Direct Detection of Cosmic Positrons

Mirko Boezio INFN Trieste, Italy

International Workshop on Positrons in Astrophysics March 20th 2012

The discovery of cosmic rays

- Victor Hess ascended to 5000 m in a balloon in 1912
- ... and noticed that his electroscope discharged more rapidly as altitude increased
- Not expected, as background radiation was thought to be terrestrial. Extraterrestrial origin, confirming previous hints by Theodore Wulf and Domenico Pacini

• e⁺ discovered by Carl Anderson, Nobel Prize winner with Hess in 1936

Height above sea level (km)

PARTICLE PHYSICS BIRTH WAS DUE TO COSMIC RAYS

Advent of accelerators

-≪40 km

Large detectors but short duration. Atmospheric overburden ~5 g/cm². Till 2008 almost all data on cosmic antiparticles from these experiments.

0 m

Cosmic Rays and Anti-Particles

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Astrophysics and Cosmology compelling Issues

- Origin and propagation of Cosmic Rays
- Nature of the Dark Matter that pervades the Universe
- Apparent absence of cosmological Antimatter (see R. Battiston's talk on 21st)

The first historical measurements on galactic antiprotons

The first historical measurements of the p/p - ratio and various Ideas of theoretical Interpretations

Balloon data : Positron fraction before 1990

Searches for WIMP Dark Matter

P. Gondolo, IDM 2008

DM annihilations

DM particles are stable. They can annihilate in pairs.

DM annihilations

Resulting spectrum for positrons and antiprotons $M_{\rm WIMP}{=}\,1~{\rm TeV}$

Antiparticle Experiments (old and new)

INFN Istituto Nazionale di Fisica Nucleare

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Antimatter and Dark Matter Research

✓ MASS - 1,2 (89,91)
✓ TrampSI (93)
✓ CAPRICE (94,97,98)
✓ PAMELA (2006-)

✓ BESS (93, 95, 97, 98, 2000) 2004,2007) Heat (94, 95, 2000) ✓ IMAX (96) ✓ BESS LDF (2004, 2007) ✓ AMS-01 (1998) ✓ AM5-02 (2011)

HEAT 94-95 Subnuclear Physics Techniques in Space Experiments

> Charge sign and momentum
> Beta selection
> Z selection
> hadron – electron

discrimination

BESS97/98 Apparatus

AMS-01: the Detector

- Acceptance: $\Omega \gg 0.15 \, \text{m}^2 \text{sr}$
- Bending power » 0.14 Tm²
- TOF : trigger + β and dE/dx meas.
- Tracker: sign Z + Rigidity + dE/dx meas.
- Cherenkov: e/p separation up to ~ 3 GeV.

CR antimatter

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Gobal Fit of experimental data on gamma-rays from the Galactic Centre, on antiprotons and positrons. Same model for cosmic-ray propagation and Dark Matter annihilation.

W. De Boer et al., Eur. Phys. J. C33(2004)5981. Neutralino Mass 207 GeV.

Antimatter Missions in "Space"

Positrons and Antiprotons with PAMELA (and FERMI)

INFN Istituto Nazionald di Fiaica Nucleard

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

PAMELA detectors

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

Mass: 470 kg

Antiparticle Results

GLAST/ FERMI Gamma-Ray Large Area Space Telescope

3000 kg, 650 W 1.8 m x 1.8 m x 1 m 20 MeV – 300 GeV

Fermi Positron Fraction

W

PAMELA Positron Fraction

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

See also P. Salati's talk on the 22nd

PAMELA Positron Fraction

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Proton and Helium Nuclei Spectra

PAMELA Positron Fraction

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Diffusion Halo Model

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Secondary nuclei

PAMELA Positron Fraction

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Theoretical uncertainties on "standard" positron fraction

Flux=A • $E^{-\gamma}$

T. Delahaye et al., Astron.Astrophys. 501 (2009) 821; arXiv: 0809.5268v3

Electron Spectrum

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

A Challenging Puzzle for CR Physics

Astrophysical Explanation: SNR

P.Blasi et al., PRL 103 (2009) 051104 arXiv:0903.2794 [astro-ph]

Positrons detection

Where do **positrons** come from?

Mostly locally within 1 Kpc, due to the energy losses by Synchrotron Radiation and Inverse Compton

Astrophysical Explanation: Pulsars

Are there "standard" astrophysical explanations of the high energy positron data?

Not a new idea: Boulares, ApJ 342 (1989), Atoyan et al (1995)

Astrophysical Explanation: Pulsars

- Mechanism: the spinning B of the pulsar strips e^{-} that accelerated at the polar cap or at the outer gap emit γ that make production of e^{\pm} that are trapped in the cloud, further accelerated and later released at $\tau \sim 10^5$ years.
- Young (T < 10^5 years) and nearby (< 1kpc)
- If not: too much diffusion, low energy, too low flux.
- Geminga: 157 parsecs from Earth and 370,000 years old
- B0656+14: 290 parsecs from Earth and 110,000 years old.
- Diffuse mature pulsars

See P. Salati's talk on the 22nd

Astrophysical Explanation: Pulsars

H. Yüksak et al., arXiv:0810.2784v2 Contributions of e- & e+ from Geminga assuming different distance, age and energetic of the pulsar

M. Cirelli et al., Nucl. Phys. B 813 (2009) 1; arXiv: 0809.2409v3

Interpretation: DM

Which DM spectra can fit the data?

DM with $m_{\chi} \simeq 150 \,\text{GeV}$ and W^+W^- dominant annihilation channel (possible candidate: Wino)

positrons

antiprotons

M. Cirelli et al., Nucl. Phys. B 813 (2009) 1; arXiv: 0809.2409v3

Interpretation: DM

Which DM spectra can fit the data?

DM with $m_{\chi} \simeq 10 \text{ TeV}$ and W^+W^- dominant annihilation channel (no "natural" SUSY candidate)

But B≈10⁴

positrons

M. Cirelli et al., Nucl. Phys. B 813 (2009) 1; arXiv: 0809.2409v3

Interpretation: DM

DM with $m_{\chi} \simeq 1 \text{ TeV}_{and} \ \mu^+ \mu^- \text{dominant}$ annihilation channel

positrons

antiprotons

Interpretation: DM I. Cholis et al. Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1

- Propose a new light boson (m $_{\Phi} \leq \text{GeV}$), such that $\chi\chi \rightarrow \Phi\Phi$; $\Phi \rightarrow e^+e^-$, $\mu^+\mu^-$, ...
- Light boson, so decays to antiprotons are kinematically suppressed

Electrons

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

The ATIC electron results exhibits a feature

Curves are from GALPROP diffusion propagation simulation code

- Solid curve is local interstellar space
- Dashed curve is with solar modulation (500 MV)

"Excess" at about 300 – 600 GeV

Also seen by recent PPB-BETS

03/18/08

"Advances in Cosmic Ray Science" Waseda University

ATIC Instrument Details

silicon matrix charge detector

plastic scintillator strip hodoscopes interleaved with graphite interaction targets

18 radiation length deep, fully active bismuth germanate (BGO) calorimeter.

Geometry Factors: S1-S3: 0.42 m2sr; S1-S3-BGO 6: 0.24 m2sr;

ATIC Detection Method

FERMI all Electron Spectrum

A. Abdo, Phys.Rev.Lett. 102 (2009) 181101

Theoretical uncertainties on "standard" positron fraction

Interpretation: DM I. Cholis et al. Phys. Rev. D 80 (2009) 123518; arXiv:0811.3641v1

- Propose a new light boson (m $_{\Phi} \leq \text{GeV}$), such that $\chi\chi \rightarrow \Phi\Phi$; $\Phi \rightarrow e^+e^-$, $\mu^+\mu^-$, ...
- Light boson, so decays to antiprotons are kinematically suppressed

e⁻and e⁺ Spectra

The Completed AMS Detector on ISS

AMS consitst of 5 sub-detetcors which provide reduandant TRD information for particle identification

AMS Particle Identification

- Example that demonstrates the particle identification capabilities of AMS
 - 1. Use the first 200 days of data from AMS-02 (5% of the expected data volume)
 - 2. Preselection with a very soft cut on ECAL Shower Shape
 - Cut on TRD Electron Likelihood at 90% Electron Efficiency Positron Purity 98.89% for R= 3 – 100 GV
- We are working now on an optimal strategy to combine the information's from all AMS sub-detector and to estimate systematic errors

S. Schael, UCLA Dark Matter Conference 2012,

Trapped Antiparticles

INFN Istituto Nazionale di Fisica Nucleare

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

Subcutoff particles spectra

Mirko Boezio, Positrons in Astrophysics, 2012/03/20

PAMELA trapped antiprotons

O. Adriani et al., APJL 737 L29 (2011); arXiv:1107.4882

Conclusions

- Astroparticle physics from space is a fascinating field, fertile and rich of scientific potentials.
- Several important esperiments are, or going to, directly measuring cosmic rays and their antimatter component: PAMELA, AMS-2011...
- Important results have already been published and soon more will come.
- Stay tuned, interesting times ahead!

