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Introduction 1/2 
• To understand the emission 

physics of many classes of 
celestial X-ray sources, three 
main requirements: 
– Broad energy band (from fraction of 

keV to many hundreds of  keV) 
– High flux sensitivity on time scales 

shorter than the main source 
spectral variability time scale. 

–  Imaging 



Introduction 2/2 
• The only viable way to meet 

these reqs is to join together  
different focusing telescopes 
with complementary 
passbands: 
– Low energy (0.1-10 keV) 

telescopes: well tested in 
space; 

– Medium X-ray energy (up to 
70/100 keV) telescopes: soon 
in space (NuStar, ASTRO-H) 

– Soft gamma-ray (>70/100 
keV) telescopes, still under 
development. 



Requirements for soft gamma-ray telescopes 
(>70/100 keV): 

– Continuum sensitivity two orders of magnitude 
better than that of INTEGRAL at the same 
energies:  
– Goal: a few x10-8 ph/(cm2 s keV) in 105 s,     

10-15 erg/(cm2 s keV); 
– Much higher line sensitivity (Goal: 10-5 ph/cm2 

s in 106 s in the case of a narrow line); 
– much better (< 1 arcmin) imaging capability.  
 

Deep studies of  positron candidate sources  
    



Positron probes in X-/gamma-rays  

• Direct probe: 
– Detection of the positron annihilation line and 

associated continuum from Ps decay; 
 

• Indirect probes 
– X-/gamma-rays from e+ non thermal 

bremsstrahlung; 
– X-/gamma-rays from e+ synchrotron in strong 

magnetic fields; 
– X-/gamma-rays from IC of low energy photons by 

positrons. 
 



Positron candidate sources  

• Supernovae explosions through their 
radioactive products (𝛃 + 𝐝𝐝𝐝𝐝𝐝 of radioactive 
nuclei: 56Co, 44Ti);  

• Galactic BH binaries; 
• Massive BHs (GC, AGNs); 
• Magnetized NSs (X-ray pulsars,  magnetars); 
• Dark matter sources (e.g., Galaxy Clusters). 
 
Strong constraints on plasma density in the 
production sites to avoid positron escape. 

 
 

 



 
• Diffuse annihilation line 

emission with INTEGRAL 
(integrated flux: 1.7x10-3 
ph/cm2 s). 

 
• Origin still unknown.  
• Several models proposed: 

• Dark matter; 
• Antimatter 
• Source of radioactive elements 

like 26Al, 56Co, 44Ti 
• Gamma Source (e.g.,  Pulsar) 

• BH Binaries 
 

• More sensitivity and imaging 
capability required. 

Positron annihilation from GC 

 
Weidenspointner+2008 



High-energy spectra of magnetars 

Goetz et al. 2006 

•  Which is the origin of the high energy 
component? 

• Crucial to know the cutoff of the high 
energy spectrum. 

 
• Thompson & Beloborodov (2005) model: 

• positron flux required; 
• synchrotron spectrum. 

 
 
 
 
 

4U 0142+61 (Kuiper et al. 2006)  



Laue lens principle 
 

• Bragg diffraction  from suitable crystals in transmission 
configuration 



 Laue lenses 

For a recent review: FF & Von Ballmoos 2011 



 Mosaic crystals 
• Made of slightly 

misaligned perfect 
microcrystals: 
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• Energy passband of a 
single mosaic crystal: 
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where β (mosaicity) = 2.35 η  



Curved vs. mosaic crystals 
• Advantages of curved 

crystals:  
 

– Diffraction efficiency 
up to 1 (0.5 for mosaic 
crystals); 

 
– Better lens focusing 

SiGe(111) @ 150 keV 
developed by IKZ, 
Berlin   



 UNIFE on Laue lenses 

2 lens prototypes already 
developed. 
 

• 1st  Prototype: 
 
 Flat mosaic crystals of Cu(111) 
 
 Tile size: 15x15x2 mm3 
 

 Mosaic spread: 3-4 arcmin  
 
 Lens support: carbon fiber 

 
6 m focal length 

Frontera et al. 2008 



First light from a Laue lens in 2008  

Encircled energy as a function of radius: 
• Measured 
• Expected (perfect assembling of the crystals in the lens) 
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2nd lens prototype: 
 
 
 
 Flat mosaic crystals of Cu(111) 
 
 Tile size: 15x15x2 mm3 
 

 Mosaic spread: 2-3 arcmin  
 
 Lens support: carbon fiber 

 
 6 m focal length 

Virgilli et al. 2011 



2nd lens prototype focusing capability 

• Better encircled energy, but still not the expected. 
• In order to get the theoretical expectation a new assembling 

technology (LAUE project) is now being developed.  



Laue Project 
• A project "LAUE", supported by ASI, is on going, 

with the following goals: 
– new assembly technology for long focal lengths; 
– massive production of proper crystals; 
– development of  lens petal made of curved crystals, 20 

mFL; 
– Accommodation study of a space lens made of petals. 

• Large Collaboration of  
– Scientific Institutions: 

• UNIFE, INAF/IASF-Bologna, CNR, IMEM-Parma; 
–  and Industry: 

•  DTM-Modena, TAS I-Milan and Turin. 

 



Current crystal development 
• Indentation technology  

has been developed by 
LSS, University of Ferrara 
to produce curved 
crystals; 

 
• Crystals of Si and Ge are 

currently curved (talk by 
V. Guidi). 

 
• A bending technology is 

also developed for Si and 
GaAs by IMEM, CNR, 
Parma. Measured reflectivity of a curved 

Si(111) @ 150 keV   



Curved crystals vs. flat crystals 

 
• For 20 m FL, an angular 

resolution of 20 arcsec vs. 
3.5 arcmin; 

 
• Source image area 

reduced by a factor ∼100. 

Crystal size 15x15 mm2, 20 m FL 



Conclusions 

• A focusing telescope beyond 70/100 keV is crucial 
for a breakthrough in soft gamma-ray astronomy; 

•  Deeper searches of positron sources will be 
possible; 

• A big effort is in progress for the development of 
focusing Laue lenses (P. von Ballmoos talk); 

• In Ferrara: the project "LAUE", supported by 
ASI, is ongoing (resulta expected at the end of 
2012); 

• The Laue lens assembling technology is expected 
to become mature in the next future; 

•  Concrete prospects for proposing a broad band 
(e.g., 1-600/700 keV) satellite mission with both 
multilayer mirrors and Laue lenses. 
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