

Positron Astrophysics

e[±] Plasmas in Cosmic Structures: BHs, JETs, CRs, DM

Sergio Colafrancesco

Wits University - DST/NRF SKA Research Chair INAF-OAR Email: <u>Sergio.Colafrancesco@wits.ac.za</u>

Large Scale Structures

LSS: matters & fields

- Dark Matter
- Thermal plasma (ICM)
- Relativitic plasma (CRs)
- B-field
- SMBHs + Jets
- CMB + other rad. fields

Plasma in Large Scale Structures

RG lobe emission (ejecta)

→ Intra Cluster Medium Blazar-like emission (SMBH)

> Intra Cluster → Medium

→ RG lobe emission (ejecta)

Plasma in Large Scale Structures

Magnetized plasma bubbles

> Magnetized "jets" transport energy (particles) and fields (B-field, MHD waves) in galaxy clusters (LSS)

Central / Engine (BH) RG lobe emission (ejecta)

→ Intra cluster Medium Blazar-like emission (SMBH)

> Intra Cluster → Medium

→ RG lobe emission (ejecta)

e[±] Plasma in Large Scale Structures

Sites

- AGN JetsRG LobesICM
- DM halo

Origin • Injection

Injection
In-situ CR production
Dark Matter annihilation

Probes

- Continuum emission
- Emission lines

The BH region

Conjecture

The curved spacetime surrounding a rotating BH dramatically alters the structure of nearby e.m. field. There is an instability of the magnetized vacuum surrounding a rotating BH immersed in a B-field ~

 $B_k = m^2 c^3 / (e {\tt k}) \sim 4.4 {\times} 10^{13} \; G$

Specifically, a maximally rotating BH with $M_{BH}=3M_{\odot}$ immersed in a magnetic field **B** ~2.3 × 10¹² **G** can be a copious producer of electron-positron pairs with a luminosity $L_{e\pm} \sim 3 \times 10^{52}$ erg s⁻¹. [Heyl 2000]

For B-field parallel (antiparallel) to J, e+(e-)tend to escape $\rightarrow \infty$, and the BH quickly acquires a negative (positive) charge, so that equal numbers of each charge escape $\rightarrow \infty$. For a maximally rotating BH, the bulk of the pair creation occurs at latitudes $\sim 30^{\circ} - 50^{\circ}$

BH region

Gravitational collapse

.. Conjectures continued

Rotating BHs can produce e-e+ outflow when brought into contact with a strong magnetic field [Van Putten 1999]. The e-e+ outflow is produced by a coupling of the spin of the BH to the orbit of the particles.

Analogy with Hawking radiation

For a nearly extreme Kerr BH, particle outflow from an initial state of electrostatic equilibrium has normalized isotropic emission

$$\sim 5 \times 10^{48} (B/B_c)^2 (M/7M_{\odot})^2 \sin^2 \theta \text{ erg/s}$$

$$\begin{bmatrix} \mathsf{B}_c = 4.4 \times 10^{13} \mathsf{G} \\ \mathsf{M} = \mathsf{M}_{\mathsf{BH}} \\ \mathbf{0} > (\mathsf{P}_c/2\mathsf{P})^{1/2} \end{bmatrix}$$

In gravitational collapse, e-e+ pairs are produced by strong E fields generated by charge separation: baryon core (+) and electron gas (-) [Han et al. 2011] Gravitational energy is then converted to e-e+ energy: assuming that the energy density of the oscillating fields is totally converted to the e-e+ energy density

Seeding B-field in LSS: the beginning

Non Minimal G-EM Coupling

[Pauli 1933, Schuster 1912, Blackett 1947]

B fields of massive bodies arise from their rotation.

In other words, neutral mass currents generate B-fields implying the existence of a NMC between Gravitational & Electromagnetic fields.

$$\mathbf{m} = \left[\beta \frac{\sqrt{G_{\mathrm{N}}}}{2c}\right] \mathbf{L} \qquad \mathbf{B} = \frac{3(\mathbf{m} \cdot \mathbf{r})\mathbf{r} - \mathbf{m}|\mathbf{r}|^{2}}{|\mathbf{r}|^{5}}$$

Eg: Generalized tetrad field theory [Mikhail & Wanas 1977]

$$\mathbf{B}_{\mathbf{p}} = \frac{9}{4} \sqrt{\frac{2M}{R}} G_{\mathbf{N}} \mathbf{\Omega} \ G.$$

$$\mathbf{B}_{\mathbf{p}} = \frac{4\beta G_{\mathbf{N}}^{1/2}}{5Rc} M \mathbf{\Omega} \ G$$

$$\mathbf{m} = \left[\beta \frac{\sqrt{G_{\mathbf{N}}}}{2c}\right] \mathbf{L}$$

$$\beta \approx 2730 \left[\frac{R}{R_{\odot}} \frac{M_{\odot}}{M}\right]^{1/2}$$

Magnetized blob launch

[S.C. et al. 2010-2011]

Magnetized plasma blob ejection VLBA radio observation

The jet region

Galaxy M87

The jet region

Direct constraints

- Emission line from e± annihilation (best probe for future experiments) [continuum need to be understood]
- Inside a jet the relativistic bulk motion and internal motions decrease the annihilaton cross-section and broaden ⁷ and the 511 keV line.
- Possible production of the 511 keV line if the jet mixes with dense thermal gas of an intervening cloud
- The case of **3C 120**
- INTEGRAL-SPI: only upper limits F(e+) < 2.5 10⁴⁵ f/(1-f)^{1.5} [e⁺ s⁻¹]

$$\tau_{ann} \approx 100 yr \cdot (5 \cdot 10^4 cm^{-3} / n_e)$$

$$\tau_{therm} \leq 0.6 yr \cdot \gamma_e (5 \cdot 10^4 cm^{-3} / n_e)$$

F_{511keV}< 5.5 10⁻¹⁰ x f/(1-f)^{1.5} [Pho/cm² s]

The jet - lobe region

The jet - lobe region

Method

- determine the lepton content at the base of the jet from synchrotron emission & absorption
- determine the total particle energy from the power required to create the observed giant lobes (bubbles)
- the combination set constraints on the particle content in the jet/lobe

Synch. radiation at frequency $\nu_{\rm m}$ to be self-absorbed in the radio source

$$nB^{(\frac{3}{2}+\alpha)} \gtrsim \frac{2\delta}{3^{(\alpha+1)}\sqrt{\pi}g(\alpha)\alpha\gamma_{\min}^{2\alpha}er} \left(\frac{m_e c \nu_m}{e\delta}\right)^{5/2+\alpha}.$$

Synchrotron Flux ($\sim v^{-\alpha}$) in optically thick (self.-absorbed) region is independent of n = (N₀/2 α) $\gamma_{min}^{-2\alpha}$

Lobes in the ICM

Estimating L_k from lobe-ICM interaction all the jet energy results in the creation and expansion of radio bubbles

 $L_{k} = E_{bubble} / t_{bubble}$

 $L_{\rm K} \approx \Gamma^2 \beta \pi r(Z)^2 n m_{\rm e} c^3 \left[\frac{4}{3} (\langle \gamma \rangle - 1) + \frac{\Gamma - 1}{\Gamma} (1 + k_{\rm a}) \right]$

 $pV \approx (2 \div 4) pV$

[Dunn et al. 2002, Colafrancesco et al. 2012]

Constraints from radio & X-rays (radio & SZE)

3C84-Perseus seems to be dominated by e[±] jets
M87-Virgo case: still unclear

The jet - lobe region

General case

- B-field effects on jet-lobe energy $L_k = a \cdot n + b \cdot B^2$
- γ_{min} effects on jet-lobe energy

Definite

probes

$$n = \int_{\gamma_{\min}}^{\gamma_{\max}} N(\gamma) d\gamma,$$

$$2\alpha n = -N_0 \left[\gamma^{-2\alpha}\right]_{\gamma_{\min}}^{\gamma_{\max}}.$$

Low $\gamma_{min} < 50$ values favour light e[±] jets/lobes Large $\gamma_{min} > 100$ do not allow to distinguish e[±] or e-p jets

- (super)VLBI radio: probe jet base SZE mm: probe lobe energetic
- γ -ray: probe annihilation line

SKA RADIOASTRON

MILLIMETRON

DUAL-like

The jet - lobe energetics

The Intra Cluster Medium

Clusters of galaxies are enriched with positrons • from jets of AGNs

- from the interaction of cosmic-rays with the ICM
- from Dark Matter annihilation

The cooling of positrons and their annihilation with ICM electrons yields a narrow annihilation line

Evolution of the Positron Distribution Function

$$\frac{\partial N_{+}(\gamma,t)}{\partial t} = \frac{\partial}{\partial \gamma} [b(\gamma,t) N_{+}(\gamma,t)] + Q(\gamma) - N_{+}(\gamma,t) A(\gamma)$$

Cooling rate Production rate Annihilation rate

Thermalization

$$\tau_{\rm therm} \approx 4.8 \times 10^3 \, T_{\rm keV}^{3/2} \left(\frac{10^{-3} \ {\rm cm}^{-3}}{n_e} \right) \ {\rm yr}$$

Annihilation

$$ann \approx 3.97 \cdot 10^9 yr \left[\frac{n_e}{10^{-3} cm^{-3}}\right]^{-1}$$

$$\begin{array}{ll} A(\gamma_{\rm eq}) & = & \displaystyle \frac{1}{2n_+} \int dk \left. \frac{dn_\gamma}{dk \, dt} \right|_{\rm line} \\ & \approx & 8 \times 10^{-15} n_e \ {\rm s}^{-1}, \end{array}$$

The Intra Cluster Medium

Annihilation Line structure

Unlike annihilation in the ISM of galaxies, the line produced in clusters is not smeared by three-photon decay of positronium, because positronium formation is suppressed at the high (\geq keV) temperature of the ICM.

The Intra Cluster Medium

Expected signals for $Q \sim \gamma^s$

If AGN jets are composed of e+e- pairs, then the annihilation line from nearby galaxy clusters containing powerful radio-galaxies might be detectable with space missions with F_{lim} =10⁻⁶ cm⁻³ s⁻¹ provided that [D²/r³_c] f⁻¹(r) < ($\epsilon \cdot Mpc$)/F_{lim}

Annihilation modes

Sterile v

Decay modes

$$\nu_s \rightarrow 3\nu$$

$$\nu_s \to \nu + \gamma$$

 $\nu_s \rightarrow \nu + e^+ + e^-$

WIMPs

Sterile v

Annihilation rate
$$\chi \chi \rightarrow X + \pi^{\pm} \rightarrow e^{\pm}$$

 $R = n_{\chi}(r) \langle \sigma V \rangle_A$ = 10⁻²⁹ s⁻¹ $\left(\frac{n_{\chi}}{10^{-3} \text{ cm}^{-3}} \right) \left(\frac{\langle \sigma V \rangle_A}{10^{-26} \text{ cm}^3 \text{ s}^{-1}} \right)$

The positrons produced are slowed down due to thermalization processes (like CRs): \Box substitute $n_{e,CR}$ with $n_{e,DM} \sim \langle \sigma V \rangle / M_{\chi}^2$

Thermalization is faster than annihilation in the ISM/ICM that is rich in thermal baryons

 $\stackrel{\bullet}{n_{line}} \propto \frac{\langle \sigma V \rangle}{M_{\chi}^2} \cdot kT \cdot n_e$

Annilation line due to WIMPs only possible in DM halos which host a co-spatial gaseous halo: ☐ Galaxies, Clusters. ☐ Dwarf galaxies cannot thermalize e±

Decay rate
$$\nu_s \to \nu + e^+ + e^-$$

 $\Gamma_e = \frac{G_F^2}{384\pi^3} \sin^2 2\theta m_s^5 \left(\frac{|V|^2}{2} + \frac{1}{8}\right) = \Gamma_{3\nu} \left(\frac{|V|^2}{2} + \frac{1}{8}\right)$

The positrons are slowed down due to ionization losses & other thermalizations. Larmor radius of e+ with energy Ee+

$$r = \frac{E_{e^+}}{eB} = 10^{13} \left(\frac{E_{e^+}}{10^4 \text{ MeV}}\right) \left(\frac{B}{10^{-5} \text{ G}}\right) \text{cm}.$$

The stopping distance for the random walk of an e+, the distance that the e+ is confined, is $\sqrt{rd} \leq 1 pc$, much shorter than the mean free path of the e± annihilation

$$\bar{l}_{e^{\pm}} = \frac{1}{n\sigma_a} \sim 30 \text{ kpc},$$

22

Therefore, the positrons will become non-relativistic before annihilation.

WIMPs

DM particles captured by the stellar matter and then distributed in the core of the star. **To increase the e-e+ flux, DM particles must redistribute around the newly formed compact object formed at the end of the star lifetime** [Zhang et al. 2011]

Inelastic DM scattering Extended dense DM mini-halo surrounding a neutron star may be formed.

Sterile v

The rate for a e-e+ annihilation in the diffuse region of Milky Way is [Chan & Chu 2010]

 $P \sim n\sigma_a v_e \sim 10^{-18} \text{ s}^{-1},$

To produce 10^{43} s⁻¹ e[±] annihilations, there must exist a large positron cloud with 10^{61} positrons in the MW, and the production rate must be much greater than the annihilation rate. For the MW buldge

$$A_{\text{bulge}} \approx \int_0^{R_B} 4\pi r^2 n_s(t_0) \Gamma_e dr,$$

If Γ_e =10⁻²⁸ s⁻¹ and m_s =1 MeV, one can get sin²(2 θ) ~ 10⁻²⁴, which is consistent with the diffuse X-ray background constraint.

[e.g. Boyarsky et al.2009]

Radiative decay line $\frac{\Phi_{\gamma}}{\Phi_{e^{\pm}}} = \frac{0.031}{4|V|^2 + 1},$

Conclusions

Electron-Positron plasma copiously produced in Large Scale Structures by various mechanisms: SMBH jets (t-dependent), CRs, DM (steady-state)

Electron-Positron plasma are very relevant for energetics and stability of LSS atmospheres: AGN jet composition; Cluster atmospheres; DM nature

Direct probes 511 keV annihilation line (need thermalization medium) ICS-CMB continuum radiation (pervasive emission)

Indirect probes: radio (VLBI) + μwave + gamma polarization (radio + soft-gamma)

Requirements: sensitivity (line + continuum) & polarization at 0.1-10 MeV multi-frequency follow-up: radio to high-E gamma

THANKS

for your attention !

