Broad band Laue lenses for deep studies of celestial positron sources

F. Frontera

University of Ferrara, Physics Dept on behalf of a Large Collaboration

"Positrons in Astrophysics" Mürren (CH) 23 March 2012

Introduction 1/2

- To understand the emission physics of many classes of celestial X-ray sources, three main requirements:
 - Broad energy band (from fraction of keV to many hundreds of keV)
 - High flux sensitivity on time scales shorter than the main source spectral variability time scale.

Imaging

Introduction 2/2

- The only viable way to meet these reqs is to join together different focusing telescopes with complementary passbands:
 - Low energy (0.1-10 keV) telescopes: well tested in space;
 - Medium X-ray energy (up to 70/100 keV) telescopes: soon in space (NuStar, ASTRO-H)
 - Soft gamma-ray (>70/100 keV) telescopes, still under development.

Requirements for soft gamma-ray telescopes (>70/100 keV):

 Continuum sensitivity two orders of magnitude better than that of INTEGRAL at the same energies:

Goal: a few x10⁻⁸ ph/(cm² s keV) in 10⁵ s,
 ➡ 10⁻¹⁵ erg/(cm² s keV);

- Much higher line sensitivity (Goal: 10⁻⁵ ph/cm² s in 10⁶ s in the case of a narrow line);
- much better (< 1 arcmin) imaging capability.</p>

Deep studies of positron candidate sources

Positron probes in X-/gamma-rays

- Direct probe:
 - Detection of the positron annihilation line and associated continuum from Ps decay;
- Indirect probes
 - X-/gamma-rays from e⁺ non thermal bremsstrahlung;
 - X-/gamma-rays from e⁺ synchrotron in strong magnetic fields;
 - X-/gamma-rays from IC of low energy photons by positrons.

Positron candidate sources

- Supernovae explosions through their radioactive products (β^+ decay of radioactive nuclei: ⁵⁶Co, ⁴⁴Ti);
- Galactic BH binaries;
- Massive BHs (GC, AGNs);
- Magnetized NSs (X-ray pulsars, magnetars);
- Dark matter sources (e.g., Galaxy Clusters).

Strong constraints on plasma density in the production sites to avoid positron escape.

Positron annihilation from GC

- Diffuse annihilation line emission with INTEGRAL (integrated flux: 1.7x10⁻³ ph/cm² s).
- Origin still unknown.
- Several models proposed:
 - Dark matter;
 - Antimatter
 - Source of radioactive elements like ²⁶Al, ⁵⁶Co, ⁴⁴Ti
 - Gamma Source (e.g., Pulsar)
 - BH Binaries
- More sensitivity and imaging capability required.

Weidenspointner+2008

High-energy spectra of magnetars

- Which is the origin of the high energy component?
- Crucial to know the cutoff of the high energy spectrum.
- Thompson & Beloborodov (2005) model:
 - positron flux required;
 - synchrotron spectrum.

Laue lens principle

• Bragg diffraction from suitable crystals in transmission configuration

Laue lenses

For a recent review: FF & Von Ballmoos 2011

Mosaic crystals

• Made of slightly misaligned perfect microcrystals:

$$W(\delta) = \frac{1}{\sqrt{2\pi\eta}} \exp\left(-\frac{\delta^2}{2\eta^2}\right)$$

• Energy passband of a single mosaic crystal:

$$\Delta E_{fwhm} = \frac{E\beta}{\tan\theta}$$

raggio incidente

where β (mosaicity) = 2.35 η

Curved vs. mosaic crystals

- Advantages of curved crystals:
 - Diffraction efficiency up to 1 (0.5 for mosaic crystals);
 - Better lens focusing

UNIFE on Laue lenses

2 lens prototypes already developed.

- 1st Prototype:
- Flat mosaic crystals of Cu(111)
- Tile size: 15x15x2 mm³
- Mosaic spread: 3-4 arcmin
- Lens support: carbon fiber
- *6 m focal length

Frontera et al. 2008

First light from a Laue lens in 2008

Encircled energy as a function of radius:

- Measured
- Expected (perfect assembling of the crystals in the lens)

UNIFE on Laue lenses 2/4

2nd lens prototype:

- Flat mosaic crystals of Cu(111)
- Tile size: 15x15x2 mm³
- Mosaic spread: 2-3 arcmin
- Lens support: carbon fiber
- 6 m focal length

Virgilli et al. 2011

2nd lens prototype focusing capability

- Better encircled energy, but still not the expected.
- In order to get the theoretical expectation a new assembling technology (LAUE project) is now being developed.

Laue Project

- A project "LAUE", supported by ASI, is on going, with the following goals:
 - new assembly technology for long focal lengths;
 - massive production of proper crystals;
 - development of lens petal made of curved crystals, 20 mFL;
 - Accommodation study of a space lens made of petals.
- Large Collaboration of
 - Scientific Institutions:
 - UNIFE, INAF/IASF-Bologna, CNR, IMEM-Parma;
 - and Industry:
 - DTM-Modena, TAS I-Milan and Turin.

Current crystal development

- Indentation technology has been developed by LSS, University of Ferrara to produce curved crystals;
- Crystals of Si and Ge are currently curved (talk by V. Guidi).
- A bending technology is also developed for Si and GaAs by IMEM, CNR, Parma.

Measured reflectivity of a curved Si(111) @ 150 keV

Curved crystals vs. flat crystals

- For 20 m FL, an angular resolution of 20 arcsec vs.
 3.5 arcmin;
- Source image area reduced by a factor ~100.

x - cm

Crystal size 15x15 mm², 20 m FL

Conclusions

- A focusing telescope beyond 70/100 keV is crucial for a breakthrough in soft gamma-ray astronomy;
- Deeper searches of positron sources will be possible;
- A big effort is in progress for the development of focusing Laue lenses (P. von Ballmoos talk);
- In Ferrara: the project "LAUE", supported by ASI, is ongoing (resulta expected at the end of 2012);
- The Laue lens assembling technology is expected to become mature in the next future;
- Concrete prospects for proposing a broad band (e.g., 1-600/700 keV) satellite mission with both multilayer mirrors and Laue lenses.