The AX-PET experiment: A demonstrator for an axial Positron Emission Tomography

Chiara Casella, ETH Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The AX-PET experiment: A demonstrator for an axial Positron Emission Tomography

Chiara Casella, ETH Zurich

International Workshop on Positrons in Astrophysics March 20-23, 2012 - Mürren, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The AX-PET experiment: A demonstrator for an axial Positron Emission Tomography

Chiara Casella, ETH Zurich

International Workshop on Positrons detection in PET March 20-23, 2012 - Mürren, Switzerland

EIGgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

AX-PET : AXial Positron Emission Tomography (PET)

- **PET** (Positron Emission Tomography)
- Axial concept

high spatial resolution and high sensitivity solution

- AX-PET detector
- AX-PET detector performance
- AX-PET simulations
- Image reconstructions (few examples)

AX-PET : small size calorimeter, using scintillating crystals, WLS, photodetectors "borrowed" from HEP

Particle Physics Positron Emission Tomography

> PET : "in-vivo" functional imaging technique in nuclear medicine

(3) Coincidence Processing Unit (2) (\mathbf{I}) positron annihilation (5) Image Reconstruction positron emission LOOKING

Positron Emission: $p \rightarrow n + e^+ + \nu_e$ Positron Annihilation: $e^+e^- \rightarrow \gamma\gamma$ $(E_{\gamma} = 511 \ keV)$

(I) Inject the radiotracer into the body

radiotracer : biologically active compound mixed to the positron emitter.

(2) Wait for uptaking period

(3) Start the acquisition (i.e. detection of coinc. events) clear event signature : coincidence of 2 photons of known energy (511 keV) emitted co-linearly

(4) Feed the data into the reconstruction algorithms

(5) image of the activity concentration

 get a (quantitative) image of the radiotracer concentration

A.Del Guerra, CERN Academic Training 2009

in "conventional" PET scanners :

scintillator based

radial arrangement

 $\epsilon = 1 - e^{-\mu L}$

 $\delta p = L isin\theta$

max interaction efficiency, long L

min parallax error

- deterioration of the spat. resol.
- non uniformity in the field of view
 short L

always a compromise between

good spatial resolution (small L, small δp)
 good detection efficiency (long L, high ε)

solution : add DOI (Depth Of Interaction) information

several attempts / different strategies - but only a partial DOI info can be achieved

AX-PET approach to the DOI problem : change the geometry !

from radial ...

TH Institute for

Particle Physics

short and radially oriented crystals

long and axially oriented crystals
several layers one on top of the other

Advantages of the axial approach :

- DOI information (x,y) = position of the hit crystal
- resolution in the (x,y) plane : given by the size of the crystals (d)
- improve resolution => reduce crystal size
- improve sensitivity => increase number of layers
- > parallax free system, with resolution and sensitivity decoupled !

Detector solution

Scintillator

511 keV

Ζ

axial direction

WLS

- Axial coordinate : center of gravity method
- Axial resolution < w

(I) crystals => TRANS-AXIAL COORDINATE (x,y) ENERGY INFORMATION

Х

```
(2) wave lenght shifters =>
AXIAL COORDINATE (z)
```

- 3D localization of the photon interaction point
- no compromise between spatial resolution and sensitivity
- high granularity => possibility to identify Compton scattering events in the detector

AX-PET collaboration

A. Braem, M. Heller, C. Joram, T. Schneider and J. Séguinot CERN, PH Department, CH-1211 Geneva, Switzerland

> **V. Fanti** Università e Sezione INFN di Cagliari, Italy.

 C. Casella, G. Dissertori, L. Djambazov, W. Lustermann, F. Nessi-Tedaldi, F. Pauss, D. Renker¹, D. Schinzel² ETH Zurich, CH-8092 Zurich, Switzerland
 ¹ Currently with Technical University München , D-80333 München, Germany
 ² Currently with Massachussetts Institute of Technology, Cambridge 02139-4307, USA.

> **J.E. Gillam, J. F. Oliver, M. Rafecas, P. Solevi** IFIC (CSIC / Universidad de Valencia), E-4607 I Valencia, Spain

> > **R. De Leo, E. Nappi** INFN, Sezione di Bari, I-70122 Bari, Italy

E. Chesi, A. Rudge, P. Weilhammer Ohio State University, Columbus, Ohio 43210, USA

E. Bolle, S. Stapnes University of Oslo, NO-0317 Oslo, Norway

U. Ruotsalainen, U. Tuna Tampere University of Technology, FI-33100 Tampere, Finland

ETH

INFN

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

TAMPERE UNIVERSITY OF TECHNOLOGY

Goal of the AX-PET collaboration:

Build and fully characterize a "demonstrator" for a PET scanner based on the axial concept. Assess its performances.

demonstrator <=> Two identical AX-PET modules, used in coincidence

Characterization / Performance =>

- test each individual module in a dedicated setup
- characterization in the coincidence setup
- reconstruction of the images of extended objects
- simulations

7

AX-PET Module

- SCINTILLATOR CRYSTALS :

- Inorganic LYSO (Lu_{1.8}Y_{0.2}SiO₅: Ce, Prelude 420 Saint Gobain) crystals
 - high atomic number
 - high density $(\rho = 7.1 \text{ g/cm}^3)$
 - λ @511 keV ~ 1.2 cm
 - quick decay time $(\tau = 41 \text{ ns})$
 - high light yield (32000 y / MeV)
- 3 x 3 x 100 mm³

- WAVE LENGTH SHIFTING STRIPS (WLS):

- ELJEN EJ-280-10x
- highly doped (x10 compared to standard) to optimize absorption
- 0.9 x 3 x 40 mm³
- Each crystal and WLS strip is readout individually by its own photodetector

WLS

MODULE :

- 6 layers
- 8 crystals / layer
- 26 WLS / layer
- 48 crystals + 156 WLS = **204 channels**
- staggering in the crystals layout

Photodetectors

- MPPC (Multi Pixel Photon Counter) from Hamamatsu

- also known as SiPM / G-APD
 - high PDE (~ 50%) √
 - high gain (10⁵ to 10⁶) at low bias voltage $\sqrt{}$
 - ullet insensitive to magnetic field $\sqrt{}$
 - compact size \checkmark
 - temperature dependent $\sqrt{}$
 - dark rate $\sqrt{}$

for crystals for WLS

MPPC S10362-33-050C :

- 3x3 mm² active area
- 50 μm x 50 μm pixel
- 3600 pixels
- Gain ~ 5.7 x 10⁵

MPPC 3.22×1.19 Octagon-SMD :

- 1.2 x 3.2 mm² active area
- 70 µm x 70 µm pixel
- 1200 pixels
- Gain ~ 4 x 10⁵
- custom made units

LYSO energy response

Characterization measurements with point-like ²²Na source (diam = 0.25 mm, A~900 kBq), @ CERN

LYSO No. 21 - 22Na coinc. trigger

WLS response

Characterization measurements with point-like ²²Na source (diam = 0.25 mm, A~900 kBq), @ CERN

typical integrated raw spectra of few WLS strips

- beam spot collimated at the center of the module (WLS 13)
- 511 keV energy deposition in the LYSO

derived from <u>center of gravity method</u> from all the WLS participating to the cluster

Two modules coincidence

Characterization measurements with point-like ²²Na source (diam = 0.25 mm, A~900 kBq), @ CERN

AX-PET very first coincidence event !

/home/daq/axpet/log/run02730.log INFO: Run Start Time: Mon Nov 23 12:01:20 2009

ETH Institute for

Two modules coincidence

Characterization measurements with point-like ²²Na source (diam = 0.25 mm, A~900 kBq), @ CERN

ETH Institute for

Two modules coincidence

Characterization measurements with point-like ²²Na source (diam = 0.25 mm, A~900 kBq), @ CERN

ETH Institute for

Axial resolution

Intersection of LOR with central plane no tomographic reconstruction !!!

resolution in the trans-axial direction (digital - from crystal size): $R_x,y=(3mm/\sqrt{12})x2.35 \sim 2 mm FWHM$

ETH Institute for Particle Physics

Simulations

• AX-PET : fully simulated device !

- Excellent agreement between data and simulations
- GATE (G4 toolkit for PET) with modified standard templates to cope with the non conventional nature of AX-PET (geometry, WLS, sorter for the coincidences...)

intersection of LOR two mods coinc.

- identify Compton scattering events
- several identification algorithms tested

Max. E	Compton K.	Klein-Nishina	Neural Networks
61%	65%-66%	61%-63%	75%
 identification rate ~ 60% 			

Simulations

TH Institute for

ETH Institute for Particle Physics Simple image reconstruction

AX-PET

Distance [mm]

20

30

Distance [mm]

NEMA Phantom

extended FOV 2nd module rotation AAA (Advanced Acceleration Applications)

NEMA phantom hot / cold / warm - AAA 2011

Three regions in the same phantom to address three different aspects

Hot & Cold rods for contrast

Homogeneous cylinder for assessing the ability to reconstruct homogeneous distributions

Series of small rods for **resolution**

=> FWHM ~ 1.6 mm

NEMA Phantom

mm

63

34 mm

2 mm

3 mm

15

Resolution Phantom

Resolution Ph

Mini Deluxe phantom

Rods oriented parallel to Z axis

extended FOV

Parallel to Z axis

Perpendicular to Z axis

- Fixed time acquisition: 120 s /step
- 60 iterations + post-reconstruction smoothing
- No corrections
- Artefacts due to data truncation (FOV too small...)

Results presented in Valencia, IEEE 2011

Conclusions

Axial concept for a PET scanner :

i.e. long and axially oriented scintillation crystals Intrinsically parallax free system (DOI information directly from the axial geometry) Spatial resolution and sensitivity could both be optimized

AX-PET implementation :

3D spatial information of the photon interaction point with : matrix of LYSO crystals and WLS strips individual readout of each channel (Si-PM)

Two modules built (i.e. **AX-PET demonstrator**) **Energy resolution ~ 12% FWHM,@ 511 keV Spatial resolution ~ 1.35 mm FWHM**

(competitive with state of the art PET)

 in HEP approach :
 calorimeter with tracking capabilities (granularity)

in PET detectors domain :novelty as a PET detector :

- geometry
- WLS implementation
- Compton scattering reconstruction

Fully simulated device

Simulations - fully validated on the demonstrator - will assess the final performance of an hypothetical full ring scanner. **Flexible design**: scalable in size / dimensions / nr. layers....

=> flexibility in the final target of AX-PET (small animal PET / brain PET)

AX-PET demonstrator : Extensively tested with sources and successfully used with phantoms !

NIM A 654 (2011) 546-559

more details : https://twiki.cern.ch/twiki/bin/view/AXIALPET/WebHome

Can this be useful in positronium physics ?

ETH Institute for Particle Physics

module

