Laboratory experiments with the high-intensity low-energy positron beam POSH

Stephan Eijt RRR/FAME Faculty of Applied Sciences Delft University of Technology

Positronium emission from oxides

Henk Schut RRR/NPM2

23 March 2012

s.w.h.eijt@tudelft.nl

Technische Universiteit Delft

- 1. Positron facilities and sources at the Reactor Institute Delft (RID)
 - Positron Doppler broadening spectroscopy
 - Positron 2D-ACAR
- 2. Positronium momentum distributions and linewidths
 - emitted from MgO surfaces
 - emitted from SiO₂ surfaces

3. Implications

Galactic 511 keV annihilation line:

spectral analysis

P. Jean et al. (2006)

	Parameters	Measured values	
	$I_{\rm n} \ (10^{-3} \ {\rm s}^{-1} \ {\rm cm}^{-2})$	$0.72 \pm 0.12 \pm 0.02$	
	Γ_n (keV)	$1.32 \pm 0.35 \pm 0.05$	
	$I_{\rm b} \ (10^{-3} \ {\rm s}^{-1} \ {\rm cm}^{-2})$	$0.35 \pm 0.11 \pm 0.02$	
	Γ_{b} (keV)	$5.36 \pm 1.22 \pm 0.06$	
	$I_{3\gamma} (10^{-3} \text{ s}^{-1} \text{ cm}^{-2})$	$4.23 \pm 0.32 \pm 0.03$	
	$A_{\rm c} \ (10^{-6} \ {\rm s}^{-1} \ {\rm cm}^{-2} \ {\rm keV}^{-1})$	$7.17 \pm 0.80 \pm 0.06$	
	$f_{Ps} \sim 93\%$		

possible mechanism of Ps formation: interaction with neutral hydrogen atoms

Galactic 511 keV annihilation line:

spectral analysis

P. Jean et al. (2006)

Parameters	Measured values	
$I_{\rm n} \ (10^{-3} \ {\rm s}^{-1} \ {\rm cm}^{-2})$	$0.72 \pm 0.12 \pm 0.02$	
Γ_n (keV)	$1.32 \pm 0.35 \pm 0.05$	
$I_{\rm b} \ (10^{-3} \ {\rm s}^{-1} \ {\rm cm}^{-2})$	$0.35 \pm 0.11 \pm 0.02$	
$\Gamma_{\rm b}$ (keV)	$5.36 \pm 1.22 \pm 0.06$	
$I_{3\gamma} (10^{-3} \text{ s}^{-1} \text{ cm}^{-2})$	$4.23 \pm 0.32 \pm 0.03$	
$A_{\rm c} (10^{-6} {\rm s}^{-1} {\rm cm}^{-2} {\rm keV})$	$^{-1})$ 7.17 ± 0.80 ± 0.06	
$f_{P_{s}} \sim 93\%$		

possible mechanism of Ps formation: interaction with interstellar dust grains

oxide grains e.g. (Mg,Fe)₂SiO₄

23 March

Lab-based sources and instruments 1:

β -decay ²²Na \rightarrow ²²Ne + e⁺ + ν_e

The Variable Energy Positron beam (VEP)

1) Doppler broadening 2) 3y-detection sample holder Ge detector ²²Na source sample chamber 10x10 mm² sample 23 March 2012

10⁵ e⁺/s at a low energy ([3 eV] 0.1-30 keV): thin films and surfaces

$$\Delta E = 1 \ keV \ \triangleq \ p = 3.91 \cdot 10^{-3} m_0$$

TUDelft

Lab-based sources and instruments 2:

Electron-Positron Pair Production $\gamma \rightarrow e^+ + e^-$

Energetic y-rays required

23 March 2012

Threshold energy
$$2m_ec^2 = 1022 \text{ keV}$$

Reactor Institute Delft

gamma flux distribution

Photon energy (MeV)

Pair production: creation of a very brilliant positron beam POSH

Reactor Institute Delft

23 March 2012

$4 \times 10^8 \text{ e}^+/\text{s}$ at a low energy (100 eV - 15 keV): thin films and surfaces

2D-ACAR method: high resolution positron-electron momentum distributions

2D-Angular Correlation of Annihilation Radiation

coupled to the POSH-beam

Positron study of Ps emission from internal surfaces of MgO

Positron study of Ps emission from internal surfaces of MgO

T= 295 K (room temperature measurement)

2D-ACAR distributions

p-Ps component: $\Delta p = 6 \cdot 10^{-3} m_0 c$

 $FWHM = 1.6 \ keV$

broad component: $\Delta p = 15.5 \cdot 10^{-3} m_0 c$ $FWHM = 4.0 \ keV$


```
p-Ps component:
```

 $\Delta p = 6 \cdot 10^{-3} m_0 c$ FWHM = 1.6 keV

broad component:

 $\Delta p = 15.5 \cdot 10^{-3} m_0 c$ FWHM = 4.0 keV

23 March 2012

Compare Galactic 511 keV line:

 $FWHM = 1.3 \pm 0.4 \ keV$ $FWHM = 5.4 \pm 1.2 \ keV$

p-Ps component:

 $\Delta p = 6 \cdot 10^{-3} m_0 c$ FWHM = 1.6 keV

broad component:

 $\Delta p = 15.5 \cdot 10^{-3} m_0 c$ FWHM = 4.0 keV

23 March 2012

15

Maxwellian velocity distribution:

$$N_{p-Ps}(p) = ae^{-p^2/p_0^2} = ae^{-p^2/2mkT_0}$$

Momentum and Energy distributions for the emitted p-Ps \Rightarrow resembles Maxwell velocity distribution, hot-Ps

$$F(p) \propto p^2 e^{-p^2/2mkT_0}$$

$$f(E) \propto e^{-E/E_0}$$

Compare Galactic 511 keV line: $FWHM = 1.3 \pm 0.4 \ keV$ (narrow component)

p-Ps emission from SiO_2 mesoporous films

Collaboration with K. Hirata, K. Ito, Y. Kobayashi, AIST, Tsukuba, Japan

Typical values for p-Ps linewidth $FWHM = 0.7 \ keV$

$$T_0 \sim 1.1 \cdot 10^4 K$$

23 March 2012

Compare Galactic 511 keV line: $FWHM = 1.3 \pm 0.4 \ keV$

(narrow component)

f_{Ps} is strongly temperature dependent

23 March 2012

Ps-fractions surface emission quartz (c-SiO₂)

P. Sferlazzo et al. Phys. Rev. B 32 (1985) 6067

Ps fraction emitted from the **surface of quartz**

pára-Ps peaks Inside quartz (bulk Ps state)

20

23 March 2012

Ps-fractions surface emission quartz (c-SiO₂)

P. Sferlazzo et al. Phys. Rev. B 32 (1985) 6067

Ps fraction emitted from the surface of quartz

S. van Petegem Phys. Rev. B 70 (2004) 115410

Ps fractions as a function of depth below the surface

 $f_{_{Ps}} \sim 57\%$

Ps emission from the surface of quartz

23 March 2012

Compare Galactic 511 keV line: $f_{Ps} \sim 93\%$

Conclusions and Implications

- Oxides may give rise to a p-Ps component compatible to the narrow component of the Galactic 511 keV annihilation line [similar in width]
- fractions of emitted Ps are high for SiO₂, up to f_{Ps}~60%, but lower than f_{Ps}~93% seen for the Galactic annihilation
 fractions for oxides increase with temperature
 oxidized Al-surfaces may lead to very high fractions up to 90%, at high T
- Further studies seem promising, e,g, on oxides such as (Mg,Fe)₂SiO₄ silicates abundantly present as grains in the ISM ('Star Dust')

