cosmic Muon Test

Landau distribution from muons

Uniformity Across Read-out Plate

 Most probable value of Landau distribution from cosmic muons

Alex Howard, ETHZ – Positrons in Astrophysics

MPPC vs. MAPD

MAPD does not saturate compared to MPPC

Alex Howard, ETHZ – Positrons in Astrophysics

ECAL future

- We are currently on schedule to produce the full prototype for summer testbeam
- Uniformity, Noise and Linearity appear to be under control
- Temperature stability will also be tested
- Proton rejection should exceed 10⁴ (M/C)
- Energy resolution of 15%/VE (GeV)
- Two SiPM read-out gives full dynamic range from MIPs up to several thousand

PEBS Summary

- A dedicated balloon experiment could provide a competitive measurement of the cosmic ray electron & positron flux.
- The spectrometer is based on a scintillating fiber tracker with SiPM readout and a permanent magnet.
- The proton rejection of ~10⁶ can be achieved by a combination of ToF, TRD, ECAL and Tracker.
- Key parameters:
 Acceptance: ~1200 cm² sr
 Weight: ~2000 kg
 Power: ~900 Watt
- R&D Phase: ongoing – testbeam this summer
- Construction Phase: Could start now!
- First PEBS Flight: 201?

Alex Howard, ETHZ - Positrons in Astrophysics

Conclusions

- PAMELA first measured a discrepancy in the positron fraction at high energy and confirmed by FERMI-LAT
- Interest in being able to measure the positron fraction up to (and beyond the TeV) scale
- The ability to reject significant proton backgrounds is important ECAL offers this possibility
- A novel ECAL is being developed using two types of SiPMs is being developed
- Combination with tracker and superconducting magnet would allow precise measurements up to the TeV scale

BACK UP SLIDES

Silicon Photomultipliers (Geiger-mode APD)

Challenges of SPIROC Read-out

