Moon Shadow observation with Cerenkov Telescopes Probing the e⁺/e⁻ ratio at TeV regime

CR Moor

shadoy

Pierre Colin for the MAGIC Collaboration Max-Planck-Institut für Physik

Workshop on Positrons in Astronomy - 21 march 2012

Earth-Moon spectrometer

The Moon shadow position
depends on:
➢ CR charge
➢ CR kinetic energy

Detection of the Moon shadow effect

Neutrino experiments

- Used to determine angular resolution and pointing accuracy

Ground EAS array experiments

(ARGO-YBJ, Tibet-ASy, MILAGRO, etc.)

- Used to determine Angular resolution.
- Est/West Asymmetry of the shadow probes anti-proton/proton ratio.
 (Energy range: 1-10 TeV)

Cherenkov Telescopes

- First try in the 90s:
 ARTEMIS experiments
- No detection...

P/P ratio upper limits from moon shadow asymmetry

Atmospheric Cherenkov Technique

Types of air shower

Gamma/Cosmic-Ray Discrimination

Shape of the shower image:

Reconstructed direction

Efficient for point-like Gamma-ray source

Cosmic electrons (e⁺+e⁻) signal

Electrons flux is isotropic

- Discrimination only based on air shower images

- Hadron background estimated with MC simulations

Cosmic electron spectrum with MAGIC

Fermi skymap: 0.1-100 GeV

No gamma/electron discrimination \rightarrow We use only extragalactic data

Moon shadow observation with MAGIC

Photodetectors:

- low gain PMT (6 dynodes)
- UV and blue sensitive
- no filter

Observation strategy

- Distance to Moon for electron or proton shadow at 300-700 GeV: ~ 4 deg
- Wobbling \perp dev. Axis
- about same Zd
- same dist. to Moon
- Amplitude: +/- 0.6 deg
- Fast wobbling: 10 min
- Low HV settings
- PMT gain/~1.5
- Observation possible until:
 - 30 x Dark-night NSB
 - 50% Moon phase

MAGIC Performance with strong Moon

Observation of Crab Nebula in the Moon shadow condition

~11 deg

- Moon distance:
- Moon phase:
- Zenith Distance:
- NSB:

70% 8-40 deg

~20 × standard observation

MAGIC Performance:

	Energy threshold	Sensitivity (E>300GeV)
Dark night	~50 GeV	0.8% crab
Moon Shadow	~200 GeV	1.2% crab

 θ^2 (deg²)

Energy threshold for electrons

Observation ~4° from Moon requires high image cleaning but energy threshold of electrons must be below ~300 GeV \rightarrow **Observation Zenith angle < ~50°**

Observation window: only 10-20h /year for each shadow (e⁻ and e⁺)

Expected signal

Moon shadow characteristics: ^{*} anti"-Flux = e⁻ flux × Ω_{Moon} Moon solid angle Ω_{Moon}= (6.6 ± 0.8) 10⁻⁵ sr Extension: ~0.5%1°

MAGIC sensitivity (50h):
Moon shadow 300-700GeV: ~4.4% crab

Hypotheses	Flux 300-700 GeV	Expected MAGIC
	(in crab unit)	detection time
MAGIC spectrum =	5.4 %	~30h
100% e ⁻ (80% e ⁻ / 20% e ⁺)	(4.3% / 1.1%)	(~50h / ~800h)
ATIC spectrum =	7.2 %	~20h
100% e ⁻ (60% e ⁻ / 40% e ⁺)	(4.3% / 2.9%)	(~50h / ~100h)

The future observatory CTA:

10

10²

 10^{3}

10⁴

Ěnergy [GeV]

Cosmic electron with CTA

- (e⁻ + e⁺) spectrum from ~50 GeV to ~20 TeV
- Anisotropy at ~10% (or diffuse Gamma)
- Continue monitoring of the CTA performance

Moon shadow with CTA

- Sensitivity: ~10 times better than MAGIC
- Require robust photo-detector (UV filter, SiPM?)
- With MAGIC strategy: e⁺/(e⁺ + e⁻) = ~20% measurable
- Energy range: ~300 GeV to ~2TeV

(if observation near the Moon is possible)

Conclusion

- Antimatter / matter ratio can be probed with the Moon shadow effect :
 - \rightarrow e⁺/e⁻ ratio with Cherenkov Telescope
- MAGIC results :
 - (e⁺ + e⁻) spectrum measured with MAGIC
 - Moon shadow observed:
 - Target : e⁻ moon shadow at 300-700 GeV
 - Performance: detection expected in 30-50h
 - Data in one year: ~10h
 - Analysis ongoing
- Prospect with the future observatory CTA
 - (e^- + e^+) spectrum from ~50 GeV to ~20 TeV
 - e⁺/e⁻ ratio measurable at TeV regime