

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER

Paul Coleman University of Bath

positron backscattering

secondary electron emission

low-energy positron diffraction

Auger electron emission

positron surface trapping, re-emission, positronium formation

positron implantation

depth distributions at thermalisation (after ~ps):

P(z) = $2(z/z_0^2)\exp(-z^2/z_0^2)$ where $z_0 = (40/\rho)E^{1.6}$ with density ρ in gcm⁻³ and E in keV $P(z) = \alpha \exp(-\alpha z)$, with α (cm) $\approx 16\rho E_m^{-1.4}$ (ρ = density in gcm⁻³, E_m = maximum beta positron energy in keV)

in-flight annihilation

positron diffusion and annihilation

positronium formation – insulators, nanoporous materials

** see later talks in this session **

POSITRON SOURCES

RADIOACTIVE ISOTOPES – eg ²²Na

- Relatively long half-life (2.6 years)
- Relatively short biological half-life (3 days)
- 1.274 MeV γ can be used as a 'start' signal

The perennial problem – not enough positrons...

POSITRON SOURCES

RADIOACTIVE ISOTOPES – eg ²²Na

- Relatively long half-life (2.6 years)
- Relatively short biological half-life (3 days)
- 1.274 MeV γ can be used as a 'start' signal

LINEAR ACCELERATORS – eg KEK, Japan

RESEARCH REACTORS – eg NEPOMUC, Munich

POSITRON SPECTROSCOPIES

= probability that a pair of annihilation gamma rays has total (ie ~ e⁻) momentum p

$$\rho(p_x, p_y) = \int \rho(\mathbf{p}) \, \mathrm{d}p_z$$

2-D ANGULAR CORRELATION

$$\rho(p_z) = \iint \rho(\boldsymbol{p}) \, \mathrm{d}p_x \, \mathrm{d}p_y$$

DOPPLER BROADENING SPECTROSCOPY

 $\lambda = \iiint \rho(\mathbf{p}) \, \mathrm{d}px \, \mathrm{d}py \, \mathrm{d}pz$

LIFETIME SPECTROSCOPY

ANGULAR CORRELATION OF ANNIHILATION RADIATION

C of M FRAME

LAB FRAME

 $\delta\theta \approx \mathbf{p}_t | \mathbf{mc} \ (\sim 5-20 \ \mathrm{mrad})$

where p_{t} is the component of momentum of the annihilating pair in a direction transverse to the gamma emission

electron momentum densities

Bristol 2D-ACAR lab

2D-ACAR – quartz ↑ ← 2D Fermi surface

POSITRON LIFETIME SPECTROSCOPY

positronium (Ps): e⁺-e⁻ bound state
-formed in insulators
-para-Ps lives 125 ps in vacuum
-ortho-Ps lives 142 ns in vacuum
-typical Ps lifetime in solids ~ ns

POSITRON LIFETIME MEASUREMENT

DOPPLER BROADENING SPECTROSCOPY

Doppler shift in the photon energy = $\pm cp_z/2$

If p_z is from a 5eV electron $cp_z/2 = 1130 \text{ eV}$ (~ the resolution of a high-purity Ge detector)

Doppler *broadening* around 511keV is measured

Good for rapid, low-resolution measurements of e⁻ momenta vs time, temperature etc.

DOPPLER BROADENING SPECTROSCOPY

WHAT CAN BE STUDIED?

OPEN-VOLUME POINT DEFECTS

VACANCIES, VACANCY CLUSTERS, DISLOCATIONS, GRAIN BOUNDARIES, INNER/OUTER SURFACES

NEUTRAL VACANCY: no detrapping, $\tau > \tau_{bulk}$, less Doppler broadening: no temperature dependence

NEGATIVE VACANCY: no detrapping, $\tau > \tau_{bulk}$, less Doppler broadening: stronger trap at lower temperatures

SHALLOW TRAP (eg NEGATIVE ION): detrapping below 300K, $\tau \sim \tau_{bulk}$, little Doppler broadening

SENSITIVITY TO OPEN-VOLUME POINT DEFECTS

OPEN-VOLUME POINT DEFECTS: EXTRACTING CONCENTRATIONS

$$N(t) = \sum_{i} I_{i} \lambda_{i} \exp(-\lambda_{i} t)$$

for two states - bulk or defect:

$$\kappa_d = \nu C_d = \frac{I_d}{I_b} (\lambda_b - \lambda_d)$$

$$S = \sum_{i} f_i S_i$$

for two states - bulk or defect:

$$f_D = \frac{S - S_B}{S_D - S_B} = \frac{vC}{vC + \lambda_B}$$

v is the specific trapping rate

OPEN-VOLUME POINT DEFECTS

CONCENTRATION

SIZE

v is the specific trapping rate – v depends on charge state of the defect τ and S are related to open volume of defect

environment and affinity

POSITRON MODERATION

NEGATIVE WORK FUNCTION

BETA SPECTRUM (0 – 540 keV, PEAK 180 keV) RE-EMITTED POSITRONS (0 – 3eV, PEAK 1.5eV)

EMISSION FROM TUNGSTEN

alternatives include moderation by solid rare gases

LAB-BASED POSITRON BEAMS

Magnetic-transport positron beam system

LAB-BASED POSITRON BEAMS

EXAMPLES OF POSITRON BEAM STUDIES OF SOLIDS

1. SILICON NANOCRYSTALS in SiO₂ MATRIX

EXAMPLES OF POSITRON BEAM STUDIES OF SOLIDS

1. SILICON NANOCRYSTALS in SiO₂ MATRIX

ILLUMINATION BY BLUE LEDs

ERBIUM and nSi 3-5nm clusters -Er and Si **EELS** responses coincident Si Er TEM 1.02 1.00 WITH Er S PARAMETER 96'0 96'0

NO Er

10

15

INCIDENT POSITRON ENERGY (keV)

→ Er in interfaces

20

25

30

5

0 00

0.94

0.92

EXAMPLES OF POSITRON BEAM STUDIES OF SOLIDS

2. NANOPORES in ICE

CLOSED nm PORES: Ps DECAY TO 3γ and Ps LIFETIME DEPEND ON PORE SIZE

INTERCONNECTED PORES: ESCAPE POSSIBLE, 3γ FRACTION INCREASED, VACUUM LIFETIME

PORE COLLAPSE

DEPENDENCE ON GROWTH RATE DURING SUBLIMATION

see poster for more information

POSITRON BEAMS: APPLICATIONS IN ASTROPHYSICS

DUST in the ISM

N. Guessoum, P. Jean & W. Gillard Applied Surface Science 252 (2006) 3352

POSITRON BEAMS: APPLICATIONS IN ASTROPHYSICS

DUST in the ISM

DOPPLER BROADENING – CHEMICAL ANALYSIS

DOPPLER BROADENING – STRUCTURAL ANALYSIS

Ps FORMATION AND DECAY – PORES AND STRUCTURAL ANALYSIS

IN-FLIGHT ANNIHILATION ON MODEL SYSTEMS

POSITRON BEAMS: APPLICATIONS IN ASTROPHYSICS

Thanks to past and present members of the Bath positron group - and to you for your attention

