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Positrons in tokamak plasmas

e Large quantities of positrons are produced in ITER
fusion plasmas.

— What is the positron production rate in the
presence of runaway electron avalanching?

— What is the fate of the positrons (lifetime,
runaway fraction)?

— Can we detect them? | '
e Main conclusion:
— Positrons in tokamaks are produced with
high energiesl( < v+ < 7e).

— Most of them run away and live for several
seconds.

— Detection of synchrotron radiation may be

possible. o
Under construction in France. First plasma in 202
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The friction force

e Electrons are accelerated by an electric
field and experience friction from
collisions.

e Friction is non-monotonic function of
velocity.

e For a given electric field there is a critical
velocity, v.., at which the friction equals
the electric force.

e Runaway acceleration of some electrons
if £ > FE.

e Massive runaway i > Ep (v, = vr)
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Primary and secondary generation of runaways

e Thermal electrons diffuse e In a close Coulomb collision
through the tail of the distribution. an existing runaway electron
can throw a thermal electron

e Results in a small runaway population.
above the runaway threshold.

e EXxponential growth
of runaways.

Runaway region
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Runaway avalanches

e In tokamak disruptions:
— the plasma cools quickly,
— the resistivityn o« T3/2 rises, and

— a high electric field is induced to
maintain the plasma current.

o If £ > E.runaway electrons are createc

e The pre-disruption current is partly
replaced by a current of runaway electro
(I, ~ 1 MA in medium-sized tokamaks).

e Typical runaway electron energy: 10-20 [

MeV. Carbon dust particles produced when runaways
a plasma-facing component in Tore Supra.
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Electron-positron pair production

o

e -
o—).:>.eo—>

Ze Ze e’
Ek >3meC2 \

e Estimated number of positrons in tokamaks with= 1 MA: N, ~ 104
[Helander & Ward, PRL (2003)]

e This only takes into account collisions with hydrogenicspso it is probably an
underestimate.

e Number increases in tokamaks with larger currents (suciiarR).
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Runaway distribution function

e Distribution of secondary runaways:

e B pey  Ep2,
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TCzPe| I Cz 11 Pe||
where

dn,/dt = (F — 1)n,/c.T
[Rosenbluth & Putvinski, NB7 (1997)]

E = e|E)|T/mec,

7 is the collision time for relativistic electrons,
E=(E—-1)/(1+ Zeg),

c: =\/3(Zes +5)/m

p = yv/c normalized momentum
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Positron production cross section

e Cross section for pair production (blue)
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a = 5.22 ub, xo = 3.6
[D. A. Gryaznykh, Phys of Atomic Nucleé1 (1998)]
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e High-energy limit (red)

i N 28(Zar.)? In3
Y>1 = o7 Ye
Y e Threshold limit (green)
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e Annihilation cross section (purple)
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Positron production rate

[ L e e The positron production rate
r AR SRR \.~'N~ — with O tot » INA=10 |; df 3 .
1.5 s RS 1 dn, /dt = [ =+d =.S5,Is
[ J ," N i with 0,51, INA=10| +/ f dt P+ P
o | 7 Sl = with oo, INA=15 | o0
o d RE 3
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g ~ ] .
© Pmin
0-51 n; IS the number density of the ions.
0.0l i e To take into account collisions with impurities
20 40 60 80 100 and electrons this should be multiplied with
Pe Mpzl—kne/m—l—zznzZQ/m.

e 1 g of carbon distributed uniformly in a
volume of abouB0 m?, would correspond to a
multiplicative factor ofM, ~ 450.

e Number of positrons should be aroune°.
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Energy losses

Ratio of Bremsstrahlung / synchrotron radiation
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Steady-state positron distribution

of _ 1 o
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wheres, = df /dt = n; [ fEFoi01veF (pe, p4)d*pe @andF(pe, p4), is the probability
distribution of positrons of momentum, generated from electrons of enerngy

e Most positrons that survive the slowing

0.004
7 ] down without annihilation will have
0.003 momentum below_ = 10.
c i 1
~ 0.002; ] e Here, the presence of the electric field wi

neglected. But i > E. a population of
runaway positrons may be formed.
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Runaway positrons

e The number of positrons that run away
can be estimated by calculating how mat
positrons are born above the critical

velocityv. = ¢/v2FE.
+ 0O L2 2
® Npyn = dm fpc f (p pc)dp

e For most positrong. < p; — almost
the whole positron population can be
expected to run away,, ~n,.
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Lifetime and possibility for detection

e The lifetime of a positron can be
n ] estimated from the annihilation cross
1af ; sectionr, = 1/nev40,.

16~

TplS] 10 e Annihilation radiation is hard to detect

because the Bremsstrahlung from the
runaway electron population is larger.

o s w1 w e Bremsstrahlung and synchrotron radiatic
P from runaway positrons is peaked in the
direction opposite from that of the
runaway electrons.
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Synchrotron radiation
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Positrons in thunderstorms

e Runaway electron avalanches play a role
In lightning initiation.
(Gurevich et al, Phys. Lett. A, 1992)

e Runaway avalanching provides
mechanism for breakdown at 2 kV/cm,
rather than the conventional threshold fot
breakdown in air 23 kV/cm.

Z(m)

e Positrons are generated and they produc
new runaway electrons.

e Feedback of positrons have been shown
be important in lightning initiation (in
simulations).

Monte Carlo simulations showing runaway avalanches fowdlkr
electric fieldE2 = 750 kV/m. Blue trajectories are positrons.

[From Dwyer, Phys. Plasmas (2007).]
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Conclusions

e Runaway avalanching is an issue of great concern in tokandilese are still many
unsolved questions regarding generation, propagatiomoasds of runaway electrons.

e Positrons in tokamaks are produced with high enerdies (v ~ ~.). Most of them run
away and live long.

e There should be more thaf'® positrons in a typical tokamak disruption with runaway
avalanching.

e Detection of synchrotron radiation (with wavelengths oa f.m) from runaway positrons
may be possible.

e Since the radiated power and spectrum shape are sensitive tmpurity concentration,
temperature and other parameters, positron radiatione€andagnostic tool to understanc
the properties of the discharge.
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