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Main points

• Low-energy positron interaction with atoms and molecules is attractive

• For mildly attractive targets this results in low-lying positron virtual levels

• Elastic scattering and annihilation are enhanced

• Positrons can form bound states with many neutral species

• For molecules positron binding gives rise to vibrational Feshbach resonances

• Vibrational Feshbach resonances can lead to very large annihilation rates

• Resonant annihilation is enhanced by intramolecular vibrational energy 
redistribution (a ubiquitous effect!)

• Observation of vibrational Feshbach resonances in annihilation allows 
measurement of positron binding energies for many molecules

• Larger molecules can possess multiple positron bound states
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Positron scattering from alkali atoms
Ionization potential I < 6.8 eV

Positron scattering by potassium 561

Figure 2. Positronium formation cross sections for n = 3 capture in the K(4s, 4p, 5s, 5p, 3d) +
Ps(1s, 2s, 2p, 3s, 3p, 3d) approximation. Curves: broken, Ps(3s); full, Ps(3p); chain, Ps(3d).

Figure 3. Composition of the total positronium
formation cross section. Curves are results in
the K(4s, 4p, 5s, 5p, 3d) + Ps(1s, 2s, 2p, 3s, 3p, 3d) ap-
proximation: dotted, Ps(1s); broken, sum of Ps(n = 1)
+ Ps(n = 2) cross sections; chain, sum of Ps(n = 1)
+ Ps(n = 2)+Ps(n = 3) cross sections; full, to-
tal positronium formation cross section with n3 scal-
ing for Ps(n � 4). Experimental data of Zhou et al
(1994) for positronium formation: open squares, upper
bound; open diamonds, lower bound. K(4s, 4p, 5s, 5p)
+ Ps(1s, 2s, 2p) approximation of Hewitt et al (1993):
full circles, sum of Ps(n = 1) + Ps(n = 2) cross sec-
tions; full triangles, total positronium formation cross
section with n3 scaling for Ps(n � 3).

entire energy range in question. It is clear from the diagram that the scaling is necessary
to raise the sum of our n = 1, 2 and 3 cross sections to the lower experimental bound. In
contrast, the total positronium formation cross section of Hewitt et al, when appropriately
augmented by scaling, rises to a maximum more in agreement with the upper bound. Their
results also include a very substantial correction coming from n3 scaling. The magnitude
of the correction may be attributed to the large Ps(n = 2) contribution (see figures 1(b)
and (c)), which when added to their Ps(1s) formation cross section, exceeds the sum of our
n = 1, 2 and 3 results below about 10 eV.

e++K
Ps formation

Coupled-channel calculation with pseudostates
M. T. McAlinden,  A. A. Kernoghan, H. R. J. Walters, J. Phys. B 29 555 (1996)
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believe differential cross section contributions from elastic scattering to have been lost. We
have used these estimates to construct a more complete total cross section by augmenting
the experimental measurements with the results obtained by numerically integrating the
elastic differential cross section given by our theory over the missing angular ranges. In
this section it is the experimental cross section corrected in this way which we compare
with our theory. Ward et al (1988, 1989) carried out a similar correction procedure using
the results of their five state K(4s, 4p, 5s, 5p, 3d) calculation but in this case modified theory
rather than experiment, i.e. they constructed an effective total cross section corresponding
to the experimental measurements of Stein et al (1987) which were available at the time.
Parikh et al (Kwan et al ) quote two types of error in their work, a statistical error, which
is small, and an overall 21% error. The statistical error determines the shape of the cross
section while the overall error indicates by how much the full set of measurements may be
normalized upwards or downwards.

In figure 7 we compare our calculated K(4s, 4p, 5s, 5p, 3d) + Ps(1s, 2s, 2p, 3s, 3p, 3d)
total cross section (including n3 scaling for positronium formation in states with n � 4, see
figure 3) with the data of Parikh et al (Kwan et al) corrected for forward elastic scattering as
described earlier. Taking advantage of the overall 21% error on the data we have normalized
the measurements upwards by 10% to get best agreement with our calculation. The error
bars shown on the data are the small statistical errors which provide a tight constraint on
the shape of the cross section.

Figure 7. Cross sections for e+–K(4s) scattering.
Curves are results in the K(4s, 4p, 5s, 5p, 3d) +
Ps(1s, 2s, 2p, 3s, 3p, 3d) approximation: full, total
cross section; long-broken, elastic; dotted, K(4s–4p);
short-broken, K(4s–3d); short chain, K(n = 5); long
chain, total positronium formation (with n3 scaling
included). Full circles, total cross section of Hewitt
et al (1993) in the K(4s, 4p, 5s, 5p) + Ps(1s, 2s, 2p)
approximation. Open squares, experimental data of
Parikh et al (1993) renormalized upwards by a factor
1.10 and with theoretical correction for forward elastic
scattering (see the text).

It is seen from figure 7 that agreement with our computed results is very good. In
particular, our calculations well reproduce the pronounced maximum in the experimental
cross section near 6 eV. Also given in figure 7 is the total cross section of Hewitt et al
(1993), in their K(4s, 4p, 5s, 5p) + Ps(1s, 2s, 2p) approximation, which includes n3 scaling
for positronium formation in states with n � 3. This lies about 10% below our values and

e++K

Coupled-channel calculation with pseudostates
M. T. McAlinden,  A. A. Kernoghan, H. R. J. Walters, J. Phys. B 29 555 (1996)
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Positron scattering from noble gas atoms

polar. orbital is the polarised orbital calculation
by McEachran et al. (J. Phys. B 1977-1980)
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Correlations change the scattering length 
from positive (static repulsion) to negative



polar. orbital is the polarised orbital calculation by McEachran et al. (J. Phys. B 1977-1980)
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Higher partial waves also show attraction

polar. orbital is the polarised orbital calculation by McEachran et al. (J. Phys. B 1977-1980)

0 0.2 0.4 0.6 0.8
Momentum (a.u.)

-1

-0.5

0

0.5

Ph
as

es
hi

ft

static HF
Σ
(2)

Σ
(2)
+Σ

(Γ)

Σ
(2)
+Σ

(3)

Σ
(2)
+Σ

(3)
+Σ

(Γ)

polar. orbital

s-wave
Ar

0 0.2 0.4 0.6 0.8
Momentum (a.u.)

-0.4

-0.2

0

0.2

0.4

Ph
as

es
hi

ft

static HF
Σ
(2)

Σ
(2)
+Σ

(Γ)

Σ
(2)
+Σ

(3)

Σ
(2)
+Σ

(3)
+Σ

(Γ)

polar. orbital

p-wave
Ar

Positron scattering from noble gas atoms



Comparison between theory and experimentJ. Phys. B: At. Mol. Opt. Phys. 41 (2008) 081001 Fast Track Communication

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15

e+ - He
Total Cross Section

Mizogawa et al.
Wu et al.
Ludlow & Gribakin
Van Reeth & Humberston
Present data

T
ot

al
 C

ro
ss

 S
ec

ti
on

 (1
0-1

6  c
m

2 )

Energy (eV)

Figure 1. Absolute total cross section for positron–helium
scattering in units of 10−16 cm2. The present results (•) are
compared to the experimental values of Mizogawa (◦) and the
theoretical calculations of van Reeth and Humberston (- - - -),
Wu et al (——) and Ludlow and Gribakin (– – –).
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Figure 2. Absolute total cross section in the region of the
Ramsauer–Townsend minimum. The present results (•) are
compared to those of Karwasz et al (!) and the calculation of
Wu et al (——).
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Figure 3. Absolute total cross section in the 5–8 eV region. The
present results (•) are compared to those of Karwasz et al (!) and
the calculations of Wu et al (——) and Ludlow and Gribakin
(– – –).

of van Reeth and Humberston, the CCC calculation of Wu et al
and the MBT calculation of Ludlow and Gribakin. At most
there is a 10% difference between all of these calculations
across this range. The agreement between experiment and
theory is also excellent in this energy region. Indeed the
accurate measurements of Mizogawa et al, done some 20 years
ago, and the variational calculation of van Reeth and
Humberston, probably constituted the first ‘benchmark’ cross
section for positron scattering. The present high-resolution
measurements and the other contemporary theories only serve
to reinforce that notion.

In figure 2 we show the present results in the region
of the Ramsauer–Townsend minimum. Energy scans were
made with a high density of points (50 meV energy steps).
We see excellent agreement with the CCC calculation, which
for ease of viewing we choose as representative of all three
theories, across this energy range. We also show the recent
measurements of Karwasz et al. Their cross section is more
than a factor of two higher than the present measurement in
this region and shows the presence of several large structures
in the energy region between 1 and 3 eV. They speculated that
these structures were ‘resonances’ due to virtual positronium
formation in the positron scattering process. It is quite clear
that neither the present measurements, nor the contemporary
calculations, support the presence of such features. The
present measurements, and all the calculations, also do not
support such a large total cross section magnitude in the R-T
region as indicated by Karwasz et al. Figure 3 shows a similar
scan in the energy range of 5–8 eV in which we could also find
no evidence of the additional, but weaker, feature in the TCS
observed by Karwasz et al near 7 eV.

In a response to the paper of Karwasz et al, Zecca
(2006) speculated that these measurements were affected by
systematic problems and that the structures were an artifact
of the measurement process due to incorrect background
suppression. He also questioned the energy resolution of
130 meV which was claimed by Karwasz et al and, in fact,
whether such structures would have been observable with the
typical resolution obtained with tungsten moderated beams of
∼300 meV. It is not possible, or appropriate, for us to provide
any further input to this discussion other than to say that as a
result of our own measurements, we do not believe that any
such ‘resonances’ exist in this energy region. We also do not
believe that there is any physical basis on which one might
expect temporary, positronic bound states to be formed in this
energy region. However, theoretical calculations (Campbell
et al 1998, van Reeth and Humberston 1999) indicate that at
higher energies, in the region of the positronium formation
and electronic excitation thresholds for example, resonance or
cusp effects may be visible in the elastic and inelastic cross
sections. Such measurements are planned in the near future
for the present apparatus.
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to reinforce that notion.
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these structures were ‘resonances’ due to virtual positronium
formation in the positron scattering process. It is quite clear
that neither the present measurements, nor the contemporary
calculations, support the presence of such features. The
present measurements, and all the calculations, also do not
support such a large total cross section magnitude in the R-T
region as indicated by Karwasz et al. Figure 3 shows a similar
scan in the energy range of 5–8 eV in which we could also find
no evidence of the additional, but weaker, feature in the TCS
observed by Karwasz et al near 7 eV.
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(2006) speculated that these measurements were affected by
systematic problems and that the structures were an artifact
of the measurement process due to incorrect background
suppression. He also questioned the energy resolution of
130 meV which was claimed by Karwasz et al and, in fact,
whether such structures would have been observable with the
typical resolution obtained with tungsten moderated beams of
∼300 meV. It is not possible, or appropriate, for us to provide
any further input to this discussion other than to say that as a
result of our own measurements, we do not believe that any
such ‘resonances’ exist in this energy region. We also do not
believe that there is any physical basis on which one might
expect temporary, positronic bound states to be formed in this
energy region. However, theoretical calculations (Campbell
et al 1998, van Reeth and Humberston 1999) indicate that at
higher energies, in the region of the positronium formation
and electronic excitation thresholds for example, resonance or
cusp effects may be visible in the elastic and inelastic cross
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Cross sections at low energies increase greatly from He to Xe. Positron-
atom attraction creates virtual s-levels in heavier atoms, at ε = 1/2a2

He Ne Ar Kr Xe

scattering length (a.u.) -0.42 -0.43 -4.4 -10.1 -81
virtual level energy (eV) - - 0.7 0.13 0.002
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compared to the experimental values of Mizogawa (◦) and the
theoretical calculations of van Reeth and Humberston (- - - -),
Wu et al (——) and Ludlow and Gribakin (– – –).
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Figure 2. Absolute total cross section in the region of the
Ramsauer–Townsend minimum. The present results (•) are
compared to those of Karwasz et al (!) and the calculation of
Wu et al (——).

0

0.05

0.1

0.15

0.2

0.25

0.3

5 5.5 6 6.5 7 7.5 8

e+ - He
Total Cross SectionWu et al.

Ludlow & Gribakin
Karwasz et al.
Present Data

T
ot

al
 C

ro
ss

 S
ec

ti
on

 (1
0-1

6  c
m

2 )

Energy (eV)

Figure 3. Absolute total cross section in the 5–8 eV region. The
present results (•) are compared to those of Karwasz et al (!) and
the calculations of Wu et al (——) and Ludlow and Gribakin
(– – –).

of van Reeth and Humberston, the CCC calculation of Wu et al
and the MBT calculation of Ludlow and Gribakin. At most
there is a 10% difference between all of these calculations
across this range. The agreement between experiment and
theory is also excellent in this energy region. Indeed the
accurate measurements of Mizogawa et al, done some 20 years
ago, and the variational calculation of van Reeth and
Humberston, probably constituted the first ‘benchmark’ cross
section for positron scattering. The present high-resolution
measurements and the other contemporary theories only serve
to reinforce that notion.

In figure 2 we show the present results in the region
of the Ramsauer–Townsend minimum. Energy scans were
made with a high density of points (50 meV energy steps).
We see excellent agreement with the CCC calculation, which
for ease of viewing we choose as representative of all three
theories, across this energy range. We also show the recent
measurements of Karwasz et al. Their cross section is more
than a factor of two higher than the present measurement in
this region and shows the presence of several large structures
in the energy region between 1 and 3 eV. They speculated that
these structures were ‘resonances’ due to virtual positronium
formation in the positron scattering process. It is quite clear
that neither the present measurements, nor the contemporary
calculations, support the presence of such features. The
present measurements, and all the calculations, also do not
support such a large total cross section magnitude in the R-T
region as indicated by Karwasz et al. Figure 3 shows a similar
scan in the energy range of 5–8 eV in which we could also find
no evidence of the additional, but weaker, feature in the TCS
observed by Karwasz et al near 7 eV.

In a response to the paper of Karwasz et al, Zecca
(2006) speculated that these measurements were affected by
systematic problems and that the structures were an artifact
of the measurement process due to incorrect background
suppression. He also questioned the energy resolution of
130 meV which was claimed by Karwasz et al and, in fact,
whether such structures would have been observable with the
typical resolution obtained with tungsten moderated beams of
∼300 meV. It is not possible, or appropriate, for us to provide
any further input to this discussion other than to say that as a
result of our own measurements, we do not believe that any
such ‘resonances’ exist in this energy region. We also do not
believe that there is any physical basis on which one might
expect temporary, positronic bound states to be formed in this
energy region. However, theoretical calculations (Campbell
et al 1998, van Reeth and Humberston 1999) indicate that at
higher energies, in the region of the positronium formation
and electronic excitation thresholds for example, resonance or
cusp effects may be visible in the elastic and inelastic cross
sections. Such measurements are planned in the near future
for the present apparatus.
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Many-body theory calculations predicted bound states for 4 atoms
V. A. Dzuba, V. V. Flambaum, G. F. Gribakin and W. A. King, Phys. Rev. A 52, 4541 (1995)
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σa ∼ 10−6Zeffr0 = e2/mc2 ∼ 10−4,



Zeff for atoms and small molecules

Atom Zeff

H 8.5

He 3.94

Ne 5.99

Ar 26.8

Kr 65.7

Xe 401

Molecule Zeff Z
H2 15 2

N2 31 14

O2 37 16

CO 39 14

CO2 55 20

N2O 78 20

SF6 86 70

H2O 319 18

NO2 1090 23

NH3 1600 10

   *  Values at room T,   k ~ 0.05 au
  ** Coleman, Charlton, Kileen, Griffith,
      Heyland, Wright (1975-82) (UCL)
*** Iwata et al. (1995) (UCSD)

calc.

***

**

*

**

**

**
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Krypton

Thermally averaged Zeff at room T

Atom He Ne Ar Kr Xe

0th order, static 0.69 0.97 0.74 0.68 0.61

0th order, Dyson 1.34 2.30 6.86 14.6 71

total, Dyson 3.78 5.53 26.5 66.4 402

Exp. (gas) 3.94 5.99 26.8 65.7 320

Exp. (trap, UCSD) - - 33.8 90.1 401
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κ2 + k2
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For room-temperature positrons



Zeff  for alkanes and substitutes

Molecule Zeff Z
H2 15 2

N2 31 14

O2 37 16

CO 39 14

CO2 55 20

N2O 78 20

SF6 86 70

H2O 319 18

NO2 1090 23

NH3 1600 10



Zeff  for alkanes and substitutes

Molecule X = H X = F X = Cl X = Br

CX4 142 54.4 9 530 39 800

C2X6 660 152 68 600 -

C3X8 3 500 317 - -

C4X10 11 300 - - -

C5X12 37 800 - - -

C6X14 120 000 630 - -

C7X16 242 000 - - -

C8X18 585 000 1 064 - -

C9X20 643 000 - - -

C10X22 728 000 - - -

C12X26 1 780 000 - - -

C16X34 2 230 000 - - -

Iwata, Greaves, Murphy, Tinkle and Surko, PRA 51, 473 (1995)
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Measuring Zeff as a function of positron energy

tion in the beam is approximately Gaussian with a width of

!25 meV as measured using a retarding potential analyzer.
Figure 3 is a more detailed drawing of the apparatus. It

shows the path of the positrons !dashed line" after they exit
the accumulator. Cryo pumps maintain a base pressure of

10!9 torr in the vacuum chamber in the absence of the test

gas. A pair of magnetic coils create a 0.1-T magnetic field in

the gas cell while providing optical access for the detector.

The gas cell and the detector are surrounded by 5 cm of lead

to avoid detection of gamma rays from external sources.

Copper baffles inside the vacuum chamber (B and C in Fig.

3" also provide shielding. The magnets, the detector, and the

lead shielding are all external to the vacuum chamber.

Electrode A, located directly between the magnet coils,

defines the positron energy in the region visible to the anni-

hilation radiation detector. This electrode is also used as a

retarding potential analyzer !RPA" to determine the energy of
the positrons in this region. The uniformity of the potential in

this region is verified using a time-of-flight technique. The

potential is found to be constant to within #10 meV $23%. In
the magnetic field B, in the accumulator region (B

!0.9 kG), the positron motion can be separated into a com-
ponent along the magnetic field and the gyromotion of the

positron in the plane perpendicular to B. Only the energy

associated with positron motion parallel to the magnetic

field, E " , is measured with the RPA. Energy associated with

the perpendicular motion, E! , is assumed to be 25 meV !i.e.,
300 K" in the positron accumulator. This motion is confined
to tiny cyclotron orbits, but is nonetheless important in col-

lisions with the test gas. Since E! /B is an invariant for a

slowly varying magnetic field, E! is reduced by a factor

equal to the ratio of the magnetic field in the gas cell to that

in the accumulator. Taking into account the magnetic-field

ratio in our apparatus, we take E! in the gas cell to be 16

meV. The total positron energy is assumed to be 16 meV

larger than that measured by the RPA.

The average positron energy in the region visible to the

detector can be varied from 50 meV to #100 eV. For posi-
tron energies below 50 meV, a significant fraction of the

positrons, due to elastic collisions with the test gas, do not

have sufficient kinetic energy in the direction of the magnetic

field to enter the gas-filled region and are reflected from the

cell. This prevents accurate measurements below 50 meV

using the current apparatus.

The copper baffles on either side of this electrode serve a

dual purpose. Baffle B serves to create a region of high test

gas pressure inside the cell and lower pressure on the accu-

mulator side of the baffle. Both baffles are electrically insu-

lated from the cell electrode and the vacuum chamber and

can therefore be biased to define the energy of positrons in

the regions near the baffle. The baffle B on the accumulator

side is biased to minimize elastic and inelastic scattering and

annihilation in the region near this baffle. While the gamma-

ray detector is only slightly sensitive to annihilation events in

this region, an extremely large annihilation signal or large

elastic or inelastic scattering in this higher pressure region

could skew the measurement. Appropriate biasing of baffle B

minimizes these effects. The baffle C on the collector side of

the electrode A can be biased high enough (#8 V) to reflect
the positrons back through the cell instead of allowing them

to collide with the collector. This eliminates any background

signal that might arise from positrons annihilating on the

collector. This ‘‘multiple pass’’ operation will be discussed

further below.

Gamma radiation from annihilation events in the cell are

detected using a CsI scintillator and photodiode !Fig. 3". The
face of the scintillator is located 5 to 10 cm from the center

of the cell. The detector produces a current pulse in response

to a gamma photon, the height of which is proportional to the

photon energy. The detection efficiency for annihilation

events in the gas cell is calibrated using a source of known

FIG. 2. Schematic diagram of the experiment !above", and cor-
responding electrical potential V(z) as a function of position along

the magnetic field !below". A cold positron beam is passed through

a gas cell. The energy of the beam, &"e(V!Vc), can be tuned

from 50 meV upward. To avoid background, the positrons are re-

flected back through the cell and kept in flight, passing back and

forth through the cell, while annihilation events are recorded.

FIG. 3. Cut-away view of the annihilation apparatus. The

dashed line is the path of the positrons through the cell. The copper

baffles help to define a favorable pressure profile and to shield

against sources of annihilation radiation outside the gas cell. Baffles

B and C are biased to set the potential profile at the ends of the gas

cell. In particular, baffle C can be biased positively to reflect posi-

trons back through the gas cell rather than allow them to strike the

collector.

ENERGY-RESOLVED POSITRON ANNIHILATION FOR . . . PHYSICAL REVIEW A 67, 032706 !2003"

032706-3

S. J. Gilbert, L. D. Barnes, J. P. Sullivan and C. M. Surko, Phys. Rev. Lett. 88, 043201 (2002)

By reducing the depth of the trap, the
positrons are “pushed” over the edge
to form a beam



Measuring Zeff as a function of positron energy

tion in the beam is approximately Gaussian with a width of

!25 meV as measured using a retarding potential analyzer.
Figure 3 is a more detailed drawing of the apparatus. It

shows the path of the positrons !dashed line" after they exit
the accumulator. Cryo pumps maintain a base pressure of

10!9 torr in the vacuum chamber in the absence of the test

gas. A pair of magnetic coils create a 0.1-T magnetic field in

the gas cell while providing optical access for the detector.

The gas cell and the detector are surrounded by 5 cm of lead

to avoid detection of gamma rays from external sources.

Copper baffles inside the vacuum chamber (B and C in Fig.

3" also provide shielding. The magnets, the detector, and the

lead shielding are all external to the vacuum chamber.

Electrode A, located directly between the magnet coils,

defines the positron energy in the region visible to the anni-

hilation radiation detector. This electrode is also used as a

retarding potential analyzer !RPA" to determine the energy of
the positrons in this region. The uniformity of the potential in

this region is verified using a time-of-flight technique. The

potential is found to be constant to within #10 meV $23%. In
the magnetic field B, in the accumulator region (B

!0.9 kG), the positron motion can be separated into a com-
ponent along the magnetic field and the gyromotion of the

positron in the plane perpendicular to B. Only the energy

associated with positron motion parallel to the magnetic

field, E " , is measured with the RPA. Energy associated with

the perpendicular motion, E! , is assumed to be 25 meV !i.e.,
300 K" in the positron accumulator. This motion is confined
to tiny cyclotron orbits, but is nonetheless important in col-

lisions with the test gas. Since E! /B is an invariant for a

slowly varying magnetic field, E! is reduced by a factor

equal to the ratio of the magnetic field in the gas cell to that

in the accumulator. Taking into account the magnetic-field

ratio in our apparatus, we take E! in the gas cell to be 16

meV. The total positron energy is assumed to be 16 meV

larger than that measured by the RPA.

The average positron energy in the region visible to the

detector can be varied from 50 meV to #100 eV. For posi-
tron energies below 50 meV, a significant fraction of the

positrons, due to elastic collisions with the test gas, do not

have sufficient kinetic energy in the direction of the magnetic

field to enter the gas-filled region and are reflected from the

cell. This prevents accurate measurements below 50 meV

using the current apparatus.

The copper baffles on either side of this electrode serve a

dual purpose. Baffle B serves to create a region of high test

gas pressure inside the cell and lower pressure on the accu-

mulator side of the baffle. Both baffles are electrically insu-

lated from the cell electrode and the vacuum chamber and

can therefore be biased to define the energy of positrons in

the regions near the baffle. The baffle B on the accumulator

side is biased to minimize elastic and inelastic scattering and

annihilation in the region near this baffle. While the gamma-

ray detector is only slightly sensitive to annihilation events in

this region, an extremely large annihilation signal or large

elastic or inelastic scattering in this higher pressure region

could skew the measurement. Appropriate biasing of baffle B

minimizes these effects. The baffle C on the collector side of

the electrode A can be biased high enough (#8 V) to reflect
the positrons back through the cell instead of allowing them

to collide with the collector. This eliminates any background

signal that might arise from positrons annihilating on the

collector. This ‘‘multiple pass’’ operation will be discussed

further below.

Gamma radiation from annihilation events in the cell are

detected using a CsI scintillator and photodiode !Fig. 3". The
face of the scintillator is located 5 to 10 cm from the center

of the cell. The detector produces a current pulse in response

to a gamma photon, the height of which is proportional to the

photon energy. The detection efficiency for annihilation

events in the gas cell is calibrated using a source of known

FIG. 2. Schematic diagram of the experiment !above", and cor-
responding electrical potential V(z) as a function of position along

the magnetic field !below". A cold positron beam is passed through

a gas cell. The energy of the beam, &"e(V!Vc), can be tuned

from 50 meV upward. To avoid background, the positrons are re-

flected back through the cell and kept in flight, passing back and

forth through the cell, while annihilation events are recorded.

FIG. 3. Cut-away view of the annihilation apparatus. The

dashed line is the path of the positrons through the cell. The copper

baffles help to define a favorable pressure profile and to shield

against sources of annihilation radiation outside the gas cell. Baffles

B and C are biased to set the potential profile at the ends of the gas

cell. In particular, baffle C can be biased positively to reflect posi-

trons back through the gas cell rather than allow them to strike the

collector.

ENERGY-RESOLVED POSITRON ANNIHILATION FOR . . . PHYSICAL REVIEW A 67, 032706 !2003"

032706-3

S. J. Gilbert, L. D. Barnes, J. P. Sullivan and C. M. Surko, Phys. Rev. Lett. 88, 043201 (2002)

By reducing the depth of the trap, the
positrons are “pushed” over the edge
to form a beam

and the differential scattering cross section is given
by

dr
dX

¼ C
ffiffiffiffiffiffiffiffiffiffi

EsEk
p dIðEkÞ

dEk

" #

; ð7Þ

where IðEkÞ is the normalized signal measured with
the RPA, and the constant C depends on the gas
number density and cell length.

The RPA curve represents an integral spectrum.
Thus, if the transmitted positron signal at a volt-
age close to the beam energy cut-off is monitored
(e.g. at the point labeled by ‘X’ in Fig. 2(b)), then
the difference between this signal level and the
unscattered beam (normalized to unity), is the
probability of any scattering event having oc-
curred. This is denoted by Ps in Fig. 2(b) and it is
related to the total scattering cross section ðQtÞ by

Qt ¼
Ps
nl

; ð8Þ

where n is the gas number density and l the dis-
tance over which the scattering takes place [20].
In the present experiments, l is taken to be the
physical length of the scattering cell (38.1 cm). To
ensure that the spread in beam energy does not
effect the measurement, the voltage at point ‘X’ is
chosen to be three standard deviations ($40 meV)
from the beam cut-off. By measuring the signal at
point ‘X’ as a function of energy, the energy de-
pendence of the total scattering cross section can
be obtained.

In order to discriminate between those scatter-
ing processes that change Ek as a result of angular
scattering and those involving a discrete energy
loss, we take advantage of a property of the mo-
tion of positrons in a slowly varying magnetic
field, namely that the quantity E?=B is an invari-
ant. If we analyze the transmitted positrons in a
magnetic field which is much smaller than that in
which they are scattered, then most of E? is con-
verted to Ek. In this case energy loss processes can
be distinguished by the distinct ‘‘steps’’ that they
produce in the RPA curve. Such a measurement is
shown in Fig. 2(c) for vibrational excitation in CO.
Here the ratio of the magnetic field, Bs, in the
scattering cell to the magnetic field, Ba, in
the analyser is M ¼ Bs=Ba ¼ 35. Once again, the
height of the step in the cut-off curve is directly
proportional to the integral cross section for the
inelastic scattering process.

Fig. 2. RPA cut-off curves. (a) No gas in scattering cell. (b) Test
gas (in this case CO) in the cell and with a ratio of B fields
between the gas cell and RPA, M ¼ Bs=Ba ¼ 1. The point ‘X’ is
the voltage at which the total cross section measurements are
performed, and Ps represents the probability of scattering. (c)
Test gas in the scattering cell and M ¼ 35. Note the step in the
RPA curve at the excitation energy for the m ¼ 1 mode in CO.

6 J.P. Sullivan et al. / Nucl. Instr. and Meth. in Phys. Res. B 192 (2002) 3–16
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is approximately Gaussian with
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ranging from about 60% for the m2 mode of CO2 to less
than 20% for the sum of the m3 + m1 modes of CH4. How-
ever the energy dependence of all cross sections is quite
similar to the Born-model prediction. In contrast, the mea-
sured cross section for H2 (i.e. a case where the dipole cou-
pling is zero due to symmetry) has a qualitatively different
energy dependence. Other trends in the data are discussed,
including comparisons with measured electron-impact
cross sections where available.

The experimental measurements discussed here were
made with a cold, trap-based positron beam [7] with an
energy resolution of 25 meV, FWHM. Scattering was stud-
ied using a method that exploits the orbits of the positrons
in a strong magnetic field [1,2,8]. This technique has proven
to be particularly useful in measuring absolute integral
inelastic excitation cross sections (i.e. without the need
for normalization to other data). The experimental tech-
nique is described in detail in [8], and as applied specifically
to measurement of vibrational excitation cross sections, it
is also described in [1,2].

2. Born-dipole approximation

While the Born approximation is typically regarded as
valid only at high energies, another region of applicability
is the one considered here. Due to the low energy of molec-
ular vibrational excitations and long-range nature of the
charge-dipole coupling, the amplitude of vibrational excita-
tion of an infrared-active mode is dominated by large
projectile-target distances. In this case, the projectile wave-
function is only weakly perturbed by the interaction with
the target. In addition, for projectile energies somewhat
higher than threshold, many partial waves with large angu-
lar momenta contribute to the cross section (classically,
large impact parameters are important). These partial-
wave components of the projectile wavefunction are close
to the corresponding components of a plane wave.

In the BDM, the differential and integral cross sections
of the vibrational excitation of mode n of a molecule are
given by [4,5],

dr
dX

¼ 4k0

3k
Md

n

k2 þ k02 # 2kk0 cos h
; ð1Þ

r ¼ 8p
3k2

Md
n ln½ðk þ k0Þ=ðk # k0Þ'; ð2Þ

where all quantities are in atomic units; k and

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 # 2xn

p
are the initial and final positron (electron)

momenta, xn is the energy of the mode andMd
n is the dipole

transition strength, including the mode degeneracy factor.
The absolute values of the transition strengths, Md

n , and
hence the effective transition dipole matrix elements,

Dn ¼
ffiffiffiffiffiffiffi
Md

n

q
, for many molecules and modes have been

determined by infrared absorption measurements [9,5].
Eqs. (1) and (2) provide absolute predictions of the differ-
ential and integral cross sections for vibrational excitation
by positron- or electron-impact.

A comparison of the BDM with measured cross sections
for both positron- and electron-impact excitation of the m3
vibrational mode of CF4 has recently been presented in [3].
As shown in Fig. 1, both the positron and electron data are
in good, absolute agreement with the BDM predictions.
The measurements shown in Fig. 1 for both positrons
and electrons are the first direct, integral, state resolved
cross section measurements for the m3 mode of CF4. Other
measurements of the integral cross section for electrons
using swarm techniques [10,11] and a combination of dif-
ferential cross section measurements and the BDM [12]
are discussed in [3].

In CF4, there is extensive electron charge-transfer
between the carbon and fluorine atoms, resulting in strong
dipole coupling to the asymmetric stretch mode. For mol-
ecules with smaller transition dipole amplitudes, the long-
range dipole coupling will give a smaller contribution to
the excitation amplitude. One can expect that, in this case,
short-range effects not described by the BDM may become
relatively more important, leading to deviations of the
cross sections from the predictions of Eqs. (1) and (2).

In Figs. 2–5, we compare the predictions of the BDM
with positron-impact data for the other molecules and
modes studied to date. Note that in Fig. 4, the data corre-
spond to the pairs of modes, m1 + m3 and m2 + m4, since the
experimental resolution was insufficient to resolve the indi-
vidual members of each pair. In this case, one mode in each
pair (i.e. the m3 and m4 modes) is infrared active. The other
two modes (m1 and m2) are not infrared active, resulting in
an absence of dipole coupling.

To quantify the degree of disagreement between the
BDM and the measurements and to analyze the energy
dependence of the cross sections, we show the BDM pre-
dictions scaled to fit the experimental data. In particular,
we assume that rexp = fBDrB, where rB is the Born-dipole
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Fig. 1. Comparison of the experimental results for positron-impact
excitation of the m3 mode of CF4 [3] with: (—) the Born-dipole model
[5], and (- -) the Born-dipole model with the magnitude adjusted to fit the
data. Also shown for comparison are the electron-impact data (s) taken
using the same experimental apparatus [3].
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Fundamentals and elastic widths in CH3Cl

small polyatomics some basic features of resonant annihi-
lation can be tested by relatively simple calculations.

The resonant part of the annihilation cross section can be
written using the Breit-Wigner formalism [19,20,24],

 !a !
"
k2

X
#

g#!a
#!

e
#

""# E# # "0$2 % !2
#=4

; (2)

where !a
#, !e

#, and !# are the annihilation, elastic, and total
widths of #th resonance, g# is its degeneracy, and k is the
positron momentum (atomic units are used). The annihila-
tion width of the positron bound state is proportional to the
average electron density at the positron, $ep [3,18,19],

 !a
# ! "r20c$ep: (3)

From Eqs. (1) and (2), the resonant Zeff is given by

 Z"res$
eff ! "

k
$ep

X
#

g#!e
#

""# E# # "0$2 % !2
#=4

: (4)

We will now use this equation to calculate the contribution
of infrared-active modes to Z"res$

eff .
Consider a compact polyatomic molecule that can bind

the positron with a small binding energy j"0j & %2=2 '
1 eV. The wave function of the bound positron is very
diffuse and behaves as ’0 ! Ar#1e#%r outside the mole-
cule. Since large distances dominate, the normalization
constant is given by A ’ "%=2"$1=2 [25].

Suppose that the vibrational modes in this small-sized
polyatomic are not mixed with overtones or combination
vibrations. Given the smallness of the binding energy, the
vibrational excitation energies of the positron-molecule
complex should be close to the fundamental frequencies
!# of the neutral molecule. In this case the sum in Eq. (4) is
over the modes #, and E# ( !#. Some (or even all) of
these modes can be infrared active. The positron capture
into such excited states is mediated by the long-range
dipole coupling. This allows one to calculate their contri-
bution to Z"res$

eff .
Consider a positron with momentum k incident on the

molecule in the vibrational ground state "0"R$, where R
represents all the molecular coordinates. If k2=2 ( !# %
"0, the positron can be captured in the VFR, where it is
bound to the molecule in a vibrationally excited state
"#"R$. The corresponding width !e

# can be found from

 !e
# ! 2"

Z
jA#kj2&"k2=2#!# # "0$

d3k
"2"$3 ; (5)

where A#k is the capture amplitude. We calculate it by
using a method similar to the Born-dipole approximation
[26,27], as

 A#k !
Z

’0"r$")
#"R$ d̂ * r

r3
eik*r"0"R$drdR

! 4"i
3

d# * k!!!!!!!!!!
2"%

p 2F1

"
1
2
; 1;

5
2
;# k2

%2

#
; (6)

where d̂ is the dipole moment operator for the molecule,
d# ! h"#jd̂j"0i, and 2F1 is the hypergeometric function
[28]. Substitution of Eq. (6) into Eq. (5) gives

 !e
# ! 16!#d2#

27
h"'$; (7)

where h"'$ ! '3=2"1# '$#1=2+2F1! 12 ; 1; 52 ;#'="1# '$",2
is a dimensionless function of ' ! 1% "0=!#, such that
'"0$ ! '"1$ ! 0, and hmax ( 0:75 at ' ( 0:89.

Equation (7) shows that the elastic width of a positron
VFR for an infrared active mode is basically determined by
its frequency !# and transition dipole amplitude d#, known
from infrared absorption measurements [29].

For weakly bound positron states the density $ep is a
linear function of % [19]. It can be estimated as

 $ep ! "F=2"$%; (8)

with F ( 0:66 [19]. The same constant characterizes the
contribution of direct annihilation, Z"dir$

eff ’ F="%2 % k2$
[19]. It is enhanced at small positron momenta by the
presence of a weakly bound (or virtual) state [11,30].

In a recent paper [1], measurements of Zeff for CH3Cl
and CH3Br using a cold trap-based positron beam have
been reported. The energy dependence of Zeff for these
molecules (and CH3F measured earlier [22]) shows peaks
close to the vibrational mode energies. This points to an
important contribution of resonant annihilation in all three
molecules, although the maximum Zeff value for CH3F
(250) is much lower than those for CH3Cl and CH3Br
(1600 and 2000, respectively).

These molecules have C3v symmetry, and all six of their
vibrational modes are infrared active (see Table I for
CH3Cl). Methyl halides are also relatively small, which
means that IVR may not take place [31]. This makes them
ideal for application of our theory. Equatons (4), (7), and
(8) allow one to calculate the contribution of all VFR to
Z"res$
eff , and the only free parameter of the theory, i.e., the

positron binding energy, can be chosen by comparison with
experimental Zeff .

In order to do this, Z"res$
eff from Eq. (4) must be aver-

aged over the energy distribution of the positron beam [22].
The latter can be modeled by a combination of the
Gaussian distribution in the longitudinal direction (z) and
Maxwellian distribution in the transversal direction (?).

TABLE I. Characteristics of the vibrational modes of CH3Cl.

Mode Symmetry g# !#
a (meV) d# (a.u.) !#d2# (a.u.)

#1 a1 1 363 0.0191 4:87- 10#6

#2 a1 1 168 0.0176 1:91- 10#6

#3 a1 1 91 0.0442 6:52- 10#6

#4 e 2 373 0.0099 1:34- 10#6

#5 e 2 180 0.0162 1:74- 10#6

#6 e 2 126 0.0111 5:66- 10#7

aMode energies !# and dipole amplitudes d# from Ref. [29].
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CH3F in comparison with those of CH3Cl and CH3Br is
related to the weakness of its binding. This is in turn related
to the smaller dipole polarizability and higher ionization
potential of fluoromethane, which make it less attractive
for the positron.

Note that the infrared absorption strengths of the modes
and the corresponding elastic widths, !e

! !!!d2!, may
vary considerably from mode to mode. On the other
hand, the contribution of different modes to Zeff are simi-
lar, apart from energy shift and g!=k! factor. As a result,
the energy dependence of Zeff has little resemblance to the
molecular infrared absorption spectra [1]. The relation
!! " !e

! also means that the contributions of the VFR
are not sensitive to the exact values of the elastic widths.
Therefore, our use of the ‘‘Born-dipole’’ approximation in
the derivation of Eq. (7) is not expected to lead to sizeable
errors in Z#res$

eff .
In conclusion, we have presented a theory of positron

annihilation by capture into vibrational resonances of
infrared-active modes. It agrees well with measured Zeff
for methyl halides and yields estimates of the positron
binding energies for these molecules.

This theory can also be used to investigate the contribu-
tion of infrared-active-mode VFRs to Zeff in other small
polyatomics that can bind positrons. Such calculations will
likely underestimate the Zeff because the resonances asso-
ciated with other (nondipole) modes may contribute just as
much, as long as their elastic widths are greater than the
annihilation width.

In molecules where multiquantum vibrations are
coupled by anharmonicity, the number of VFRs populated
by positron capture will be greatly increased, leading to
much higher Zeff . However, the same coupling will also
allow the VFR to decay by positron emission to vibration-
ally excited states of the molecule. This will increase the
total resonance widths, thereby reducing their individual
contributions. Calculation of Zeff for molecules with IVR is
the next big challenge for the theory.

The authors are grateful to C. M. Surko and J. A. Young
for a most helpful discussion of the positron energy distri-
bution and valuable comments, and to A. V. Korol for
discussions.
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Fundamentals and elastic widths in CH3Cl

small polyatomics some basic features of resonant annihi-
lation can be tested by relatively simple calculations.

The resonant part of the annihilation cross section can be
written using the Breit-Wigner formalism [19,20,24],

 !a !
"
k2

X
#

g#!a
#!

e
#

""# E# # "0$2 % !2
#=4

; (2)

where !a
#, !e

#, and !# are the annihilation, elastic, and total
widths of #th resonance, g# is its degeneracy, and k is the
positron momentum (atomic units are used). The annihila-
tion width of the positron bound state is proportional to the
average electron density at the positron, $ep [3,18,19],

 !a
# ! "r20c$ep: (3)

From Eqs. (1) and (2), the resonant Zeff is given by

 Z"res$
eff ! "

k
$ep

X
#

g#!e
#

""# E# # "0$2 % !2
#=4

: (4)

We will now use this equation to calculate the contribution
of infrared-active modes to Z"res$

eff .
Consider a compact polyatomic molecule that can bind

the positron with a small binding energy j"0j & %2=2 '
1 eV. The wave function of the bound positron is very
diffuse and behaves as ’0 ! Ar#1e#%r outside the mole-
cule. Since large distances dominate, the normalization
constant is given by A ’ "%=2"$1=2 [25].

Suppose that the vibrational modes in this small-sized
polyatomic are not mixed with overtones or combination
vibrations. Given the smallness of the binding energy, the
vibrational excitation energies of the positron-molecule
complex should be close to the fundamental frequencies
!# of the neutral molecule. In this case the sum in Eq. (4) is
over the modes #, and E# ( !#. Some (or even all) of
these modes can be infrared active. The positron capture
into such excited states is mediated by the long-range
dipole coupling. This allows one to calculate their contri-
bution to Z"res$

eff .
Consider a positron with momentum k incident on the

molecule in the vibrational ground state "0"R$, where R
represents all the molecular coordinates. If k2=2 ( !# %
"0, the positron can be captured in the VFR, where it is
bound to the molecule in a vibrationally excited state
"#"R$. The corresponding width !e

# can be found from

 !e
# ! 2"

Z
jA#kj2&"k2=2#!# # "0$

d3k
"2"$3 ; (5)

where A#k is the capture amplitude. We calculate it by
using a method similar to the Born-dipole approximation
[26,27], as

 A#k !
Z

’0"r$")
#"R$ d̂ * r

r3
eik*r"0"R$drdR
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where d̂ is the dipole moment operator for the molecule,
d# ! h"#jd̂j"0i, and 2F1 is the hypergeometric function
[28]. Substitution of Eq. (6) into Eq. (5) gives

 !e
# ! 16!#d2#

27
h"'$; (7)

where h"'$ ! '3=2"1# '$#1=2+2F1! 12 ; 1; 52 ;#'="1# '$",2
is a dimensionless function of ' ! 1% "0=!#, such that
'"0$ ! '"1$ ! 0, and hmax ( 0:75 at ' ( 0:89.

Equation (7) shows that the elastic width of a positron
VFR for an infrared active mode is basically determined by
its frequency !# and transition dipole amplitude d#, known
from infrared absorption measurements [29].

For weakly bound positron states the density $ep is a
linear function of % [19]. It can be estimated as

 $ep ! "F=2"$%; (8)

with F ( 0:66 [19]. The same constant characterizes the
contribution of direct annihilation, Z"dir$

eff ’ F="%2 % k2$
[19]. It is enhanced at small positron momenta by the
presence of a weakly bound (or virtual) state [11,30].

In a recent paper [1], measurements of Zeff for CH3Cl
and CH3Br using a cold trap-based positron beam have
been reported. The energy dependence of Zeff for these
molecules (and CH3F measured earlier [22]) shows peaks
close to the vibrational mode energies. This points to an
important contribution of resonant annihilation in all three
molecules, although the maximum Zeff value for CH3F
(250) is much lower than those for CH3Cl and CH3Br
(1600 and 2000, respectively).

These molecules have C3v symmetry, and all six of their
vibrational modes are infrared active (see Table I for
CH3Cl). Methyl halides are also relatively small, which
means that IVR may not take place [31]. This makes them
ideal for application of our theory. Equatons (4), (7), and
(8) allow one to calculate the contribution of all VFR to
Z"res$
eff , and the only free parameter of the theory, i.e., the

positron binding energy, can be chosen by comparison with
experimental Zeff .

In order to do this, Z"res$
eff from Eq. (4) must be aver-

aged over the energy distribution of the positron beam [22].
The latter can be modeled by a combination of the
Gaussian distribution in the longitudinal direction (z) and
Maxwellian distribution in the transversal direction (?).

TABLE I. Characteristics of the vibrational modes of CH3Cl.

Mode Symmetry g# !#
a (meV) d# (a.u.) !#d2# (a.u.)

#1 a1 1 363 0.0191 4:87- 10#6

#2 a1 1 168 0.0176 1:91- 10#6

#3 a1 1 91 0.0442 6:52- 10#6

#4 e 2 373 0.0099 1:34- 10#6

#5 e 2 180 0.0162 1:74- 10#6

#6 e 2 126 0.0111 5:66- 10#7

aMode energies !# and dipole amplitudes d# from Ref. [29].
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CH3F in comparison with those of CH3Cl and CH3Br is
related to the weakness of its binding. This is in turn related
to the smaller dipole polarizability and higher ionization
potential of fluoromethane, which make it less attractive
for the positron.

Note that the infrared absorption strengths of the modes
and the corresponding elastic widths, !e

! !!!d2!, may
vary considerably from mode to mode. On the other
hand, the contribution of different modes to Zeff are simi-
lar, apart from energy shift and g!=k! factor. As a result,
the energy dependence of Zeff has little resemblance to the
molecular infrared absorption spectra [1]. The relation
!! " !e

! also means that the contributions of the VFR
are not sensitive to the exact values of the elastic widths.
Therefore, our use of the ‘‘Born-dipole’’ approximation in
the derivation of Eq. (7) is not expected to lead to sizeable
errors in Z#res$

eff .
In conclusion, we have presented a theory of positron

annihilation by capture into vibrational resonances of
infrared-active modes. It agrees well with measured Zeff
for methyl halides and yields estimates of the positron
binding energies for these molecules.

This theory can also be used to investigate the contribu-
tion of infrared-active-mode VFRs to Zeff in other small
polyatomics that can bind positrons. Such calculations will
likely underestimate the Zeff because the resonances asso-
ciated with other (nondipole) modes may contribute just as
much, as long as their elastic widths are greater than the
annihilation width.

In molecules where multiquantum vibrations are
coupled by anharmonicity, the number of VFRs populated
by positron capture will be greatly increased, leading to
much higher Zeff . However, the same coupling will also
allow the VFR to decay by positron emission to vibration-
ally excited states of the molecule. This will increase the
total resonance widths, thereby reducing their individual
contributions. Calculation of Zeff for molecules with IVR is
the next big challenge for the theory.

The authors are grateful to C. M. Surko and J. A. Young
for a most helpful discussion of the positron energy distri-
bution and valuable comments, and to A. V. Korol for
discussions.
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Shapes of resonances observed with cold 
positron beam
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Theory vs experiment for halomethanes

CH3Cl

CH3Cl, CH3Br 
[Barnes, Young and Surko, PRA 74 012706 (2006)]

Halogen-substituted methane: CH3Hal
all 6 vibrational modes infrared active

CH3F 
[Barnes, Gilbert and Surko, PRA 67 032706 (2003)]
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Predictions for deuterated halomethanes

CD3Hal - same binding
energy as CH3Hal, but
different vibrational

spectrum

Young, Gribakin, Lee and Surko,
Phys. Rev.  A 77, 060702 (2008)
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Vibrational modes act as “doorways” into VFR
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Zero-range potential model for positron binding

No. of C’s BE (meV) 2nd (meV)
3 10 -
4 35 -
5 60 -
6 80 -
7 105 -
8 115 -
9 145 -
12 205 0
14 232 50

Experimental binding energies

G. F. Gribakin and C. M. R. Lee, Nucl. Instrum. and Methods B 247, 31 (2006)
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2D density of  the bound states
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Dependence of Zeff on positron energy for alkanes

Barnes et al. PRA 67, 032706 (2003) 
C-H vibrational mode ω ≈ 0.37 eV

Shift of the peak measures positron binding energy



Dependence of Zeff on positron energy for alkanes

Barnes et al. PRA 67, 032706 (2003) 
C-H vibrational mode ω ≈ 0.37 eV

Shift of the peak measures positron binding energy

New peak - 2nd bound state



Open questions
• Positron binding to open-shell atoms?

• Positron-atom electronic Feshbach resonances?

• Positron binding to nonpolar molecules?

• Positron annihilation rates in molecular bound states?

• Positron coupling to non-IR-active vibrations?

• Quantitative description of enhancement of 
resonances due to vibrational mode coupling (IVR)?
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