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  Large Scale Structures 

LSS: matters & fields LSS: matters & fields 
• Dark Matter
• Thermal plasma   (ICM)
• Relativitic plasma (CRs)
• B-field
• SMBHs + Jets
• CMB + other rad. fields
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Plasma in Large Scale Structures
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Plasma in Large Scale Structures

Magnetized plasma 
bubbles 

Magnetized “jets“ 
transport energy 
(particles) and fields 
(B-field, MHD waves)  
in galaxy clusters (LSS)
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e± Plasma in Large Scale Structures
Sites

• AGN Jets
• RG Lobes
• ICM
• DM halo

Origin
• Injection
• In-situ CR production
• Dark Matter annihilation

Probes
• Continuum emission
• Emission lines 
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The BH region

Le± for a BH with 
a = 0.5 M 
B0 = 0.27 Bk

Conjecture
The curved spacetime surrounding a rotating BH  
dramatically alters the structure of nearby e.m. field. 
There is an instability of the magnetized vacuum 
surrounding a rotating BH immersed in a B-field ~

Bk = m2c3/(eh) ~ 4.4×1013 G 

Specifically, a maximally rotating BH with 
MBH=3M immersed in a magnetic field 
B ~2.3 × 1012 G can be a copious producer 
of electron-positron pairs with a luminosity 
Le± ~ 3 × 1052 erg s−1.                 [Heyl 2000]
For B-field parallel (antiparallel) to J,    e+ (e-) 
tend to escape → ∞, and the BH quickly acquires 
a negative (positive) charge, so that equal 
numbers of each charge escape → ∞. 
For a maximally rotating BH, the bulk of the pair 
creation occurs at latitudes  ~ 30◦ − 50◦

JB
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BH region            Gravitational collapse 
 … Conjectures continued

Rotating BHs can produce e-e+ 
outflow when brought into contact 
with a strong magnetic field 
                                 [Van Putten 1999].
The e-e+ outflow is produced by a 
coupling of the spin of the BH to the 
orbit of the particles. 
 Analogy with Hawking radiation

For a nearly extreme Kerr BH, 
particle outflow from an initial
state of electrostatic equilibrium 
has normalized isotropic emission

  Bc = 4.4 × 1013G
  M= MBH

  θ ≥ (Bc/3B)1/2

In gravitational collapse, e-e+ pairs are 
produced by strong E fields generated by 
charge separation: baryon core (+) and 
electron gas (-)          [Han et al. 2011]
Gravitational energy is then converted to 
e-e+ energy: assuming that the energy 
density of the oscillating fields is totally 
converted to the  e-e+   energy density
                   Εpair ≡ Εosci / Npair

[Han et al. 2011]
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Seeding B-field in LSS: the beginning
Non Minimal G-EM Coupling
                 [Pauli 1933, Schuster 1912, Blackett 1947]

Magnetized plasma blob ejection
VLBA radio observation

B fields of massive bodies arise from 
their rotation. 
In other words, neutral mass currents 
generate B-fields implying the 
existence of a NMC between
Gravitational & Electromagnetic fields.

Eg:  Generalized tetrad field theory
                                        [Mikhail & Wanas 1977]

Magnetized blob launch 
                               [S.C. et al. 2010-2011]
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The jet region
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The jet region
Direct constraints

Emission line from e± annihilation
(best probe for future experiments)
[continuum need to be understood]

Inside a jet the relativistic bulk motion 
and internal motions decrease the 
annihilaton cross-section and broaden 
the 511 keV line.

Possible production of the 511 keV line 
if the jet mixes with dense thermal gas 
of an intervening cloud
 - The case of 3C 120 
 - INTEGRAL-SPI: only upper limits
   F(e+) < 2.5 1045 f/(1-f)1.5 [e+ s-1] F511keV< 5.5 10-10 x f/(1-f)1.5 [Pho/cm2 s] 

e± jet

Thermal gas
cloud

[Marscher et al. 2007]
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The jet region

Evidence for an e-e+ dominated jet 
rather than an e-p dominated jet

[Reynolds et al. 1996]

If a jet core is still self-absorbed at ~100 
GHz      e-p jet are definitely ruled out.

Indirect constraints
Synchrotron self-absorption theory of jet 
cores constraint the magnetic field B 
and the relativistic particle density n.

Data (5 GHz) implies  nmin ≥ 10 cm−3 
For this jet to carry the kinetic luminosity 
inferred from global energetic 
arguments, the density must be: 
• n ∼ 1    cm−3     → (e-p jet) 
• n ∼ 102 cm−3     → (e-e+ jet) M87

M87

Fsynch(νm)

κ(ν
m )X=1
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The jet - lobe region
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The jet - lobe region
Method
• determine the lepton content
   at the base of the jet from
   synchrotron emission & absorption
• determine the total particle energy
   from the power required to create
   the observed giant lobes (bubbles)
• the combination set constraints on
  the particle content in the jet/lobe

Minimum 
n. density

Synchrotron Flux (~ν−α) in optically thick 
(self.-absorbed) region is independent
of n = (N0/2α)γmin

−2α

Synch. radiation at frequency νm to be
self-absorbed in the radio source

1)(),( =⋅= Xr mmsynch νκντ

excluded

Lk(e±)

Lk(ep)
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Lobes in the ICM
Estimating Lk from lobe-ICM interaction
 all the jet energy results in the
    creation and expansion of 
    radio bubbles

Lk = Ebubble / tbubble

pVpVE
R

R
bubble )42(

1
÷≈

−
=

γ
γ

sbubblebubble cRt /2=

Constraints from radio & X-rays
                           (radio & SZE)

• 3C84-Perseus seems to be
  dominated by e± jets 
• M87-Virgo case: still unclear

[Dunn et al. 2002, Colafrancesco et al. 2012]
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The jet - lobe region
General case

2BbnaLk ⋅+⋅=
• B-field effects on jet-lobe energy

• γmin effects on jet-lobe energy

Low γmin < 50 values  favour 
light e± jets/lobes
Large γmin > 100 do not allow to 
distinguish e± or e-p jets

Definite 
probes

• (super)VLBI radio: probe jet base
• SZE mm: probe lobe energetic
• γ-ray: probe annihilation line DUAL-like

MILLIMETRON
RADIOASTRONSKA
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The jet - lobe energetics

           VLA
E-VLA

MerKAT
    SKA-P1
    SKA-P2

SZE
SKA, MeerKAT
∆ν = 0.1 - 45 GHz
Separate Synchrotron & SZE

Radio        reliable measure of     UB * Ue
SZE           unbiased measure of          Ue

p1=103      102    10     1 
Equipartiti

on

DA240

Synchrotron 
Jν ~ ne B(s+1)/2 ν(s-1)/2

SZE  Iν ~ ne UCMB ν(s-1)/2
3C292

    3C294

[S.C.+Marchegiani 2011]
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The Intra Cluster Medium
Clusters of galaxies are enriched with positrons  
• from jets of AGNs 
• from the interaction of cosmic-rays with the ICM
• from Dark Matter annihilation

The cooling of positrons 
and their annihilation
with ICM electrons yields 
a narrow annihilation line

Evolution of the Positron Distribution Function

Cooling rate Production rate Annihilation rate

Thermalization

Annihilation
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The Intra Cluster Medium

AGN 
injection

Cosmic Ray 
production

Annihilation Line structure
Unlike annihilation in the ISM of galaxies, the line produced in clusters is not 
smeared by three-photon decay of positronium, because positronium formation 
is suppressed at the high (≥ keV) temperature of the ICM.

The peak emissivity in the annihilation line is                                          

The steady-state emissivity in the annihilation line is 
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The Intra Cluster Medium
Expected signals for Q ~ γ-s

s=2 s=3

If AGN jets are composed of e+e− pairs, then the annihilation line from  nearby 
galaxy clusters containing powerful radio-galaxies  might be detectable with 

space missions with Flim=10-6 cm-3 s-1 provided that [D2 / r3
c ] f -1(r) < (ε·Mpc)/Flim
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Dark Matter halos
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Dark Matter halos

WIMP Sterile ν

Decay modesAnnihilation modes
±++→ ππχ χ 0X

γ γπ →0

±± +→ eXπ
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Dark Matter halos
WIMPs Sterile ν

Decay rate

The positrons are slowed down due to 
ionization losses & other thermalizations.
Larmor radius of e+ with energy Ee+

The stopping distance for the random walk 
of an e+, the distance that the e+ is 
confined, is  √rd ≤1 pc , much shorter than 
the mean free path of the e± annihilation

Therefore, the positrons will become
non-relativistic before annihilation.

Annihilation rate

The positrons produced are slowed down 
due to thermalization processes (like CRs):
 substitute ne,CR   with  ne,DM ~ <σV>/M2

χ

Thermalization is faster than annihilation in 
the ISM/ICM that is rich in thermal baryons

eline nkT
M
Vn ⋅⋅><∝

•

2
χ

σ

Annilation line due to WIMPs only possible 
in DM halos which host a co-spatial 
gaseous halo:     Galaxies, Clusters.
 Dwarf galaxies cannot thermalize e±

±± →+→ eX πχ χ
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Dark Matter halos
WIMPs Sterile ν

The rate for a e-e+ annihilation in the diffuse
region of Milky Way is          [Chan & Chu 2010]

To produce 1043 s−1 e± annihilations, there 
must exist a large positron cloud with 1061 
positrons in the MW, and the production 
rate must be much greater than the 
annihilation rate.              For the MW buldge

If Γe=10−28 s−1 and ms =1 MeV, one can get 
sin2(2θ) ~ 10−24, which is consistent with the
diffuse X-ray background constraint. 
                                 [e.g. Boyarsky et al.2009]

Radiative decay line

DM particles captured by the stellar matter 
and then distributed in the core of the star.
To increase the e-e+ flux, DM particles 
must redistribute around the newly 
formed compact object formed at the 
end of the star lifetime  [Zhang et al. 2011]

Inelastic DM scattering
Extended dense DM mini-halo surrounding 
a neutron star may be formed.

F e± visible from 
DM mini-halos if 
Dhalo ≤ 0.1 pc
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Conclusions
Electron-Positron plasma copiously produced in Large Scale Structures
by various mechanisms: SMBH jets (t-dependent), CRs, DM (steady-state)

Direct probes     511 keV annihilation line (need thermalization medium)
             ICS-CMB continuum radiation  (pervasive emission)

Indirect probes: radio (VLBI) + µwave + gamma 
                          polarization (radio + soft-gamma)

Requirements: sensitivity (line + continuum) & polarization at 0.1-10 MeV
                          multi-frequency follow-up: radio to high-E gamma

Electron-Positron plasma are very relevant for energetics and stability of 
LSS atmospheres: AGN jet composition; Cluster atmospheres; DM nature



 25

THANKS

   for your attention !
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